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1 Introduction

Actions of the group SL(2,Z) and dualities between three dimensional gauge theories have

been a long-standing subject in quantum field theory. A notable example of such dualities

is mirror symmetry [1], which corresponds to an operation of the generator S, such that

S2 = −1, of SL(2,Z) [2, 3]. From the string theoretic perspective, mirror symmetry has

many interesting realisations [4–6]. One of which involves applying the S-transformation

on a Type IIB brane system, known as the Hanany-Witten configuration, consisting of

D3, NS5 and D5 branes preserving eight supercharges [6]. This realisation does not only

allow for the construction of a number of interesting mirror pairs, it also provides for

several variations of the models, such as the inclusion of an orientifold plane into the brane

system [7–10]. Along with S, the group SL(2,Z) has another generator, usually denoted

by T , that obeys (ST )3 = 1. The operation by T shifts the Chern-Simons level of the

background gauge field [3, 10]. In terms of branes, the action T k transforms an NS5 brane

into a (1, k) fivebrane [11, 12].

An SL(2,Z) transformation can be applied locally on the Type IIB brane system in

the following sense [10, 13, 14]. For example, under the S-transformation, a (p, q) fivebrane

transforms into a (−q, p) fivebrane. It was pointed out in [10, 13] that we may trade a

(p, q) fivebrane in a given brane system for a (−q, p) fivebrane with an S-duality wall on

its right and (S−1)-duality wall on its left. Indeed, the duality walls define the boundaries

of the region of the local SL(2,Z) action, and at the same time one may regard them as

the new object in the brane configuration. As suggested in [10], the intersection between

an S-duality wall and a stack of N D3 branes gives rise to a T (U(N)) theory1 coupling

between two U(N) groups, where T (U(N)) can be regarded as a 3d N = 4 superconformal

field theory on the Janus interface in 4d N = 4 super-Yang-Mills [10, 16].

This idea leads to a new class of conformal field theories (CFTs) in three dimensions,

known as the S-fold CFTs [17]. From the brane perspective, we may insert such a duality

wall into a D3 brane interval of the Hanany-Witten configuration. For the duality wall

associated with the SL(2,Z) element J = −ST k, the corresponding field theory can be

described by a quiver diagram that contains the T (U(N)) theory connecting two U(N)

gauge nodes, with the Chern-Simons levels k and 0.

Such CFTs admit an interesting gravity dual. The latter involves AdS4 × K6 Type

IIB string solutions with monodromies2 in K6 in the group SL(2,Z). These solutions

were obtained by applying the corresponding SL(2,Z) quotient on the solutions associated

with the holographic dual of Janus interfaces in 4d N = 4 SYM [22, 23]. In fact, such a

construction for abelian gauge theories was studied in [24], and the supergravity solution

corresponding to such a duality wall (dubbed the S-fold solution) was studied in [25].

Several related realisations of duality walls in 4d N = 4 SYM with SL(2,Z) monodromies

can also be found in [26–29]. Moreover, it is worth pointing out that quivers containing

the T (SU(N)) theory as a component were discussed in [30, 31]. In this paper, we shall

use the term S-fold and S-duality wall interchangeably.

1We shall not review about the T (U(N)) theory here. The reader is referred to [10, 14, 15] for further

details.
2A similar solution in AdS5 was considered in [18, 19], and those in AdS3 were considered in [20, 21].
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The moduli space of three dimensional S-fold CFTs was studied extensively in [15].

One of the main results is that the vector multiplets of the U(N) gauge nodes, with

zero Chern-Simons levels, that are connected by a T (U(N)) theory do not contribute the

Coulomb branch. We shall henceforth dub this result the “freezing rule”. In terms of

branes, the freezing rule implies that the brane segment that intersects the S-fold cannot

move along the Coulomb branch direction, but gets stuck at a given position. This result

has been tested using mirror symmetry, whereby the mirror configuration was obtained

by applying the S-operation on the original brane configuration. We find that the Higgs

branch (resp. Coulomb branch) of the original theory gets exchanged with the Coulomb

branch (resp. Higgs branch) of the mirror theory, consistent with the freezing rule and

mirror symmetry.

A natural question that arises from the study of [15] is whether we can replace the

T (U(N)) link in the quiver by T (G), where G is a group that is not U(N). In order for T (G)

to be invariant under the S-action, G has to be invariant under S-duality. In this paper,

we address this question by studying the cases in which G is either SO(2N), USp′(2N) or

G2, and restrict the Chern-Simons levels of the gauge groups that are connected by T (G)

to zero.

For G being SO(2N) and USp′(2N), we propose that the corresponding theory can

be realised from a brane construction that contains an intersection between an S-duality

wall with the D3 brane segment on top of the orientifold threeplane of types O3− and Õ3
+

respectively. In other words, the S-fold CFTs of this class can be obtained by inserting an

S-duality wall into an appropriate D3 brane segment of the brane systems described in [9].

The mirror theory can be derived by first obtaining the S-dual configuration as discussed

in [9], and then insert an S-fold in the position corresponding to the original set-up. We

find that the moduli spaces of the original and mirror theories are consistent with the

freezing rule and mirror symmetry. This consistency also supports the existence of S-fold

of the type SO(2N) and USp′(2N), and that the local S-operation can be consistently

performed in the background of the O3− and Õ3
+

planes.

We also perform a similar analysis for the brane system that contains an orientifold five-

plane or its S-dual, which is also known as an ON plane. In which case, the corresponding

quiver may contain a hypermultiplet in the antisymmetric (or symmetric) representation,

along with fundamental hypermultiplets, under the unitary gauge group, and the mirror

quiver may contain a bifurcation [7, 8]. We find that the results are consistent with the

freezing rule and mirror symmetry provided that the S-fold is not inserted “too close” to

the orientifold plane and there must be a sufficient number of NS5 branes that separate

the S-fold from the orientifold plane. This suggests a consistency condition for the local

S-action to be performed under the background of an orientifold fiveplane.

The class of theories that contain G2 gauge groups is completely new and interesting.

To the best of our knowledge, the Type IIB brane construction for such theories is not

available and mirror theories of this class of models have not been discussed in the litera-

ture. In particular, we consider a family of quivers that contain alternating G2 and USp′(4)

gauge groups, possibly with fundamental flavours under USp′(4). We propose that one can
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“insert an S-fold” into the G2 and/or USp′(4) gauge groups in the aforementioned quivers.

This results in the presence of the T (G2) link connecting two G2 gauge groups, and/or the

T (USp′(4)) link connecting two USp′(4) gauge groups. We also find that the mirror theory

is also a quiver containing the G2, USp′(4) and possibly SO(5) gauge groups if the original

theory contains fundamental matter under USp′(4). We test, using the Hilbert series, that

the moduli spaces of such theories are consistent with the freezing rule and mirror symme-

try. This, again, provides strong evidence for the existence of an “S-fold of the type G2”.

The paper is organised as follows. In section 2 we briefly review T (G) theories and

fix the notations that are adopted in the subsequent parts of the paper. In section 3, we

study the hyperKähler spaces that arise from coupling a nilpotent cone associated with

a group G to matter in the fundamental representation of G. Such spaces have some

interesting features and this notion turns out to be useful in the later sections because the

nilpotent cone arises from the Higgs or Coulomb branch of the T (G) theory. In section 4,

we investigate quiver theories that arise from brane configuration with an S-fold in the

background of the O5− or the ON− plane. We provide the consistency conditions for the

relative positions between the S-fold and the orientifold plane such that the moduli spaces

of theories in question obey the freezing rule and mirror symmetry. In section 5 we study

various models involving S-folds in the background of the O3− or the Õ3
+

planes. The

corresponding quivers contain a T (SO(2N)) link or a T (USp′(2N)) link between gauge

nodes. In section 6, we propose a new class of mirror pairs involving G2 gauge nodes, as

well as those with T (G2) link. Finally, in appendix A, we investigate the quivers that arise

from the brane systems with O5+ or its S-dual ON+. One of the features of the latter is

that the quiver contains a “double lace”, in the same way as that of the Dynkin diagram

of the CN algebra. Although this part of the quiver does not have a known Lagrangian

description, one can still compute the Coulomb branch Hilbert series using the prescription

given in [32]. We find that such a Coulomb branch agrees with the Higgs branch with the

original theory, and for the theory with an S-fold the former also respects the freezing rule.

2 Notations and conventions

Let us state the notations and conventions that will be adopted in the subsequent parts of

the paper.

Gauge and global symmetries. In a quiver diagram, we denote the 3d N = 4 vector

multiplet in a given gauge group by a circular node, and a flavour symmetry by a rectan-

gular node. A black node with a label n denotes the symmetry group U(n), a blue node

with an even label m denotes the symmetry group USp(m), and a red node with a label k

denotes the symetry group O(k) or SO(k).

U(n) : n n

USp(m) : m m with m even

O(k) or SO(k) : k k

(2.1)

– 3 –
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We shall be explicit whenever we would like to emphasise whether the group is O(k)

or SO(k) In this paper we also deal with the group known as USp′(2M), arising in the

worldvolume M physical D3 branes on the Õ3
+

plane [33]. Note that under S-duality,

USp′(2M) transforms into itself. This is in contrast to the group USp(2M), arising in

the worldvolume M physical D3 branes on the O3+ plane, where under the S-duality

transforms into SO(2M + 1). We denote the algebra corresponding to USp′(M), with M

even, in the quiver diagram by a blue node with the label M ′. In the case that the brane

configuration does not give a clear indication whether the group is USp(M) or USp′(M),

we simply denote the label in the corresponding blue node by M .

Brane configurations. In this paper, we use brane systems involving D3, D5, NS5

branes, possibly with orientifold planes, that preserve eight supercharges [6–9, 31]. Each

type of branes spans the following directions:

0 1 2 3 4 5 6 7 8 9

D3, O3 X X X X

NS5, O5 X X X X X X

D5 X X X X X X

(2.2)

The x6 direction can be taken to be compact or non-compact.

The T (G) theory. In the following, we also study the 3d N = 4 superconformal theory,

known as T (G), arising from a half BPS domain wall in the 4d N = 4 super-Yang-Mills

theory with gauge group G that is self-dual under S-duality [10]. In this paper, we focus on

G = U(N), SO(2N), USp′(2N), G2. The quiver descriptions for T (U(N)) and T (SO(2N))

are given in [10], whereas that for T (USp′(2N)) are given by [34, section 2.5]. The T (G)

theory has a global symmetry G × G. The Higgs and the Coulomb branches are both

equal to the nilpotent cones Ng, where g is the Lie algebra associated with the group G.

