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Abstract Dynamic programming algorithms solve many standard problems of RNA
bioinformatics in polynomial time. In this contribution we discuss a series of varia-
tions on these standard methods that implement refined biophysical models, such as
a restriction of RNA folding to canonical structures, and an extension of structural
alignments to an explicit scoring of stacking propensities. Furthermore, we demons-
trate that a local structural alignment can be employed for ncRNA gene finding. In
this context we discuss scanning variants for folding and alignment algorithms.
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130 A. F. Bompfünewerer et al.

1 Introduction

Starting with the discovery of microRNAs and the advent of genome-wide transcrip-
tomics, non-protein-coding transcripts have moved from a fringe topic to a central
field of research in molecular biology. Most well-described functional RNAs have
distinctive structures that are conserved over evolutionary time scales. As efficient
algorithms exist to predict RNA secondary structure, bioinformatics has played an
important role in RNA research almost from the beginning [23].

We describe here a collection of novel improved variants of RNA folding and align-
ment that were conceived during the 2006 RNA Meeting in Benasque.1 In particular,
the accuracy of structure prediction can sometimes be improved by considering only
canonical structures, i.e., those that contain no “isolated basepairs”. This leads to
the idea to emphasize stacking also in other contexts, such as structure comparison.
The prerequisite for such approaches is the observation that stacking probabilities can
be efficiently computed as a post-processing of dynamic programming table entries
that are computed and stored already in the folding algorithms as implemented in the
Vienna RNA Package.

2 The loop-based energy model

RNA secondary structures can be seen as outer-planar graphs whose vertices are the
nucleotides and whose edges represent the covalent backbone of the molecule as well
as the basepairs. This class of graphs has a unique outer-planar embedding whose
bounded faces form the unique minimum cycle basis [13]. These faces, in the context
of RNA usually called “loops”, have a direct biophysical interpretation as stabilizing
stacked basepairs or entropically destabilizing elements. Thus they form the units
of the standard additive energy model. Energy parameters that depend on sequence,
length, and type of the loops have been carefully measured over the last two decades
[16,17]. From the biophysical point of view one distinguishes hairpin loops, stacked
base pairs, bulges, true interior loops, and multi(branched) loops. From an algorithmic
point of view one can treat bulges, stacked pairs, and true interior loops as subtypes of
interior loops. We shall see below, however, that in some cases stacked pairs require
separate treatment.

We consider an RNA sequence x of length n. The nucleotide at sequence position
k is xk , and x[k, l] denotes the sub-sequence (xk, . . . , xl). Hairpin loops are uniquely
determined by their closing pair (k, l). The energy of a hairpin loop is parametrized
as

H(k, l) = H(x[k, l]) = H(xk, xk+1, �, xl−1, xl) (1)

where � is the length of the loop (expressed as the number of its unpaired nucleotides).
Each interior loop is determined by the two base pairs enclosing it. Its energy is

1 RNA-2006, Benasque, Spain, 14–27 July 2006.
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tabulated as

I(k, l; p, q)=I(x[k, p], x[q, l])=I(xk , xk+1; �1; x p−1, x p; xq , xq+1; �2; xl−1, xl)

(2)

where �1 = p−k+1 is the length of unpaired strand between k and p and �2 = l−q+1
is the length of the unpaired strand between q and l. Symmetry of the energy model
dictates I(k, l; p, q) = I(q, p; l, k). If �1 = �2 = 0 we have a (stabilizing) stacked
pair, if only one of �1 and �2 vanish we have a bulge. For multiloops, finally, we have an
additive energy model of the form M = a+b×B+c×� where � is the length of multi-
loop (again expressed as the number of unpaired nucleotides) and B ≥ 2 is the number
of branches, not counting the branch in which the closing pair of the loop resides.

Modern versions of the energy parameters also consider so-called dangling ends,
i.e., extra energy contributions of the terminal base pairs in multiloops and exterior
to any other basepair. Although they can be fairly easily included in the algorithms
below, we suppress the dangling end contributions for clarity of presentation. They
are, however, implemented in the programs discussed here.

3 The basic folding recursions

Energy-directed RNA folding is solved by dynamic programming algorithms that
are based on decomposing the set of possible structures into sets of sub-structures
that are defined on sub-sequences. This decomposition can be chosen such that each
possible structure appears in exactly one of the subcases, see Fig. 1 (top) for a graphical
representation. In the course of RNA folding algorithms for linear RNA molecules,
the Vienna RNA Package [7,9] computes the following arrays for i < j , which
correspond to the distinct types of substructures in Fig. 1 (top).