We denote the theory T (G) by a wiggly red line connecting two nodes, both labelled by

G. As an example, the diagram below denotes the T (USp′(2N)) theory, with the global

symmetry USp′(2N)×USp′(2N) being gauged:

2N ′ 2N ′
T (USp′(2N))

(2.3)

Furthermore, we can couple this theory to half-hypermultiplets in the fundamental repre-

sentations of such USp′(2N) gauge groups. For example, if we have m1 and m2 flavours

of fundamental hypermultiplets under the left and the right gauge groups of (2.3) respec-

tively, the corresponding flavour symmetry algebras are so(2m1) and so(2m2), and the

quiver diagram reads

2m1 2m22N ′ 2N ′
T (USp′(2N))

(2.4)
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Let us examine the case in which G is not self-dual under S-duality. This can lead

to a certain issue in constructing quivers that admit a consistent brane configuration and

we shall not consider such a case in the subsequent part of this paper. However, for the

sake of completeness, let us discuss such an issue explicitly using an example. First of

all, T (G) may not be an appropriate notation to use, but one may also need to provide

the information regarding the partitions σ and ρ of G and its dual group G∨ to specify

the theory Tσρ (G) [10]. For example, when G = USp(4), σ is a C-partition3 of 4 whereas

ρ is a B-partition4 of 5, associated with the dual group G∨ = SO(5) [34–36]. Given

this example, one may would like to consider T
[14]
[15]

(USp(4)), which has a global symmetry

G × G∨ = USp(4) × SO(5). Suppose that we couple this theory to matter as in (2.4),

where we replace the wiggly line (T -link) by T
[14]
[15]

(USp(4)) with USp(4) gauge group on

the left and SO(5) gauge group on the right. Then, the m1 and m2 fundamental flavours

in (2.4) give rise to a SO(2m1)×USp(2m2) flavour symmetry, and such half-hypermultiplets

transform under the representation 1
2(4; 2m1) of USp(4) × SO(2m1) and 1

2(5; 2m2) of

SO(5) × USp(2m2), respectively. One may take m1 = m2 = 2 and form a circular quiver

with alternating SO/USp gauge groups with equal rank by gauging both flavour symmetries

and couple them to bifundamental matter. Specifically, let us consider a circular quiver

with the USp(4) × SO(4) × USp(4) × SO(5) gauge group, where the first USp(4) and the

last SO(5) are connected by the T -link and other groups are connected by bifundamental

half-hypermultiplets. One cannot realise this theory using a Type IIB brane configuration

with an orientifold threeplane and an “S-fold” in a simple way for the following reason.

Note that the first USp(4) and the last SO(5) connected by the T -link must be associated

with O3+ and Õ3
−

respectively, and as the O3 plane crosses a half-NS5 brane it changes

sign. Starting from the left USp(4) as we go through the sequence of the gauge groups to

the right, we obtain the sequence of the associated O3 plane to be (O3+,O3−,O3+,O3−).

However, this is in contradiction to the fact that the SO(5) gauge group must be associated

with Õ3
−

, and not O3−. Due to this reason, we shall not further discuss the case of a T -link

associated with a non-self-dual group G in this paper.

3 Coupling hypermultiplets to a nilpotent cone

In this section we study the hyperKähler space that arises from coupling hypermultiplets

or half-hypermultiplets to nilpotent cone Ng of the Lie algebra g associated with a gauge

group G. We start from the nilpotent cone of g, and denote this geometrical object by

G × (3.1)

Note that a subgroup of G may acts trivially on Ng. For example, we may take G to be

U(N); since the symmetry of the corresponding nilpotent cone is really SU(n), the U(1)

subgroup of G = U(N) acts trivially on the nilpotent cone.

3A C-partition is a non- increasing sequence of integers where all the odd parts appear an even number

of times.
4A B-partition is a non-increasing sequence of integers where all the even parts appear an even number

of times.
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The symmetry G can be gauged and can then be coupled to hypermultiplets or half-

hypermultiplets, which give rise to a flavour symmetry H. We denote the resulting theory

by the quiver diagram:

GH × (3.2)

The hyperKähler quotient H(3.2) associated with this diagram is

H(3.2) =
H ([H]− [G])×Ng

G
(3.3)

where H ([H]− [G]) denotes the Higgs branch of quiver [H]− [G]. We emphasise that we

do not interpret (3.2) as a field theory by itself. Instead, we regard it as a notation that

can be conveniently used to denote the hyperKähler quotient (3.3). This notation will turn

out to be very useful in the subsequent part of the paper.

3.1 G = U(N) and H = U(n)/U(1)

We take G = U(N) and couple n flavours of hypermutiplets to G:

Nn × (3.4)

The hyperKähler quotient associated with this diagram is

H(3.4) =
H ([U(n)]− [U(N)])×Nsu(N)

U(N)
(3.5)

where H ([U(n)]− [U(N)]) denotes the Higgs branch of the quiver [U(n)] − [U(N)]. The

quaternionic dimension is

dimHH(3.4) =
1

2
N(N − 1) + nN −N2 . (3.6)

The flavour symmetry in this case is H = U(n)/U(1), whose algebra is h = su(n).

For N = 1, Nsu(N) is trivial. The quotient (3.5) becomes the Higgs branch of the U(1)

gauge theory with n flavours. H(3.4), therefore, turns out to be the closure of the minimal

nilpotent orbit of su(n), denoted by O(2,1n−2) [37, 38]. This space is also isomorphic to the

Higgs branch of the T(n−1,1)(SU(n)) theory of [10], and is also isomorphic to the reduced

moduli space of one su(n) instanton on C2. It is precisely n− 1 quaternionic dimensional.

For N = 2, it turns out that H(3.4) is the closure O(3,1n−3) of the orbit (3, 1n−3) of

su(n). This is isomorphic to the Higgs branch of the T(n−2,12)(SU(n)) theory, namely that

of the quiver [U(n)] − (U(2)) − (U(1)). The quaternionic dimension of this is precisely

2n− 3. This is indeed in agreement with (3.6).

For a general N , such that n ≥ N + 1, we see that H(3.4) is in fact

H(3.4) = O(N+1,1n−N−1) , (3.7)

and in the special case of n = N , we have the nilpotent cone of su(N):

H(3.4)|n=N = O(N) = Nsu(N) . (3.8)

– 6 –
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One way to verify this proposition is to compute the Hilbert series of H(3.4). This is

given by5

H[H(3.4)](t;x) =

∫
dµSU(N)(z)

∮
|q|=1

dq

2πiq
PE
[
χ
su(N)
[1,0,...,0](x)χ

su(N)
[0,...,0,1](z)q−1t

+ χ
su(N)
[0,...,0,1](x)χ

su(N)
[1,0,...,0](z)q − χsu(N)

[1,0,...,0,1]t
2
]
H[Nsu(N)](t, z)

(3.9)

where x denotes the flavour fugacities of su(N) and dµSU(N)(z) denotes the Haar measure

of SU(N). We refer the reader to the detail of the characters and the Haar measures in [39].

The Hilbert series of the nilpotent cone of su(N) was computed in [40] and is given by

H[Nsu(N)](t, z) = PE

χsu(N)
[1,0,··· ,0,1](z)t2 −

N∑
p=2

t2p

 . (3.10)

The Hilbert series (3.9) can then be used to checked against the results presented in [37]. In

this way, the required nilpotent orbits in (3.7) and (3.8) can be identified. This technique

can also be applied to other gauge groups, as will be discussed in the subsequent subsections.

For the sake of brevity of the presentation, we shall not go through further details.

We remark that for n ≥ 2N + 1, the hyperKähler space (3.7) is isomorphic the Higgs

branch of the T(n−N,1N )(SU(n)) theory,6 which corresponds to the quiver [10]:

T(n−N,1N )(SU(n)) : [U(n)]− (U(N))− (U(N − 1))− · · · − (U(1)) . (3.11)

Note that quiver (3.4) can be obtained from (3.11) simply by replacing the wiggly line by

the quiver tail as follows:

N × −→ (U(N))− (U(N − 1))− · · · − (U(1)) . (3.12)

3.2 G = USp(2N) and H = O(n) or SO(n)

We take G = USp(2N) and couple n half-hypermultiplets to G:

2Nn × (3.13)

The corresponding hyperKähler quotient is

H(3.13) =
H ([SO(n)]− [USp(2N)])×Nusp(2N)

USp(2N)
. (3.14)

The dimension of this space is

dimHH(3.13) = nN +
1

2

[
1

2
(2N)(2N + 1)−N

]
− 1

2
(2N)(2N + 1)

= N(n−N − 1) .

(3.15)

5The plethystic exponential (PE) of a multivariate function f(x1, x2, . . . , xn) such that f(0, 0, . . . , 0) = 0

is defined as PE[f(x1, x2, . . . , xn)] = exp
(∑∞

k=1
1
k
f(xk1 , x

k
2 , . . . , x

k
n)
)
.

6The partition (n−N, 1N ) is indeed the transpose of the partition (N + 1, 1n−N−1) in (3.7).
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For n ≥ 2N + 1, the hyperKähler quotient (3.14) turns out to be isomorphic to the closure

of the nilpotent orbit (2N + 1, 1n−(2N+1)) of so(n):

H(3.13) = O(2N+1,1n−(2N+1)) . (3.16)

For even n, say n = 2m, this is isomorphic to the Higgs branch of Tρ(SO(n)), with

ρ = (n− 2N − 1, 12N+1),7 whose quiver description is

n 2N 2N 2N − 2 2N − 2 · · · 2 2 (3.18)

For odd n, say n = 2m + 1, this is isomorphic to the Higgs branch of Tρ(SO(n)), with

ρ = (n − 2N − 1, 2, 12N−2) if n > 2N + 1 and ρ = (12N ) if n = 2N + 1,8 whose quiver

description is

n 2N 2N − 1 2N − 2 · · · 2 1 (3.20)

3.3 G = SO(N) or O(N) and H = USp(2n)

Let us first take G = SO(N) and take H = USp(2n).

SO(N)2n × (3.21)

This diagram defines the hyperKähler quotient

H(3.21) =
H ([USp(2n)]− [SO(N)])×Nso(N)

SO(N)
. (3.22)

The quaternionic dimension of this quotient is

dimH H(3.21) =

{
m(2n−m) , N = 2m

m(2n−m− 1) + n , N = 2m+ 1
. (3.23)

It is interesting to examine (3.22) for a few special cases. For N = 2n or N = 2n + 1 or

N = 2n − 1, we find that (3.22) is in fact the nilpotent cone Nusp(2n) of usp(2n), whose

quaternionic dimension is n2:

H(3.21)|N=2n = H(3.21)|N=2n±1 = Nusp(2n) . (3.24)

7Note that the partition ρ = (n − 2N − 1, 12N+1) can be obtained from the partition λ = (2N +

1, 1n−(2N+1)) of (3.16) by first computing the transpose of λ, and then performing the D-collapse. For

example, for N = 2 and m = 4 (or n = 8),

λ = (5, 14)
transpose−→ (4, 14)

D-coll.−→ ρ = (3, 15) . (3.17)

8Note that the partition ρ = (n − 2N − 1, 2, 12N−2) can be obtained from the partition λ = (2N +

1, 1n−(2N+1)) of (3.16) by first computing the transpose of λ, subtracting 1 from the last entry, and then

performing the C-collapse. For example, for N = 3 and m = 4 (or n = 9),

λ = (7, 12)
transpose−→ (3, 16) −→ (3, 15)

C-coll.−→ (22, 14) . (3.19)
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This statement can be checked using the Hilbert series:

H[H(3.21)](t;x) =

∫
dµSO(N)(z) PE

[
χCn

[1,0,...,0](x)χ
so(N)
[1,0,...,0](z)t

− χso(N)
[0,1,0,...,0](z)t2

]
H[Nso(N)](t, z)

= PE

χCn

[2,0,...,0](x)t2 −
n∑
j=1

t4j

 , if N = 2n or 2n± 1 .

(3.25)

where the Haar measure and the relevant characters are given in [39]. The last line is

indeed the Hilbert series of the nilpotent cone Nusp(2n) [37].

It is important to note that the quotient (3.22) is not the closure of a nilpotent orbit

in general. For example, let us take n = 4 and N = 3, i.e. G = SO(3) and H = USp(8).

The Hilbert series takes the form

H[H(3.21)|n=4,N=3](t;x) = PE
[
χC4

[2,0,0,0]t
2 +

(
χC4

[0,0,1,0] + χC4

[1,0,0,0]

)
t3 − t4 + . . .

]
. (3.26)

Observe that there are generators with SU(2)R-spin 3/2 in the third rank antisymmetric

representation ∧3[1, 0, 0, 0] = [0, 0, 1, 0] + [1, 0, 0, 0] of USp(8). These should be identified

as “baryons”. Using Namikawa’s theorem [41], which states that all generators of the

closure of a nilpotent orbit must have SU(2)R-spin 1 (see also [42]), we conclude that

H(3.21)|n=4,N=3 is not the closure of a nilpotent orbit. In general, these baryons can be

removed by taking gauge group to be O(N), instead of SO(N). The reason is because the

O(N) group does not have an epsilon tensor as an invariant tensor, whereas the SO(N)

group has one.

Let us now take G = O(N) and take H = USp(2n):

O(N)2n × (3.27)

This diagram defines the hyperKähler quotient

H(3.27) =
H ([USp(2n)]− [O(N)])×Nso(N)

O(N)
. (3.28)

The dimension of this hyperKähler space is the same as (3.23). This quotient turns out to

be isomorphic to the closure of the following nilpotent orbit of usp(2n):

H(3.27) =

{
O(N,2,12n−N−2) N even

O(N+1,12n−N−1) N odd
. (3.29)

In the special case where N = 2n, N = 2n− 1 or N = 2n+ 1, we have

H(3.27)|N=2n = H(3.27)|N=2n±1 = O(2n) = Nusp(2n) , (3.30)

which is the same as (3.24).
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For even N = 2m, H(3.27) is isomorphic to the Higgs branch of Tρ(USp(2n)) theory,

with ρ = (2n−N + 1, 1N ), whose quiver description is

2n 2m 2m− 2 2m− 2 2m− 4 2m− 4 · · · 2 2 (3.31)

On the other hand, for odd N = 2m + 1, H(3.27) is isomorphic to the Higgs branch of

Tρ(USp′(2n)) theory, with ρ = (2n−N + 1, 1N−1), whose quiver description is

2n 2m+ 1 2m 2m− 1 2m− 2 · · · 2 1 (3.32)

3.4 G = G2 and H = USp(2n)

We take G = G2 and H = USp(2n):

G22n × (3.33)

This diagram defines the hyperKähler quotient

H(3.33) =
H ([USp(2n)]− [G2])×Ng2

G2
. (3.34)

For n ≥ 2, the quaternionic dimension of this space is

dimH H(3.33) = 7n+
1

2
(14− 2)− 14 = 7n− 8 , (3.35)

and the Hilbert series of (3.34) is given by

H[H(3.34)](t,x) =

∫
dµG2(z) PE

[
χG2

[1,0](z)χ
usp(2n)
[1,0,...,0](x)t

− χG2

[0,1](z)t2
]
H[Ng2 ](t, z) ,

(3.36)

where the relevant characters and the Haar measure is given in [39], and the Hilbert series

of the nilpotent cone of G2 can be obtained from [43, table 4]. The special case of n = 2

is particularly simple. The corresponding space is a complete intersection whose Hilbert

series is

H[H(3.33)|n=2](t;x1, x2) = PE
[
χC2

[2,0](x1, x2)t2 + χC2

[1,0](x1, x2)t3 − t8 − t12
]
. (3.37)

Note that H(3.33) is not the closure of a nilpotent orbit, due to the existence of a generator

at SU(2)R-spin 3/2 and Namikawa’s theorem.
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The case of n = 1 needs to be treated separately, since (3.35) becomes negative. We

claim that

H(3.33)|n=1 = C2/Z2 = Nsu(2) . (3.38)

The reason is as follows. Let us denote by Qia the half-hypermultiplets in the fundamental

representation of the G2 gauge group,9 where i, j, k = 1, 2 are the USp(2) flavour indices

and a, b, c, d = 1, . . . , 7 are the G2 gauge indices. Let us also denote by Xab the generators

of the nilpotent cone of G2. Transforming in the adjoint representation of G2, Xab is an

antisymmetric matrix satisfying10

fabcXab = 0 ; (3.39)

this is because ∧2[1, 0] = [0, 1] + [1, 0]. Moreover, being the generators of the nilpotent

cone, Xab satisfy

tr(X2) = δadδbcXabXcd = 0 , tr(X6) = 0 . (3.40)

The moment map equations for G2 read

εijQ
i
aQ

j
b = Xab . (3.41)

The generators of (3.34), for n = 1, are

M ij = δabQ
i
aQ

i
b (3.42)

transforming in the adjoint representation of USp(2). Note that baryons vanish:

fabcQiaQ
j
bQ

k
c = 0 , f̃abcdQiaQ

j
bQ

k
cQ

l
d = 0 , (3.43)

because i, j, k, l = 1, 2. Other gauge invariant combinations also vanish; for example,

XabQ
i
aQ

j
b has one independent component and it vanishes thanks to (3.40) and (3.41).

Furthermore, the square of M vanishes:

εilεjkM
ijMkl = (εilQ

i
aQ

l
b)(εjkQ

j
aQ

k
b )

(3.41)
= tr(X2)

(3.40)
= 0 . (3.44)

Therefore, we reach the conclusion (3.38).

4 Models with orientifold fiveplanes

In this section, we consider models that arise from brane systems involving an S-fold and

orientifold 5-planes. For the latter, we focus on the case of the O5− plane and postpone to

discussion about the O5+ plane to appendix A. In the absence of the S-fold, such models

and the corresponding mirror theories were studied in detailed in [8, 10]. We start this

section by reviewing the latter and then discuss the insertion of an S-fold in the subsequent

subsections.
9The three independent invariant tensors for G2 can be taken as (1) the Kronecker delta δab, (2) the

third-rank antisymmetric tensor fabc and (3) the fourth-rank antisymmetric tensor f̃abcd. See e.g. [44] for

more details.
10Using the identity f [abcfcde] = f̃abde (see [44, (A.13)]), it follows immediately from this relation that

f̃abdeXabXde = 0.
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4.1 The cases without an S-fold

We consider three types of models, depending on the presence of NS5 branes and their

positions relative to each O5− plane [8].

The USp(2N) gauge theory with n flavours. The quiver diagram is

2N 2n (4.1)

The brane system for this quiver is

O5−

• • . . . •

n physical D5s

O5−

2N

D3

(4.2)

The U(2N) gauge theory with one or two rank-two antisymmetric hypermultiplets and n

flavours in the fundamental representation. The quiver diagrams are

2N

A

n 2N

A

A′

n (4.3)

The brane systems for the cases with one adjoint and two adjoints are, respectively,

as follows:

O5−
with an NS5 on top

• • . . . •

n physical D5s

NS5

2N

D3

O5−
with an NS5 on top

• • . . . •

n physical D5s

O5−
with an NS5 on top

2N

D3

(4.4)

The USp(2N)×U(2N)m ×USp(2N) gauge theory with (n1, f1, . . . , fm, n2) flavours in the

fundamental representations under each gauge group. The quiver diagram is

2N 2N · · · 2N 2N

2n1 f1 fm 2n2

(4.5)
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The brane system for this quiver is

O5−

•
n1

•
f1
•
f2

•
fm−1

•
fm
•
n2

O5−

2N
2N

2N

D3
2N

NS5

2N
2N

m intervals

(4.6)

where each black dot with a label k denotes k physical D5 branes, and each black vertical

line denotes a physical NS5 brane.

Let us now discuss their mirror theories and the corresponding brane configurations.

Under the S-duality, each NS5 brane becomes a D5 brane and vice-versa, and an O5−

plane becomes an ON− plane. The following results can be obtained [8].