Fi j free energy of the optimal substructure on the subsequence x[i, j].
Ci j free energy of the optimal substructure on the subsequence x[i, j] subject to the

constraint that i and j form a basepair.
Mi j free energy of the optimal substructure on the subsequence x[i, j] subject to the

constraint that x[i, j] is part of a multiloop and has at least one component, i.e.,
a sub-sequence that is enclosed by a basepair.

M1
i j free energy of the optimal substructure on the subsequence x[i, j] subject to

the constraint that x[i, j] is part of a multiloop and has exactly one component,
which has the closing pair (i, h) for some h satisfying i < h ≤ j .

The “conventional” energy minimization algorithm for linear RNA molecules [26,
27] can be summarized in the following way. We give the recursions in the form in
which they are implemented in the Vienna RNA Package [7,9]:

Fi j = min

{
Fi+1, j , min

i<k≤ j
Cik + Fk+1, j

}

Ci j = min

{
H(i, j), min

i<k<l< j
Ckl + I(i, j; k, l), min

i<u< j
Mi+1,u + M1

u+1, j−1 + a

}
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132 A. F. Bompfünewerer et al.

Mi j = min

{
min

i<u< j
(u−i +1)c + Cu+1, j +b, min

i<u< j
Mi,u + Cu+1, j +b, Mi, j−1+c

}

M1
i j = min

{
M1

i, j−1 + c, Ci j + b
}

(3)

The initialization is Fii =0, Cii = Mii = M1
i i =+∞. Memory consumption is quadra-

tic in sequence length.2 In our current implementation, the total length of interior loops
(second-term in the recursion for C) is limited such that ( j − l −1)+ (k − i −1)≤30.
This restriction leads to a cubic run-time. Under certain conditions on the interior loop
energies, which are realized for the Turner energy model, a cubic algorithm can also
be obtained without a length restriction for interior loops [15].

The corresponding recursions for the partition functions (Zi j , Z B
i j , Z M

i j , Z M1
i j ) are

obtained by replacing minimum operations with sums and additions with multiplica-
tions [18]:

Zi j = Zi+1, j +
∑

i<k≤ j

Z B
ik Zk+1, j

Z B
i j = e−βH(i, j) +

∑
i<k<l< j

Z B
kle

−βI(i, j;k,l) +
∑

i<u< j

Z M
i+1,u Z M1

u+1, j−1e−βa

Z M
i j =

∑
i<u< j

e−β(u−i+1)c Z M
u+1, j +

∑
i<u< j

Z M
i,u Z B

u+1, j e
−βb + Z M

i, j−1e−βc (4)

Z M1
i j = Z M1

i, j−1e−βc + Z B
i j e

−βb

Zii = 1, Z B
ii = Z M

ii = Z M1
i i = 0

As usual, β = 1/RT is the inverse thermal energy. Uniqueness of the substructure
decomposition is crucial in this case since the partition function is a weighted count
over all structures.

4 Canonical secondary structures

A canonical secondary structure does not contain isolated (“lonely”) basepairs, i.e.,
pairs that are not stacked on another pair. In Fig. 1 we compare the structure
decomposition of the usual, unconstrained, secondary structures with the decompo-
sition of constrained structures. Restrictions of the energy minimization algorithms
to this subclass have already been included in the Vienna RNA Package. The
requirement of a unique structural decomposition, which can be waived in the case
energy minimization, however, requires some algorithmic changes in partition func-
tion approaches.

Let Z∗
i j denote the partition function over all structures that are enclosed by a

basepair and that become canonical when enclosed by an additional exterior basepair
(i − 1, j + 1); this corresponds to the structures marked (C) in Fig. 1. The usual

2 In most applications the matrices M1 and F arrays can be replaced by linear arrays that store only the
current and previous row or column.
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Fig. 1 Comparison of the structure decompositions used in RNA folding algorithms for unconstrained
structures (top) and canonical structures (below). Thin arcs denote substructures that are closed by a possibly
lonely basepair but otherwise canonical. Thick arcs mark canonical substructures enclosed by a stacked
pair. We note that the decomposition stays almost the same provided one reinterprets the closed structures
as canonical structures enclosed by a basepair (B). The only difference is the representation of B as an
enclosed structure (C) that becomes canonical when enclosed by a single outer basepair

forward recursions (4) remain almost unchanged: the recursion for Z∗
i j is precisely as

given for Z B
i j in Eq. 4 above, while the Z B

i j

Z B
i j = Z∗

i+1, j−1e−βI(i, j,i+1, j−1) (5)

is computed by adding the stacking contribution to the enclosed structure. The
multiloop decomposition remains unchanged.