A mirror of (4.1). The brane system for this is

ON− ON−

N

N

2N

D3

2N

NS5

N

N

n− 3 intervals

(4.7)

Each of the left and the right boundaries contains an ON− plane, which is an S-dual of the

O5− plane. The combination of an ON− plane and one NS5 brane is also known as ON0

and was studied in detail in [7, 45]. The way that the D3-branes stretch between two NS5

branes at each boundary is depicted in red. The corresponding theory can be represented

by the following quiver diagram:

2N 2N · · · 2N

N

N

N

N
n− 3 nodes

(4.8)

This is indeed the affine Dynkin diagram of the Dn algebra [7].
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Mirrors of (4.3). We consider two cases as follows:

1. The case of one antisymmetric hypermultiplet. In this case the brane configuration

of the mirror theory is

ON−

•D5

N

N

2N

D3 2N

1
2

NS5

...

· · · · · ·

D5
2N NS5sn− 2N NS5s

2N D3s

(4.9)

One can then move the rightmost D5 brane into the interval and obtain

ON−

•D5

N

N

2N

D3 2N

1
2

NS5

· · · · · ·•
D5

2N NS5sn− 2N NS5s

(4.10)

Hence the corresponding quiver is

2N 2N · · · 2N

N

N

2N − 1 2N − 2 · · · 1

1

1

n− 2N − 1 nodes

(4.11)

2. The case of two antisymmetric hypermultiplets. In this case the brane configuration

of the mirror theory is

ON−

•D5

ON−

•D5

N

N

2N

D3

2N

NS5

N

N

n− 3 intervals

(4.12)

The corresponding quiver theory is

2N 2N · · · 2N

N

N

N

N

1 1

n− 3 nodes

(4.13)
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A mirror of (4.5). The brane construction is

ON− f1 fm ON−

N

N

2N

D3 2N 2N
· · ·

•D5

· · ·

•
· · ·

2N

NS5

N

N

n1 NS5s n2 NS5s

(4.14)

where the boldface vertical line labelled by fj (with j = 1, . . . ,m) denotes a set of fj NS5

branes, with 2N D3 branes stretching between two successive NS5 branes. Note that there

is also one D5 brane at the interval between each set. For simplicity, let us present the

quiver for the case of m = 1:

2N · · · 2N 2N 2N · · · 2N 2N 2N · · · 2N

N

N

N

N

11

n1 − 2 nodes f1 circular nodes n2 − 2 nodes

(4.15)

This can be easily generalised to the case of m > 1 by simply repeating the part under the

second brace with f2, f3, . . . , fm in a consecutive manner.

4.2 The cases with an S-fold

In this subsection, we insert an S-fold into a brane interval of the aforementioned config-

urations. In general, the resulting quiver theory contains a T (U(N)) link connecting two

gauge nodes corresponding to the interval where we put the S-fold. The mirror configu-

ration can simply be obtained by inserting the S-fold in the same position in the S-dual

brane configuration. In the following, the moduli spaces of such a theory and its mirror

are analysed in detail.

We make the following important observation. The Higgs (resp. Coulomb) branch of

a given theory gets exchanged with the Coulomb (resp. Higgs) branch of the mirror theory

in a “regular way”, provided that

1. the S-fold is not inserted “too close” to the orientifold plane; and

2. the S-fold is not inserted in the “quiver tail”, arising from a set of D3 branes con-

necting a D5 brane with distinct NS5 branes.

Subsequently, we shall give more precise statements for these two points using various

examples. In other words, we use mirror symmetry as a tool to indicate the consistency of

the insertion of an S-fold to the brane system with an orientifold fiveplane.

4.2.1 Models with one or two antisymmetric hypermultiplets

In this subsection, we focus on the models with one antisymmetric hypermultiplet for

definiteness. The case for two antisymmetric hypermultiplets can be treated almost in
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the same way. Let us insert an S-fold in the left diagram in (4.4) such that there are n1

physical D5 branes on the left of the S-fold and there are n2 physical D5 branes on the

right. The resulting theory is

O5−
with an NS5 on top

• . . . •

n1

• . . . •

n2

NS5

2N

D3

2N 2N

A

n1 n2

T (U(2N))

(4.16)

The case in which n1 ≥ 2 and n2 ≥ 2N . The corresponding mirror theory is

2N · · · 2N 2N

T (U(2N))

N

N

· · · 2N 2N − 1 · · · 1

1

1

n1 − 1 nodes n2 − 2N + 1 nodes

(4.17)

The condition n1 ≥ 2, n2 ≥ 2N ensures that the T (U(2N)) link in the mirror theory (4.17)

stay between the first U(2N) gauge node and the U(2N) gauge node with 1 flavour.

The Higgs branch of theory (4.16) has dimension

dimHH(4.16) = 2Nn1 +
1

2
2N(2N − 1) + 2 · 1

2
(4N2 − 2N) + 2Nn2

− 4N2 − 4N2

= N(2n1 + 2n2 − 2N − 3),

(4.18)

while the Coulomb branch is empty because there are only two gauge nodes connected by

a T (U(2N))-link

dimH C(4.16) = 0. (4.19)

Since the moduli space of T (U(2N)) contains the Higgs and Coulomb branches, each

of which is isomorphic to the nilpotent cone of SU(2N), it follows that the Higgs branch

of (4.16) also splits into a product of two hyperKähler spaces which can be written in the

notation of section 3 as

H(4.16) =
2N 2N

A

n1 n2

× ×
× (4.20)

The symmetry of H(4.16) is U(n1)× (U(n2)/U(1)), coming from the first and second factors

respectively. According to (3.7) and below, the hyperKähler space corresponding to the

second factor is identified with O(2N+1,1n2−2N−1) for n2 ≥ 2N + 1 and O(2N) for n2 = 2N .
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The mirror theory (4.17) has the following Coulomb branch dimension

dimH C(4.17) = N +N + (2N)(n1 + n2 − 2N − 2) +

2N−1∑
i=1

i

= N(2n1 + 2n2 − 2N − 3),

(4.21)

while the Higgs branch has dimension

dimHH(4.17) = N + 4N2 + 4N2(n1 + n2 − 2N − 1− 1) + (4N2 − 2N)

+ 2N +

2N−1∑
i=1

i(i+ 1)− 2N2 − 4N2(n1 + n2 − 2N)

−
2N−1∑
i=1

i2 = 0

(4.22)

Indeed, we find an agreement for the dimensions of the Higgs and Coulomb branches under

mirror symmetry, namely

dimH C(4.16) = dimHH(4.17), dimH C(4.17) = dimHH(4.16). (4.23)

It should be pointed out the Coulomb branch of (4.17) is also a product of two hy-

perKähler spaces. The reason is that the nodes that are connected by the T (U(2N)) link

do not contribute to the Coulomb branch and hence can be taken as flavours nodes. There-

fore, the Coulomb branch of (4.17) is the product of the Coulomb branches of the following

theories:

2N · · · 2N 2N

N

N

· · · 2N 2N − 1 · · · 1

1

1

n1 − 1 nodes n2 − 2N + 1 nodes

(4.24)

Under mirror symmetry, each of the factor in the product (4.20) is mapped to the Coulomb

brach of each of the above quiver. Let us examine the symmetry of the Coulomb branch

using the technique of [10]. In the left quiver, all balanced gauge nodes form a Dynkin

diagram of An1−1; together with the top left node which is overbalanced, these give rise to

the global symmetry algebra An1−1×u(1), corresponding to U(n1). In the right quiver, all

gauge nodes are balanced; these give rise to the symmetry algebra An2−1, corresponding

to U(n2)/U(1). This is agreement of the symmetry of the Higgs branch H(4.16).

It is worth commenting on the distribution of the flavours in theory (4.16). It is clear

from the computation of the dimension of the Higgs branch (4.18) that one can change

n1 and n2 keeping their sum n = n1 + n2 constant, without changing the dimension of

the Higgs branch. However, as can be clearly seen from (4.20), the structure of the Higgs

branch depends on n1 and n2. In addition, modifying the distribution of the flavour will

change the position of the T (U(2N)) link in the mirror theory (4.17). Let us focus the case
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of N = 1 with n1 = 3, n2 = 3 and n1 = 4, n2 = 2. The theories and their mirrors are

2 2

A

3 3

T (U(2))

2

1

1

1

2 2 2

1

1

T (U(2))

(4.25)

2 2

A

4 2

T (U(2))

2

1

1

1

2 2 2

1

1

T (U(2))

(4.26)

As explained in (4.20), the Higgs branch of the left diagram in each case splits into a

product of two hyperKähler spaces. According to (3.8), the second factor in each line is

the Hilbert series for the closure of the nilpotent orbit O(3) and O(2), coincident with the

Higgs branch of the theories T (SU(3)) and T (SU(2)) respectively. The unrefined Hilbert

series for the first factor is∮
|z|=1

dz

2πiz
(1− z2)

∮
|q|=1

dq

2πiq
PE
[
n1(z + z−1)(q + q−1)

+ (q2 + q−2)t+ (z2 + 1 + z−2)t2 − t4 − (z2 + 1 + z−2 + 1)t2
]

× PE
[
(z2 + 1 + z−2)t2 − t4

]
.

(4.27)

We therefore arrive at the following results:

H[Hn1=3,n2=3
(4.16) ] = PE [9t2 + 6t3 − t4 − 6t5 − 10t6 + . . . ] PE [8t2 − t4 − t6],

H[Hn1=4,n2=2
(4.16) ] = PE [16t2 + 12t3 − t4 − 32t5 − 54t6 + . . . ] PE [3t2 − t4],

(4.28)

These indicate that the symmetry of the Higgs branch is U(n1)× (U(n2)/U(1)).

Of course, the above Hilbert series can also be obtained from the Coulomb branch of

the corresponding mirror theory. As an example, as stated in (4.24), for n1 = 4, n2 = 2,

the Coulomb branch of the right quiver of (4.26) is a product of the Coulomb branches of

the following theories:

2

1

1

1

2 3 2 1 (4.29)
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The Coulomb branch Hilbert series of the left quiver can be computed as follows:∑
a1≥a2>−∞

∑
m∈Z

∑
n∈Z

t2∆(a,m,n)PU(2)(t,a)PU(1)(t,m)PU(1)(t, n)

= PE [16t2 + 20t3 − 12t5 − 32t6 + . . . ] ,

(4.30)

with a = (a1, a2),

∆(a,m, n) = ∆U(2)−U(1)(a,m) + ∆U(2)−U(1)(a, n) + ∆U(2)−U(2)(a, 0)

+ ∆U(1)−U(1)(m, 0)−∆vec
U(2)(a)

(4.31)

and all of the other notations are defined in (A.10). This is indeed equal to the first factor

in the first line of (4.28). The right quiver in (4.29) is the T (SU(3)) theory whose Coulomb

and Higgs branch Hilbert series is equal to the second factor in the first line of (4.28).