The outward recursions are bit more problematic, however. Denote by Ẑ B
i j the

partition function over all canonical structures outside the pair (i, j), and let Ẑ∗
i j

be the partition function over all structures outside (i, j) that become canonical when
enclosed by the additional basepair (i −1, j +1). Again there is little change compared
to the “usual” backwards recursion as implemented in the Vienna RNA Package.
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134 A. F. Bompfünewerer et al.

The main difference is that the case of a stacking interaction is different here, since the
sub-structures excluded by (i, j) need not be canonical. It is sufficient that (i −1, j +1)

is paired. Therefore, the stacking term depends on Ẑ∗ instead of Z B . We thus obtain
the following recursions:

Ẑ∗
i j = Z1,i−1 Z j+1,n︸ ︷︷ ︸

exterior

+
∑

h<i< j<l
(h,l) �=(i−1, j+1)

Ẑ B
h,l e

−βI(h,l;i, j)

︸ ︷︷ ︸
interior loop

+Ẑ∗
i−1, j+1e−βI(i−1, j+1;i, j)

︸ ︷︷ ︸
stack

+
∑

h<i< j<l

Ẑ B
h,l

×

⎧⎪⎪⎨
⎪⎪⎩

e−β(i−h−1)c Z M
j+1,l−1︸ ︷︷ ︸

multiloop right

+ Z M
h+1,i−1e−β(l− j−1)c

︸ ︷︷ ︸
multiloop left

+ Z M
h+1,i−1 Z M

j+1,l−1︸ ︷︷ ︸
multiloop both

⎫⎪⎪⎬
⎪⎪⎭

Ẑ B
i j = Ẑ∗

i−1, j+1e−βI(i−1, j+1;i, j) (6)

From these quantities we can immediately compute the probability of the stack (i, j;
i + 1, j − 1) as

P[i, j] = Z B
i, j Ẑ B

i+1, j−1

Ze−βI(i, j;i+1, j+1)
(7)

Note that we have to divide by the stacking contribution since this factor is contained
in both Ẑ B

i, j and Z B
i+1, j−1. The individual base pairing probabilities can be computed

as follows:

Pi j = 1

Z

[
Z∗

i j Ẑ B
i j + Z B

i j Ẑ∗
i j − Z B

i j Ẑ B
i j

]
(8)

The last term accounts for the fact that in the first two terms we have twice included
the structures that are canonical both inside and outside the pair (i, j).

The partition function algorithm for canonical structures has been included in the
latest version of the Vienna RNA Package. Figure 2 gives an example in which
the restriction to canonical basepairs increases the accuracy of the structure prediction.
Since fewer basepairs have to be considered in the canonical case, there is also a
moderate performance gain.

5 Probabilities for stacks

The probability of a structural motif can be computed easily once the Z B table has
been filled. Of particular interest are the probabilities for stacks and helices, which we
derive below. The conditional probability for the stacking of two pairs is

Prob [(i + 1, j − 1)|(i, j)] = Z B
i+1, j−1

Z B
i, j

e−βI(i, j;i+1, j−1) (9)

The probability for a stack of length at least � inside the pair (i, j) can be determined
by a similar expression:
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Fig. 2 Canonical versus general secondary structures. Left-hand side panel Comparison of base pairing
probabilities of a tRNA (Genbank Accession number AB031211) with isolated pairs (lower left) and without
(upper right) triangular matrix. In this example, the characteristic clover leaf shape is more apparent in the
distribution of canonical structures. Right-hand side panel comparison of the performance of the folding
and backtracing algorithm as implemented in the current version of the Vienna RNA Package. As
expected, computing canonical structures is cheaper by a constant factor since fewer potential base pairs
have to be considered

P(�)
i, j = Pi j

Z B
i+�−1, j−�+1

Z B
i, j

�−2∏
u=0

e−βI(i+u, j−u;i+u+1, j−u−1) (10)

Equivalently, Eq. (11), expresses P(�)
i, j in terms of the conditional stacking probabilities

P(�)
i, j = Pi j

�−2∏
u=0

Prob [(i + u + 1, j − u − 1)|(i + u, j − u)] (11)

The probability that the stack extends exactly � basepairs from (i, j) can be computed
as

P [�]
i j = P(�)

i j − P(�+1)
i j (12)

We can also rather easily enforce that (i, j) is the first pair of the stack. We start from
Bayes’ equation:

Prob [(i + 1, j − 1)|(i, j)] Pi j = Prob [(i, j)|(i + 1, j − 1)] Pi+1, j−1 (13)

Thus, the probability that (i − 1, j + 1) is not a pair given that (i, j) is paired is

Prob [¬(i − 1, j + 1)|(i, j)] = 1 − Prob [(i, j)|(i − 1, j + 1)]
Pi−1, j+1

Pi, j
(14)
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Fig. 3 Comparison of base pairing probabilities Pi j (upper right of both dot plots), stacking probabilities

P(2)
i j (lower left of left dot plot), and conditional stacking probabilities Prob [(i, j)|(i + 1, j − 1)] (lower

left of right dot plot) for a short artificial sequence. Even for low probability helices, conditional stacking
probabilities are often close to 1, which is due to the cooperativity of helix formation

The probability P(�)
i j of stack of length at least � with the first pair (i, j) is thus

P(�)
i j = Prob [¬(i − 1, j + 1)|(i, j)] P(�)

i j

=
[
1− Pi−1, j+1

Pi, j

Z B
i, j

Z B
i−1, j+1

e−βI(i−1, j+1;i, j)

]
Pi, j

Z B
i+�−1, j−�+1

Z B
i, j

�−2∏
u=0

e−βI(i+u, j−u;i+u+1, j−u−1)

= P(�)
i j − Pi−1, j+1

Z B
i+�−1, j−�+1

Z B
i−1, j+ j

e−βI(i−1, j+1;i, j)
�−2∏
u=0

e−βI(i+u, j−u;i+u+1, j−u−1) (15)

As we would expect, we obtain

P(�)
i j = P(�)

i j − P(�+1)
i−1, j+1 (16)

Finally, the probability for a stack of length exactly � with first pair (i, j) is

P[�]
i j = P(�)

i j − P(�+1)
i j

= P(�)
i j − P(�+1)

i−1, j+1 − P(�+1)
i j + P(�+2)

i−1, j+1

= P [�]
i j − P [�+1]

i−1, j+1 (17)

Figure 3 compares Prob [(i, j)|(i + 1, j − 1)] with Pi j . In general we see a similar
pattern, indicating that stacked basepairs are highly correlated.
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6 Structural alignment with stacking

In many applications it is convenient to avoid the full loop based energy model and to
use a scoring scheme based on pre-computed pair probabilities instead. Essentially,
such an approach treats pair probabilities as if they were independent. Including the
effect of basepair stacking should improve this situation without introducing much
additional complexity.

As an example we consider the structural alignment program LocARNA [24].
Similar to PMcomp [8], LocARNA implements a Nussinov-style version of the San-
koff algorithm [20] in which scores for basepair matches are pre-computed using
thermodynamic folding algorithms. Lin et al. [14] define a hierarchy of problems for
the general edit distance of two RNA sequences with structures. Each of the sequences
is either annotated with no structure (plain), a fixed pseudoknot-free structure (nes-
ted), or a fixed arbitrary structure (crossing). They present algorithms for the case
nested/plain and crossing/nested and show that the crossing/plain problem is MAX
SNP-hard. Our algorithm is structurally similar to their O(n2, m2) time algorithm for
the crossing/nested problem.

Let Mi jkl be the optimal score of an alignment of the subsequences A[i.. j] and
B[k..l]. Furthermore, Di jkl is the optimal score of an alignment of the subsequences
A[i.. j] and B[k..l] with matching basepairs (arcs) (i, j) and (k, l). With a gap penalty
γ , and sequence dependent scores σ for unpaired (mis)match and α for arc matches
one finds the following recursions (see also Fig. 4):

Mi, j,k,l = max

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Mi, j−1,k,l + γ

Mi, j,k,l−1 + γ

Mi, j−1,k,l−1 + σ(i, j)

max
i<p< j
k<q<l

(
Mi,p−1,k,q−1 + Dp, j,q,l

)