Issues regarding S-folding the quiver tail. Let us consider the case in which n2 < 2N . In

this case, in the mirror theory (4.11), the T -link appears on right of the U(2N) node that

is attached with one flavour. Let us suppose that the T -link connects two U(n2) gauge

nodes where 1 ≤ n2 ≤ 2N − 1.

2N 2N · · · 2N

N

N

· · · n2 n2 · · · 1

1

1

n1 + n2 − 2N − 1 nodes

(4.32)

The Higgs branch dimension of such theory is

dimHH(4.32) = dimHH(4.11) + (n2
2 − n2)− n2

2 = 2N − n2 . (4.33)

Observe that this is non-zero for 1 ≤ n2 ≤ 2N − 1. However, as in (4.19), we have

dimH C(4.16) = 0 for any n2, since the two gauge nodes are connected by a T -link. Hence,

this is inconsistent with mirror symmetry, based on our assumption that the gauge nodes

connected by a T -link do not contribute to the Coulomb branch. One possible explanation

of this inconsistency is that, in the presence of the S-fold, when move the D5 brane into the

interval between NS5 branes, as depicted in (4.9), such a D5 brane has to cross the S-fold.

Since S-fold can be regarded as the duality wall, the aforementioned D5 brane turns into

an NS5 brane, with fractional D3 branes ending on it. In this sense, the mirror theory is

not (4.32).

We shall see in section 4.3 that, from the perspective of the duality frames in which

the quivers do not contain a T -link, the range 1 ≤ n2 ≤ 2N − 1 corresponds, in one frame,

to a problematic quiver and, in the other frame, to a theory which is not “good” in the

sense of [10].

Now let us consider the following possibility:

2N 2N · · · 2N

N

N

2N · · · 1

1

1

n1 − 1 nodes

(4.34)
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In the brane picture (4.10), this corresponds to putting the S-fold just next to the right

of the D5 brane located in the (2N)-th interval from the right. This also corresponds to

taking n2 = 2N . As before, the Higgs branch of this theory is expected to be a product of

two hyperKähler spaces, with one factor being

× 2N · · · 1 (4.35)

The Higgs branch dimension turns out to be negative if one assume that all gauge groups

are completely broken:

1

2
(4N2 − 2N) +

1

2
(2N − 1)(2N)− (2N)2 = −2N . (4.36)

Since the case of n2 = 2N has been discussed earlier, we should not use (4.34) to describe

this case and we shall not explore this possibility further.

Issues regarding putting the S-fold “too close” to the orientifold plane. Consider the model

with one rank-two antisymmetric hypermultiplet where we put an S-fold next to the O5−

plane in the left diagram of (4.4). In this case we have n1 = 0 and n2 = n (with n ≥ 2N).

The corresponding quiver diagram is

2N 2N

A

n

T (U(2N))
(4.37)

The dimension of the Higgs branch is

dimHH(4.37) =
1

2
(2N)(2N − 1) + (4N2 − 2N) + 2Nn− 4N2 − 4N2

= 2Nn− 2N2 − 3N ,
(4.38)

assuming that the gauge symmetry is completely broken. For a given N , this is positive

for a sufficiently large n. However, it is also worth pointing out that if we split the above

Higgs branch into a product as in (4.20), we see that the first factor

2N

A

× (4.39)

has a negative dimension, provided that the gauge symmetry U(2N) is completely broken:

1

2
(4N2 − 2N) +

1

2
(2N)(2N − 1)− (2N)2 = −2N . (4.40)

Since both gauge nodes are connected by the T -link, we expect that

dimH C(4.37) = 0 (4.41)
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The putative mirror theory can be obtained by inserting an S-fold next to the ON−

plane in (4.10). The corresponding quiver is

2N · · · 2N

N

N

N

2N − 1 · · · 1

T (U(N))

1

1

n− 2N − 1 nodes

(4.42)

The Higgs and Coulomb branch dimensions read

dimH C(4.42) = N + 2N(n− 2N − 1) +
2N−1∑
i=1

i = 2Nn− 2N2 − 2N ,

dimHH(4.42) = N + (N2 −N) + 2N2 + 2N2 + 4N2(n− 2N − 2)

+ 2N +
2N−1∑
i=1

i(i+ 1)−N2 −N2 −N2

− 4N2(n− 2N − 1)−
2N−1∑
i=1

i(i+ 1)

= N .

(4.43)

We see that these are inconsistent with mirror symmetry, if we assume that the gauge

symmetry is completely broken and that the circular nodes that are connected by a T -

link do not contribute to the Coulomb branch. We see that these assumptions are violated

or (4.42) is not a mirror theory of (4.37) if we insert the S-fold next to the orientifold plane.

A similar issue also happens if we take n1 = 1 and n2 = n− 1 (with n− 1 ≥ 2N). In

which case, the putative mirror theory looks like

2N · · · 2N

N

N

N

2N − 1 · · · 1

N

T (U(N))

1

1

n− 2N − 1 nodes

(4.44)

Upon computing the Higgs branch of this theory, the lower left part contributes a factor:

N × (4.45)

Assuming that the gauge symmetry is completely broken, we obtain a negative Higgs

branch dimension:
1

2
(N2 −N)−N2 = −1

2
N(N + 1) . (4.46)

This, again, confirms the statement that under the aforementioned assumptions, the S-fold

cannot be inserted “too close” to the orientifold plane (n1 ≥ 2). In other words, in order
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for the S-fold to co-exist with an orientifold fiveplane, it must be “shielded” by a sufficient

number of fivebranes.

Similarly to the preceding case of 1 ≤ n2 ≤ 2N −1, we can also see the issue regarding

0 ≤ n1 ≤ 1 from the perspective of the duality frames in which the quivers do not contain

a T -link in section 4.3.

4.2.2 S-folding the USp(2N) × U(2N) × USp(2N) gauge theory

Let us consider the following theory:

2N 2N 2N

T (U(2N))

2N

2n1 F1 F2 2n2

(4.47)

The brane construction for this is given by (4.6), with m = 1 and with an S-fold inserted

in the interval labelled by f1. The S-fold partitions f1 D5 branes into F1 and F2 D5 branes

on the left and on the right of the S-fold, respectively. The dimension of the Higgs branch

of this theory reads

dimHH(4.47) = 2Nn1 + 4N2 + 2NF1 + (4N2 − 2N) + 2NF2 + 4N2

+ 2Nn2 −N(2N + 1)− 4N2 − 4N2 −N(2N + 1)

= 2N(F1 + F2 + n1 + n2 − 2) ,

(4.48)

and, for the Coulomb branch, we find

dimH C(4.47) = 2N. (4.49)

We remark that it is not possible to insert an S-fold in the interval labelled by n1 in the

diagram (4.6). The reason is that such a brane interval corresponds to the gauge group

USp(2N), and not USp′(2N). We do not have the notion of a T (USp(2N)) link since

USp(2N) is not invariant under the S-duality. This supports the point we made earlier

that the S-fold cannot be inserted “too close” to the orientifold plane; it must be “shielded”

by a sufficient numbers of fivebranes.

In order to obtain the mirror configuration, we can insert an S-fold anywhere between

two D5-branes denoted by the black dots in (4.14). (Recall that m = 1 in this case.) In

terms of the quiver, this means that we can put the T -link anywhere in between the two

(2N)-nodes attached by one flavour. For example, for N = 1, n1 = n2 = 3, F1 = 1 and

F2 = 0, the mirror theory is

2

1

1

2 2 2 2

1 1

T (U(2))

1

1

(4.50)
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In order to compute the dimensions of Higgs and Coulomb branches of the mirror theory

we can simply start with the corresponding non S-folded theory and observe that inserting

a T -link implies the following:

• For the Higgs branch, we need to add the dimension of the T (U(2N)) link, that in

this case gives 4N2 − 2N and subtract the gauging of the extra U(2N), hence we

subtract 4N2; in total we find that

dimHHmirr of (4.47) = dimHH(4.15) + (4N2 − 2N)− 4N2

= dimHH(4.15) − 2N

= (N + 2N +N)− 2N = 2N .

(4.51)

• For the Coulomb branch, the result of inserting an S-fold is to add one gauge node

and then consider that the ones connected by the T -link are frozen, so in total we have

dimH Cmirr of (4.47) = dimH C(4.15) − 2N

= 2N(F1 + F2 + n1 + n2 − 2) , with f1 = F1 + F2 .
(4.52)

These are in agreement with mirror symmetry.

In the above example of N = 1, n1 = n2 = 3, f1 = 1 and f2 = 0, one can compute the

Hilbert series for (4.47) and its mirror (4.50). The unrefined results are

H[H(4.47)] = H[C(4.50)]

= PE [16t2 + 12t3 − 15t4 − 40t5 + 19t6 + . . . ]×
PE [15t2 − 16t4 + 35t6 + . . . ] ,

(4.53)

and

H[C(4.47)] = H[H(4.50)]

= H[CUSp(2) with 5 flv]2 = PE [t4 + t6 + t8 + . . . ]2 .
(4.54)

The above results deserve some explanations. In (4.50), the Coulomb branch symmetry can

be seen from the after taking the two U(2) gauge groups connected by the T -link to be two

separate flavour symmetries. The left part gives an SU(4)×U(1) symmetry due to the fact

that the balanced nodes form an A3 Dynkin diagram and that there is one overbalanced

node (namely, the U(2) node that is attached to one flavour). The right part gives an SU(4)

symmetry due to the fact that the balanced nodes form an A3 Dynkin diagram [10]. The

Coulomb branch of (4.47) is identified with a product of two copies of the Coulomb branch

of USp(2) gauge theory with 5 flavours due to the following reason. The nodes connected

by the T -link do not contribute to the Coulomb branch and therefore each of the left and

the right parts contains the USp(2) gauge theory with 2N + n1 = 2 + 3 = 5 flavours.

4.3 Duality with theories without an S-fold

For theories with one orientifold fiveplane and an S-fold, one can move the S-fold away

from the brane system to infinity. For example, in (4.16), this corresponds to moving the
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S-fold to +∞ in x6-direction on the right of the brane diagram. Each time the S-fold

crosses an NS5 brane (resp. a D5 brane), it is transformed into a D5 brane (resp. an NS5

brane) by S-duality. Specifically, in doing so, the n2 D5 branes in (4.16) turn into n2 NS5

brane and the rightmost NS5 brane turns into a D5 brane. The corresponding quiver can

be obtained in a similar way to that of (4.17):

2N 2N · · · 2N 2N − 1 · · · 1

n1 1

A

n2 − 2N + 1 circular nodes

(4.55)

The mirror quiver of (4.55) is

2N · · · 2N

N

N

1

n2

n1 − 1 nodes

(4.56)

Observe that (4.55) and (4.56) no longer contain a T -link. We expect that (4.16) and (4.17)

are dual to (4.55) and (4.56).

We see that if the value of n2 falls in the interval 1 ≤ n2 ≤ 2N − 1, quiver (4.55) is

problematic and (4.56) is not a good theory in the sense of [10], due to the fact the last

U(2N) gauge node does not have a sufficiently large number of flavours. A similar situation

occurs when 0 ≤ n1 ≤ 1.

Note that the procedure of moving the S-fold away from the brane system to infinity

can be applied, in general, to “non-compact” models and obtain four theories that are dual

to each other. It would be interesting to study such a duality further, for example, by

computing and matching the three sphere partition functions of such theories in a similar

fashion to [17] (see also [46]). We leave this for further work.

For theories with two orientifold fiveplanes, such as the models with two antisymmetric

hypermultiplets as well as the model discussed in 4.2.2, the notion of “infinity” in the x6

direction no longer makes sense. This is due to the action of the two orientifold fiveplanes

that defines the boundaries of the brane system and, in this sense, the model should be

regarded as “compact”, as discussed in [8]. Hence, in this case, we do not expect to have

a duality with non-S-fold theories as in the preceding case.11

5 Models with an orientifold threeplane

In this section, we discuss circular quivers whose brane configurations contain an orientifold

threeplane. We first review the brane configurations for theories without an S-fold and their

11If one really insists to move the S-fold crossing one of the O5− planes, the resulting brane system

consists of an O5− plane on one side and an ON− plane on the other side. Although such a system has not

been much explored in the literature, one may try to write down the gauge theory corresponding to such

boundary conditions and study its properties such as the three sphere partition function. We, again, leave

this for future work.
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mirrors. Subsequently, we introduce an S-fold to such brane systems. We only focus the

cases in which the types of the orientifold planes on both sides of the S-fold are (O3−,O3−)

or (Õ3
+
, Õ3

+
). These correspond to the presence of an T (SO(2N)) link or an T (USp′(2N))

link in the quiver. Using the same argument as in [17], we expect that the theories with

an S-fold has N = 3 supersymmetry. This is because, when the global symmetry G×G of

T (G) is gauged in the circular quiver (so that both of them act on the Coulomb branch),

the two SU(2) factors in the original SU(2)× SU(2) R-symmetry of T (G) are identified to

a single SU(2) R-symmetry, corresponding to N = 3 supersymmetry.

5.1 The cases without an S-fold

In this subsection, we summarise brane constructions for the elliptic models with alter-

nating orthogonal and symplectic gauge groups, in the absence of the S-fold. Such brane

configurations and their S-duals were studied extensively in [9] (see also [47] for a related

discussion). For brevity of the discussion, we shall not go through the detail on how to

obtain the S-dual configurations but simply state the results. The following quiver dia-

grams and their brane configurations will turn out to be useful for the discussion in the

subsequent subsections.

The SO(2N)×USp(2N) gauge theory with two bifundamentals and n flavours for USp(2N)

and its mirror. Their quivers are

2N

2N

2n

...

2N

2N + 1

2N ′

2N + 1

2N

2N2N

One red (2N) node + two blue (2N) nodes

with a half-flavour each, and alternating

(n− 2) blue (2N ′) nodes with no flavour

+ (n− 1) red (2N + 1) nodes with no flavour

1

1

(5.1)

Their brane configurations are, respectively, given by [9, figure 23]:

1
2
NS5

− 2N 2N

•
+

•̃
+

+
...

•
1
2
D5+

1
2
NS5

...

•

•

2N

2N + 1

2N + 1

2N

2N−

+
+̃

−̃

+ +̃

−̃

(5.2)
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where in the left diagram we have n half-D5 branes, and in the right diagram we have n

half-NS5 branes. Here and subsequently, we denote in blue the number of half-D3 branes at

each interval between two succesive half-NS5 branes. Note that one may also add flavours

(say, m flavours, or equivalently a blue rectangular node with label 2m) to the SO(2N)

gauge group in the left diagram of (5.1), the resulting mirror quiver can be obtained from

the right diagram of (5.1) by simply replacing the (2N) red node by a series of alternating

m+ 1 red (2N) nodes and m blue (2N) nodes:

2N

2m

−→ 2N 2N 2N 2N · · · 2N

(m+ 1) red nodes & m blue nodes

(5.3)

The USp′(2N) × SO(2N + 1) gauge theory with two bifundamentals and n flavours for

SO(2N + 1) and its mirror. Their quivers are

2N ′

2N + 1

2n

...

2N + 2

2N

2N + 2

2N

2N + 2

2N ′2N ′

n red circular nodes + (n− 1) blue

usual circular nodes + 2 blue nodes

connected by T (USp′(2N))

2

(5.4)

The corresponding brane configurations are respectively given by [9, figure 29]:

1
2
NS5

+̃ 2N 2N + 1

•
−̃

•
−

−̃
...

•
1
2

D5−̃

1
2
NS5

...
•

•

+

+

2N + 2

2N

2N

2N + 2

2N+̃

−

+

−

+

(5.5)

where in the left diagrams there are 2n half-D5 branes, and on the right diagram there

are 2n half NS5 branes. One may also add flavours (say, m flavours or equivalently a red

square node with label 2m) to the USp′(2m) gauge group in the left diagram of (5.4), the
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resulting mirror quiver can be obtained from the right diagram of (5.4) by making the

following replacement:

2N ′

2m

−→ 2N 2N 2N 2N · · · 2N

1 1

m red nodes & (m− 1) blue nodes

(5.6)

5.2 Quiver with a T (SO(2N)) loop

We start by examining the following brane configuration and the corresponding quiver:

••

••1
2
D5

2N

. . .

− −

−̃−̃

2N

T (SO(2N))

2n

(5.7)

where in the left diagram the red wriggly denotes the S-fold and there are 2n half D5 branes.

In order to obtain the mirror theory, we apply S-duality to the above brane system. The

result is

. . .

2N2N

2N 2N

−−

++

1
2
NS5

...

2N

2N

2N

2N

2N

2N

2N

n blue circular nodes + (n− 1) red

usual circular nodes + 2 red nodes

connected by T (SO(2N))

T (SO(2N))

(5.8)

where in the left diagram there are 2n half-NS5 branes.

In the absence of the S-fold, quivers (5.7) and (5.8) reduce to conventional Lagrangian

theories that are related to each other by mirror symmetry. In particular, (5.7) reduces to

a theory of free 4Nn half-hypermultiplets, namely

2N 2n (5.9)
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and quiver (5.8) reduces to

...

2N

2N

2N

2N

2N

2N 2n alternating red/blue circular nodes

(5.10)

where the two SO(2N) gauge groups that were connected by T (SO(2N)) merged into a

single SO(2N) circular node. It can be checked that the Higgs branch dimension of (5.10)

is indeed zero:

(2n)(2N2)− n
[

1

2
(2N)(2N − 1)

]
− n

[
1

2
(2N)(2N + 1)

]
= 0 , (5.11)

and the quaternionic dimension of the Coulomb branch of (5.10) is 2Nn. These are in

agreement with mirror symmetry.

Theory (5.7). The Higgs branch of this theory is given by the hyperKähler quotient:

H(5.7) =
Nso(2N) ×Nso(2N) ×H ([S/O(2N)]− [USp(2n)])

S/O(2N)
, (5.12)

where the notation S/O means that we may take the gauge group to be SO(2N) or O(2N).

The dimension of this space is

dimH H(5.7) =

[
1

2
(2N)(2N − 1)−N

]
+ 2Nn− 1

2
(2N)(2N − 1) = (2n− 1)N . (5.13)

Since the circular nodes that are connected by T (SO(2N)) do not contribute to the

Coulomb branch, it follows that the Coulomb branch of (5.7) is trivial:

dimH C(5.7) = 0 . (5.14)

Let us now discuss certain interesting special cases below.

The Higgs branch of (5.7) for N = 1, 2. For N = 1, since Nso(2) is trivial, it follows

that H(5.7) is the Higgs branch of the 3d N = 4 S/O(2) gauge theory with n flavours. If

the gauge group is taken to be O(2), H(5.7) is isomorphic to the closure of the minimal

nilpotent orbit of usp(2n). On the other hand, if the gauge group is taken to be SO(2),

H(5.7) turns out to be isomorphic to the closure of the minimal nilpotent orbit of su(2n).

The reason is because the generators of the moduli space with SU(2)R-spin 1 are mesons

and baryons; they transform in the representation [2, 0, . . . , 0] + [0, 1, 0, . . . , 0] of usp(2n).

This representation combines into the adjoint representation [1, 0, . . . , 0, 1] of su(2n).
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For N = 2, let us denote the fundamental half-hypermultiplets by Qia with i, j, k, l =

1, . . . , 2n and a, b, c, d = 1, 2, 3, 4, and the generators of Nso(4) by a rank-two antisymmetric

tensor Xab. We find that for the O(4) gauge group, the generators of the Higgs branch are

as follows:

• The mesons M ij = QiaQ
j
bδ
ab, with SU(2)R-spin 1, transforming in the adjoint repre-

sentation [2, 0, . . . , 0] of usp(2n).

• The combinations QiaQ
j
bXab, with SU(2)R-spin 2, transforming in the adjoint repre-

sentation [0, 1, 0, . . . , 0] of usp(2n).

For the SO(4) gauge group, we have, in addition to the above, the following generators of

the Higgs branch:

• The baryons Bijkl = εabcdQiaQ
j
bQ

k
cQ

l
d, with SU(2)R-spin 2, transforming in the adjoint

representation [0, 0, 0, 1, 0, . . . , 0] + [0, 1, 0, . . . , 0] of usp(2n).