Di, j,k,l = Mi+1, j−1,k+1,l−1 + α(i, j, k, l)

(18)

max
p,q

Di, j,k,l

Mi, j,k,l

l

ji

k

l

ji

k

l

ji

k

− −

=

=
i j

l
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k q lq−1
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k l

i j

lk

pp−1

i+1
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Fig. 4 Recursion scheme for sequence–structure alignment in illustration of Eq. 19. There are four distinct
cases for obtaining the scores in the matrix M and a single derivation for the entries of D
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In order to incorporate stacking we have to introduce an additional set of parameters
α′ that score the extension of a series of adjacent arcs. Furthermore, we have to distin-
guish the extension of an arc-enclosed alignment from the formation of an individual
enclosing arc:

Di, j,k,l =max

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

α(i, j, k, l)+max

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Mi+1, j−2,k+1,l−1 + γ

Mi+1, j−1,k+1,l−2 + γ

Mi+1, j−2,k+1,l−2 + σ(i − 1, j − 1)

max
i+1<p<l−1

k+1<q<l

(
Mi+1,p−1, j+1,q−1+Dp, j−1,q,l−1

)

α′(i, j, k, l) + Di+1, j−1,k+1,l−1

(19)

The global alignment score is M1,|A|,1,|B|.
For local alignment with a score threshold T we have to include the “un-aligned”

state with scores Mi, j,k,l = 0 as additional alternative in Eq. (18). Backtracking then
starts at local maxima of the M1, j,1,l matrix that exceed the threshold T .

In our implementation, only the D array (for pairs of matched basepairs only) and
the values M1, j,1,l are stored permanently. Since the number of basepairs in the input
structures is linear in sequence length provided only pairs with a minimum pairing
probability p0 are considered, the algorithm requires O(|A| × |B|) memory, see [24]
for details.

A natural way of defining the scoring functions α and α′ is to use appropriately sca-
led logarithms of base pairing and conditional base pairing probabilities, respectively.
For molecule A these quantities are

Ψ A
i j = max{0, log(P A

i j /p0)/ log(1/p0)}
Ψ A∗

i j = max{0, log(Prob [(i, j)|(i + 1, j − 1)] /p0)/ log(1/p0)},
(20)

analogous expressions Ψ B
i j and Ψ B∗

i j hold for the second molecule. The user-defined
parameter p0 is the minimum pairing probability of basepair that considered to be part
of the input structure. The most straight-foward cost model then assumes α(i, j, k, l) =
Ψ A

i j + Ψ B
kl and α′(i, j, k, l) = Ψ A∗

i j + Ψ B∗
kl , respectively.

Thus, only the base matches Ai —B j that are not part of matching basepairs (arcs)
are given a sequence dependent score σ(i, j) [third entries in eqs. (18) and (19)],
respectively. Both LocARNA and PMComp also use a sequence-specific component
τ(i, j, k, l) for matching basepairs in the definition of α(i, j, k, l). For this purpose
one can utilize e.g. the RIBOSUM basepair substitution scores [12], a 16 × 16 matrix
derived from substitution probabilities between all possible pairs of nucleotides.

The question remains, how arc breaking should be treated, which occurs whenever
an input basepair in one sequence is not matched against another basepair. If two known
secondary structures instead of basepair probability matrices are used as input, it is
biophysically meaningful to explicitly penalize arc breaking, see e.g. [1,11]). These
score could be added as an extra row and column to the RIBOSUM model. However,
the recursion scheme above or variants thereof can only be applied if the score for
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a)

UCCCCCCACCC

broken
arcs

CCCACCCCCCU

b)

CCCCCCCCCCC

UCCACCCACCU
a2a1

Fig. 5 a Crossing interaction produced by broken arcs. b Both arcs are broken here since they are not part
of a basepair match

arc breaking has a special form, namely the left and right ends of the broken arcs are
scored independently. The reason is that considering a broken arc as an entity would
produce crossing interactions as in Fig. 5a for example. In contrast, tree-editing like
algorithms (see [6] and the references therein) treat arcs as entities that can be added
or deleted only as a whole. In such models it is natural to have scores that depend
on the type of basepair; in general, these will not be the sum of contributions for the
paired bases.

In the case of LocARNA and PMcomp where basepair probability matrices are
given as an input, scoring of arc breaking does not make sense. Consider the case
where we have two crossing arcs a1 and a2 in the basepair probability matrices having
a similar probability as in Fig. 5b. In this case, we simply do not know which of the
two arcs are part of the real structure of the first sequence. Furthermore, both arcs are
exclusive. Hence, we could score at most one arc breaking, and we simply do not have
any information which one should be scored.

7 Using structural alignment algorithms for gene finding

A natural application of local structural alignments is homology based RNA gene
finding. To this end, a structure-annotated genomic DNA can be efficiently computed
byRNALfold [10] orRNAplfold [2]. These programs compute local RNA structure
by restricting the maximum span of basepairs (i, j) to | j − i | < L .

Utilizing LocARNA for sequence/structure homology search requires several
modifications. We first extended the algorithm so that its backtracking routine not
only returns the optimal local alignment but the k-best local alignments. This was
achieved by an interval splitting strategy on top of the basic algorithm. For complexity
reasons, we process overlapping windows (size 1,000,000) instead of complete chro-
mosomes. For each window, the RNA search pattern is locally aligned to the window.
Local folding allows us to restrict the maximal reach basepairs L to the size of the
search pattern.

The following example is intended to demonstrate that local sequence/structure
alignments can indeed be utilized for genome-wide homology searches at acceptable
computational costs.

For our application to box H/ACA snoRNAs we furthermore modify the sequence
scoring scheme so that in/dels in the conserved sequence boxes can be prohibited. As
a typical non-coding RNA, snoRNA is largely characterized by structure and shows
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Fig. 6 Left secondary structure of the best three snoRNA candidates. Right Dot plot produced byRNAfold
of first candidate (a). Candidates show specific snoRNA features like: two stems of approximately equal
length, ACA-box at 3′ end and H-box (consensus: ANANNA) between both stems

only small sequence conservation. For the example in Fig. 6 we derived the snoRNA
pattern from the human U65 snoRNA. First, we compute a pair probability matrix
using McCaskill’s algorithm [18] (RNAfold -p). Due to the very low sequence
conservation, we ignore most of the sequence information. We enforce, however,
exact matches of the H-box (motif ANANNA between the two stems) and the ACA-box
(motif ACA at the 3′ end). We conduct our search on chromosome I of Caenorhabditis
elegans, which has a size of approximately 16 megabases. The entire computation
took approximately 8 h on a Pentium 4 3 GHz, 4 GB RAM running Linux, about half
of the time was used by locarna, the other half was used to pre-compute the base
pairing probabilities with RNAplfold (L = 138, the size of the query pattern).

We determined the 400, regarding to the locarna-score, top-ranking local alignments
of the snoRNA pattern. Three good examples are shown in Fig. 6. We then folded all
hits usingRNAfold and selected a top-list of 78 snoRNA candidates whose minimum
energy structure resembles the typical shape of box H/ACA snoRNAs. In this set we
find the single box H/ACA snoRNA cer-3 that is reported for Chr.I in the “Wormbook”
[22]. In addition, we recover two of the nine novel ncRNAs on Chr.I that have been
reported as likely box H/ACA snoRNAs in recent experimental screens [3,25].

The LocARNA algorithm [24] could be modified to a true scanning variant in which
memory requirements are independent of the subject database (apart from storing
the input itself). The idea is similar to the RNALfold-style “scanning” algorithms,
another variant of which is described in Sect. 8 below. We observe that the length w

of any local alignment with a score T ≥ 0 for the query sequence is bounded since
the maximal possible alignment score must exceed the prescribed threshold T . One
easily derives the estimate

0 ≤ T ≤ M(max σ + max(α, α′)/2) − |w − M |γ (21)
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where M is the length of query sequence and L is the maximal span of a basepair in
subject sequence. It follows that

w ≤ M + [M(max σ + max(α, α′)/2) − T ]/γ (22)

It is therefore sufficient to store a window of size w backward from the current position
l in the subject database and to start backtracking from within this “active” window of
size M × w. It is easy to avoid producing groups of similar alignments by enforcing
a minimum distance in the database between the start positions for consecutive calls
to the backtracking routine.