• The combinations εabcdQiaQ
j
bXcd, with SU(2)R-spin 2, transforming in the adjoint

representation [0, 1, 0, . . . , 0] of usp(2n).

• The USp(2n) flavour singlet εabcdXabXcd, with SU(2)R-spin 2.

The Higgs branch of (5.7) for n = 1. In this case, it does not matter whether we take the

gauge group to be SO(2N) or O(2N), the Higgs branch is the same. The corresponding

Hilbert series is

H[H(5.7)|n=1] = PE

χsu(2)
[2] (x)

N−1∑
j=0

t4j+2 −
2N−1∑
l=N

t4l

 . (5.15)

Indeed, forN = n = 1, we recover the nilpotent cone of su(2), which is isomorphic to C2/Z2.

Theory (5.8). Since the nodes that are connected by T (SO(2N)) do not contribute to

the Coulomb branch, it follows that the dimension of the Coulomb branch is

C(5.8) = (2n− 1)N . (5.16)

Note, however, that quiver (5.8) is a “bad” theory in the sense of [10], due to the fact

that each USp(2N) gauge group has 2N flavours. Nevertheless, we shall analyse the case

of n = 1 and general N in detail below. In which case, we shall see that the result is

consistent with mirror symmetry.

The computation of the Higgs branch dimension of (5.8) indicates that the gauge

symmetry is not completely broken at a generic point of the Higgs branch. Indeed, if we

assume (incorrectly) that the gauge symmetry is completely broken, we would obtain the

dimHH(5.8) to be

(5.11) +

[
1

2
(2N)(2N − 1)−N

]
− 1

2
(2N)(2N − 1) = −N . (5.17)
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We conjecture that the SO(2N)×SO(2N) gauge group connected by T (SO(2N)) is broken

to SO(2)N , whose dimension is N . This statement can be checked explicitly in the case

of N = 1, where T (SO(2)) is trivial. Taking into account such an unbroken symmetry, we

obtain dimHH(5.8) = 0, which is in agreement with the Coulomb branch of (5.7).

The special case of n = 1. In this case, the Coulomb branch of (5.8) is equal to that of

the USp(2N) gauge theory with 2N flavours. As pointed out in [48], the most singular

locus of the Coulomb branch consists of two points, related by a Z2 global symmetry. The

infrared theory at any of these two points is an interacting SCFT, which we denote by TN .

For n = N = 1, the corresponding singularity is of an A1 type [49], and the corre-

sponding SCFT is T2 = T (SU(2)) whose Higgs/Coulomb branch is a nilpotent cone of

su(2); this is indeed in agreement with the Higgs branch of (5.7). The situation here is

the same as that described on Page 30 of [48], namely mirror symmetry is realized locally

at each of the two singular points. The Higgs branch of (5.7) has one component, whereas

the Coulomb branch of (5.8) (for N = n = 1) splits into two components, each of which is

isomorphic to the former.

For n = 1 and N > 1, the mirror theory of TN is described by the following quiver [50]:

N − 1

N2

2N − 2 2N − 3 . . . 1 (5.18)

By mirror symmetry, the Coulomb branch of TN is equal to the Higgs branch of (5.18),

whose Hilbert series is given by [48, (D.11)]:

H[CTN ](t, x) = H[H(5.18)](t, x) = PE

χsu(2)
[2] (x)

N−1∑
j=0

t4j+2 −
2N−1∑
l=N

t4l

 . (5.19)

This is perfectly in agreement with (5.15).

5.3 Quivers with a T (SO(2N)) link or a T (USp′(2N)) link

Let us insert an S-fold in the brane interval marked by red minus sign (−) in each brane

set-up in (5.2). This leads to the presence of T (SO(2N)) link in the corresponding quiver

diagram. In particular, the insertion of an S-fold in the left diagram of (5.2) leads to the

following configuration:

1
2
NS5

−

−

2N

2N

2N

•
+

•̃
+

+
...

•
1
2
D5+

2N 2N

2N

2n

T (SO(2N))

(5.20)
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The mirror theory can be obtained from the S-dual configuration of the above, or

simply inserting an S-fold to the left interval of the right diagram in (5.2). The result is

1
2
NS5

...

•

•

2N

2N + 1

2N + 1

2N

2N

2N

−

−

+
+̃

−̃

+ +̃

−̃

...

2N

2N + 1

2N ′

2N + 1

2N

2N

2N

n blue circular nodes + (n− 1) red

usual circular nodes + 2 red nodes

connected by T (SO(2N))

T (SO(2N))

1

1

(5.21)

where the number of half-NS5 branes is 2n. Note that for n = 1, the theory is self-mirror.

Theory (5.20). The Higgs branch of (5.20) is described by the hyperKähler quotient

H(5.20) =
(
Nso(2N) ×H([SO(2N)]− [USp(2N)])×Nso(2N) ×H(SO(2N)]− [USp(2N)])×

H([USp(2N)]− [SO(2n)])
)
/ (SO(2N)× SO(2N)×USp(2N))

=
Nusp(2N) ×Nusp(2N) ×H([USp(2N)]− [SO(2n)])

USp(2N)
, (5.22)

where we have used (3.24) to obtain the last line. We remark that both red circular nodes

can be chosen to be either SO(2N) or O(2N) and the results for both options are the same,

thanks to the equality between (3.24) and (3.30). Moreover, the hyperKähler quotient in

the last line of (5.22) suggests the equality between (5.22) and the Higgs branch of the

following theory:

••

••1
2
D5

2N2N

. . .

+̃ +̃

++

2N ′

T (USp′(2N))

2n

(5.23)

where the blue circular node is a USp′(2N) gauge group. In other words, we have the

following equality of the Higgs branch between two different gauge theories:

H(5.20) = H(5.23) . (5.24)
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The quaternionic dimension of (5.22) is

dimHH(5.20) =

[
1

2
(2N)(2N − 1)−N

]
+ 2(4N2) + 2Nn

−
[
2× 1

2
(2N)(2N − 1)

]
− 1

2
(2N)(2N + 1)

= (2n− 1)N .

(5.25)

Since the nodes that are connected by T (SO(N)) does not contribute to the Coulomb

branch of the theory, the Coulomb branch of (5.20) is isomorphic to the Coulomb branch

of the 3d N = 4 USp(2N) gauge theory with 2N +n flavours, whose Hilbert series is given

by [51, (5.14)]. Its quaternionic dimension is

dimH C(5.20) = N . (5.26)

Example: n = 1. The theory is self-mirror. One can check that the Hilbert series of

the quotient (5.34) is indeed equal to the Coulomb branch of USp(2N) gauge theory with

2N + 1 flavours [51, (5.14)], which is

PE

 2N∑
j=1

t2j +

N∑
j=1

t4j −
N∑
j=1

t4j+4N

 . (5.27)

Note that for N = n = 1, we have C2/Z4, as expected from the Coulomb branch of USp(2)

with 3 flavours.

There is another way to check that theory (5.20) for n = 1 (and a general N) is self-

mirror. We can easily compute a mirror theory of (5.23), with n = 1, by applying S-duality

to the brane system; see (5.31). The result is

2N ′ 2N ′

2N + 1

T (USp′(2N))

(5.28)

The Coulomb branch of this theory is isomorphic to that of 3d N = 4 SO(2N + 1) gauge

theory with 2N flavours, whose Hilbert series is given in [51, (5.18)]. However, as pointed

out in that reference, this turns out to be isomorphic to the Coulomb branch of the USp(2N)

gauge theory with 2N+1 flavours, whose Hilbert series is given by (5.27). We thus establish

the self-duality of (5.20) for n = 1.

Theory (5.21). The Higgs branch dimension of (5.21) is

dimH H(5.21) = (2)(2N2) + (2n− 2)N(2N + 1) +

[
1

2
(2N)(2N − 1)−N

]
+N +N − n

[
1

2
(2N)(2N + 1)

]
− 2

[
1

2
(2N)(2N − 1)

]
− (n− 1)

[
1

2
(2N + 1)(2N)

]
= N .

(5.29)
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The Coulomb branch dimension of (5.21) is equal to the total rank of the gauge groups

that are not connected by T (SO(2N)):

dimH C(5.21) = (2n− 1)N . (5.30)

These agree with the dimensions of the Coulomb and the Higgs branches of (5.20).

Similarly to the previous discussion, the red circular nodes that are connected by

T (SO(2N)) can be taken as O(2N) or SO(2N) without affecting the Higgs branch moduli

space of (5.21). Moreover, we find that this applies to other red circular nodes in the

quiver, namely the choice between O(2N + 1) and SO(2N + 1) does not change the Higgs

branch of the theory. This can be checked directly using the Hilbert series.

It is worth pointing out that there is another gauge theory that gives the same Coulomb

branch as (5.20). This is the mirror theory of (5.23) which is given by

1
2
NS5

...

2N + 1

2N

2N

2N + 1

2N

2N

+̃

+̃

−̃

−̃

+̃

+̃

...

2N + 1

2N ′

2N + 1

2N ′

2N + 1

2N ′

2N ′

n red circular nodes + (n− 1) blue

usual circular nodes + 2 blue nodes

connected by T (USp′(2N))

T (USp′(2N))

(5.31)

where the number of half-NS5 branes is 2n. We expect that the Coulomb branch of (5.31)

has to be equal to the Coulomb branch of (5.21). This can be seen as follows. Let us focus

on (5.31). Note that the two blue circular nodes that are connected by T (USp′(2N)) do

not contribute to the Coulomb branch computation, so we can take them to be two flavour

nodes that are not connected. As pointed out below [51, (5.18)], the Coulomb branch of

the SO(2N+1) gauge theory with 2N flavours is the same as that of Coulomb branch of

the USp(2N) gauge theory with 2N + 1 flavours. We can apply this fact to every node

in quiver (5.31) and see that the resulting quiver has the same Coulomb branch as that

of (5.21).

5.4 More quivers with a T (USp′(2N)) link

Let us insert an S-fold in the interval labelled by +̃ in each of the diagram in (5.5). Doing

so in the left diagram yields the following theory:

1
2
NS5

+̃

+̃

2N

2N

2N + 1

•
−̃

•
−

−̃
...

•
1
2

D5−̃

2N ′ 2N ′

2N + 1

2n

T (USp′(2N))

(5.32)
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On the other hand, inserting an S-fold to the right diagram yields the mirror configuration:

1
2
NS5

...
•

•

+

+

2N + 2

2N

2N

2N + 2

2N

2N

+̃

+̃

−

+

−

+

...