8 A scanning version of RNAup

Regulatory RNAs often interact with a target RNA by forming inter-molecular helices.
Duplex formation, e.g. between an siRNA and its mRNA target, is facilitated if the
binding site is accessible, i.e. in an unpaired region. To predict possible binding sites it
is therefore of interest to compute the probability P0[i, j] that a sequence interval [i, j]
is unpaired, as is done in the RNAup program [19]. The probability that small regions
are unpaired is also frequently computed by sampling structures from the Boltzmann
distribution using e.g. Sfold [4] or the stochastic backtracking option in RNAfold.
This introduces sampling errors, especially when the accessibility is small. In contrast,
RNAup computes P0[i, j] directly by dynamic programming. However, since RNAup
folds the complete molecule, its CPU requirements still scale as O(n3), making it
unsuitable for very long sequences. Instead, one can use a windowing technique as
an approximation. As in the case of RNAplfold it is of interest to replace explicit
computations of individual sequence windows by a “scanning approach” that directly
computes the average over all pertinent sequence windows of a fixed length L .

As shown in [19], the values of P0[i, j] can be computed from the equation

P0[i, j] = Z1,i−1 Z j+1,n

Zn
+

∑
h<i, j<l

Ph,lProb [[i, j]|(h, l)] , (23)

where Prob [[i, j]|(h, l)] is the probability that [i, j] is an unpaired region within the
loop with closing pair (h, l). Note that this probability is independent of the structures
outside the pair (h, l).

As in RNAplfold [2] we define the average over all folding windows of the
probability that (i, j) is paired:

π L
i j = 1

L − ( j − i) + 1

i∑
u= j−L

Pu,L
i j . (24)

where Pu,L
i j is the probability that i, j is paired in a window of size L starting at u. Now

we compute the average π0[i, j] of the P0[i, j] values over all windows of length L
containing [i, j], i.e.,

123



142 A. F. Bompfünewerer et al.

0 50 100 150 200 250

sequence position

0.0

0.2

0.4

0.6

0.8

1.0

]deriapnu[p

RNAup
RNAplfold -u
sfold

U C U A G A A A G U U U U C A C A A A G C U A A C A G G U A C C U C G A G A A G U U U U C A C A A A G C U A A C A C C G G A A G U U U U C A C A A A G C U A A C A A C U A G U G U A C C A A G U U U U C A C A A A G C U A A C A A U C G C G G G C C C U A G A G C G G C C G C U U C G A G C A G A C A U G A U A A G A U A C A U U G A U G A G U U U G G A C A A A C C A C A A C U A G A A U G C A G U G A A A A A A A U G C U U U A U U U G U G A A A U U U G U G A U G C U A U U G C U U U A U U U G U A A C C A U U A U A A G C U G C A A U A A A C A

Fig. 7 Dot plot and probability of four bases being unpaired in an artificially designed 3′ UTR targeted
by the cxcr4 siRNA [5]. Accessibilities were computed using three methods: RNAplfold -u 4 -L
100 -w 120 (thick line), RNAup (shaded area), and Sfold (thin dotted line, also using a maximum
span of 100). Note that for L = n RNAup and RNAplfold would give identical results. Bars above the
accessibility plot denote the binding sites. Note that the highest probabilities of being unpaired are observed
at the “seed-sites”, i.e., at the 3′ end the binding sites

π0[i, j] = 1

L − ( j − i) + 1

i∑
u= j−L

P0[i, j]

= 1

L − ( j − i) + 1

i∑
u= j−L

Zu,L
1,i−1 Zu,L

j+1,n

Zu,L
1,n

+
i−1∑

h= j−L

i+L∑
l= j+1

L − (h − l) + 1

L − ( j − i) + 1
π L

hlProb [[i, j]|(h, l)] (25)

Since
Prob [[i, j]|(h, l)] = Zhl [i, j]/Z B

i j (26)

is independent of the folding window as long as [h, l] ⊆ [u, u + L − 1], and the
computation of Zhl [i, j] requires only partition function entries in the interval [h, l],
we have here a way of combining RNAup and RNAplfold.

This algorithm can be used e.g. to obtain a quick estimate of the availability of
putative binding sites for miRNA target prediction. It seems reasonable to assume that
in order for the miRNA to initiate binding, at least a small part of the binding site must
be unpaired and thus accessible for the initial contacts. Target site accessibility thus
has been used to improve the design of efficient siRNAs [21] using Sfold. Figure 7
shows an application to an siRNA example from the literature. The scanning version

123



RNA folding and alignment algorithms 143

of RNAplfold offers two advantages: (1) instead of using a sampling approach,
the target site accessibility is computed exactly, and (2) RNAplfold can handle se-
quences of the the size of a chromosome, while the Sfoldweb server limits sequence
length to 5,000.
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