2N + 2

2N

2N + 2

2N

2N + 2

2N ′

2N ′

n red circular nodes + (n− 1) blue

usual circular nodes + 2 blue nodes

connected by T (USp′(2N))

T (USp′(2N))

1

1

(5.33)

Theory (5.32). The Higgs branch of (5.32) is described by the hyperKähler quotient

H(5.32) =
Nso(2N+1) ×Nso(2N+1) ×H([SO(2N + 1)]− [USp(2n)])

SO(2N + 1)
, (5.34)

where we have used (3.14) and (3.16) (with n = 2N + 1). The dimension of this is

dimHH(5.32) =

[
1

2
(2N + 1)(2N)−N

]
+ (2N + 1)n− 1

2
(2N + 1)(2N)

= 2nN + n−N .

(5.35)

A special case of N = n = 1 is particularly simple. The corresponding Higgs branch is a

complete intersection with the Hilbert series

H[H(5.20)|N=n=1](t;x) = PE
[
χ
su(2)
[2] (x)t2 + χ

su(2)
[1] (x)t3 − t8

]
. (5.36)

The Coulomb branch of (5.32) is isomorphic to that of the 3d N = 4 SO(2N+1) gauge

theory with 2N +n flavours, whose Hilbert series is given by [51, (5.18)]. Note that this is

also equal to that of the Coulomb branch of the USp(2N) gauge theory with 2N + n + 1

flavours.

Theory (5.33). The quaternionic dimension of the Coulomb branch of this theory is

dimH C(5.33) = n(N + 1) + (n− 1)N = 2nN + n−N . (5.37)

This matches with the dimension of the Higgs branch of (5.32). It should be noted

that (5.33) is a “bad” theory in the sense of [10], due to the fact that each SO(2N+2) gauge

group effectively has 2N flavours. Nevertheless, we shall analyse the case of N=n=1 below.
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Let us now turn to the Higgs branch. In the absence of the S-fold, it was pointed out

below [9, (7.1)] that the gauge symmetry is not completely broken at a generic point on

the Higgs branch, but is broken to n copies of SO(2). We conjecture that this still holds

for (5.33). Indeed, if we assume that this is true, we obtain the quaternionic dimension of

the Higgs branch to be

dimHH(5.33)

=

[
1

2
(2N)(2N + 1)−N

]
+N +N + (2n)N(2N + 2)

− (n)

[
1

2
(2N + 2)(2N + 1)

]
− (n− 1 + 2)

[
1

2
(2N)(2N + 1)

]
+ n

= N ,

(5.38)

where n in the second line is there due to the unbroken symmetry SO(2)n at a generic

point of the Higgs branch. This is in agreement with the dimension of the Coulomb branch

of (5.32), and is indeed consistent with mirror symmetry.

The special case of N = n = 1. In this case, the Coulomb branch of (5.33) is equal to

that of the SO(4) gauge theory with 2 flavours (which has a USp(4) flavour symmetry).

Although the latter is a bad theory, there is a mirror theory which has a “good” Lagrangian

description. The latter is denoted by T (2,12)(USp(4)), whose quiver description is (see [34,

table 2]):

2 2 3

1 2

(5.39)

where each red circular node should be taken as an SO gauge group. The Higgs branch

Hilbert series of (5.39) is indeed in agreement with (5.36), consistent with mirror symmetry.

6 Models with the exceptional group G2

6.1 Self-mirror models with a T (G2) link

In this section, we turn to models with a T (G2) link connecting between two G2 gauge

groups. We do not have the Type IIB brane construction for such theories. Nevertheless,

it is still possible to make some interesting statements regarding the moduli space. We

consider the following quiver:

...

4′

G2

4′

G2

4′

G2

G2

n blue nodes + (n− 1) G2 usual

circular nodes + 2 G2 nodes

connected by T (G2)T (G2)

(6.1)
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Note that every gauge group in the quiver has the same rank, in the same way as the

preceding sections. The Higgs branch dimension of this quiver is

dimH H(6.1) = (14− 2) +
1

2
(2n)(4)(7)− 10n− 14(n− 1 + 2) = 2(2n− 1) . (6.2)

On the other hand, the Coulomb branch dimension of this quiver is

dimH C(6.1) = 2(2n− 1) . (6.3)

Observe that the dimensions of the Higgs and Coulomb branches are equal. Indeed, we

claim that quiver (6.1) if self-mirror. We shall consider some special cases and compute

the Hilbert series to support this statement below.

In the absence of S-fold, the two G2 gauge groups merge into a single gauge group and

quiver (6.1) reduces to

...

4′
G2

4′
G2

4′

G2
2n alternating G2/USp′(4)

circular nodes

(6.4)

It can also be checked that the Higgs and Coulomb branch dimensions of this quiver

are equal:

dimH H(6.4) = dimH C(6.4) = 4n . (6.5)

Again, we claim that quiver (6.4) is also self-mirror. Indeed, one can check using the

Hilbert series (say for n = 1, 2), in a similar way as that will be presented below, that the

Higgs and Coulomb branches of (6.4) are equal.

Since we do not know the brane configurations for (6.1) and (6.4), we cannot definitely

confirm if the gauge nodes labelled by 4 is really USp(4) or USp′(4). Nevertheless, we

conjecture that such gauge nodes are USp′(4), due to the fact that we can perform an

“S-folding” and obtain another quiver which is self-dual. The latter is depicted in (6.15)

and will be discussed in detail in the next subsection.

The case of n = 1. In this case, (6.1) reduces to the following quiver:

G2 G2

4′

T (G2)

(6.6)

The Higgs branch Hilbert series can be computed as

H[H(6.6)](t) =

∫
dµUSp(4)(z)

{
H[H(3.33)](t; z)

}2
PE
[
−χC2

[2,0](z)t2
]
, (6.7)
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where z = (z1, z2) and H[H(3.33)](t; z) is given by (3.37). The integration yields

H[H(6.6)](t) = PE
[
t4 + t6 + 2t8 + t10 + t12 − t20 − t24

]
. (6.8)

This is the Coulomb branch Hilbert series of 3d N = 4 USp(4) gauge theory with 7

flavours [51, (5.14)]. On the other hand, since the vector multiplet of the G2 gauge groups

connected by T (G2) do not contribute to the Coulomb branch, the Coulomb branch of (6.6)

is also isomorphic to the Coulomb branch of 3d N = 4 USp(4) gauge theory with 7 flavours.

We see that the Higgs and the Coulomb branches of (6.6) are equal to each other. We

thus expect that theory (6.6) is self-mirror.

The case of n = 2. In this case, (6.1) reduces to the following quiver:

G2

4′

G2

4′

G2

T (G2)

(6.9)

The Higgs branch Hilbert series can be computed similarly as before:

H[H(6.9)](t) =

∫
dµUSp(4)(u)

∫
dµUSp(4)(v)

∫
dµG2(w)×

H[H(3.33)](t;u)H[H(3.33)](t;v) PE
[
χC2

[1,0](u)χG2

[1,0](w) + u↔ v
]

PE
[
−χC2

[2,0](u)t2 − χC2

[2,0](v)t2 − χG2

[0,1](w)t2
]
.

(6.10)

The Coulomb branch Hilbert series can be computed as if the two G2 symmetries that are

connected by T (G2) becomes two separated flavour nodes:

H[C(6.9)](t) =
∑

n1,n2≥0

∑
a1≥a2≥0

∑
b1≥b2≥0

t2∆(n,a,b)PG2(t;n)PC2(t;a)PC2(t; b) (6.11)

where n = (n1, n2) are the fluxes of the G2 gauge group, a = (a1, a2) and b = (b1, b2)

are the fluxes for the two USp(4) gauge groups. Here ∆(n,a, b) is the dimension of the

monopole operator:

∆(n,a, b) = ∆hyp
G2−C2

(0,a) + ∆hyp
G2−C2

(0, b) + ∆hyp
G2−C2

(n,a) + ∆hyp
G2−C2

(n, b)

−∆vec
G2

(n)−∆vec
C2

(a)−∆vec
C2

(b)

2∆hyp
G2−C2

(n,a) =
1

2

∑
±

2∑
i=1

[
|n1 ± ai|+ |n1 + n2 ± ai|+ |2n1 + n2 ± ai|+

+ (n1 → −n1, n2 → −n2) + | ± ai|
]

∆vec
G2

(n) = |n1|+ |n2|+ |n1 + n2|+ |2n1 + n2|+ |3n1 + n2|+ |3n1 + 2n2|
∆vec
C2

(a) = |2a1|+ |2a2|+ |a1 + a2|+ |a1 − a2| .

(6.12)
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The dressing factors PC2(t;a) and PG2(t;n) are given by [51, (A.8), (5.27)]:

PC2(t; a1, a2) =


(1− t2)−2 a1 > a2 > 0

(1− t2)−1(1− t4)−1 a1 > a2 = 0 or a1 = a2 > 0

(1− t4)−1(1− t8)−1 a1 = a2 = 0

PG2(t;n1, n2) =


(1− t2)−2 n1 > n2 > 0

(1− t2)−1(1− t4)−1 n1 = 0, n2 > 0 or n1 > 0, n2 = 0

(1− t4)−1(1− t12)−1 n1 = n2 = 0

.

(6.13)

Upon calculating the integrals and the summations, we check up to order t8 that the

Higgs branch and the Coulomb branch Hilbert series are equal to each other:

H[H(6.9)](t) = H[C(6.9)](t) = PE
[
4t4 + 5t6 + 10t8 + . . .

]
. (6.14)

This again supports our claim that (6.9) is self-mirror.

6.2 Self-mirror models with a T (USp′(4)) link

We can obtain another variation of (6.1) by simply S-folding one of the USp′(4) gauge

nodes in (6.4). The result is

...

G2

4′

G2

4′

G2

4′

4′

n G2 circular nodes + (n− 1) blue

usual circular nodes + 2 blue nodes

connected by T (USp′(4))T (USp′(4))

(6.15)

The dimension of the Higgs branch is indeed equal to that of the Coulomb branch:

dimH H(6.15) = dimH C(6.15) = 2(2n− 1) . (6.16)

We claim that (6.15) is also self-mirror for any n ≥ 1. One can indeed check, for ex-

ample in the cases of n = 1, 2, that the Higgs and the Coulomb branch Hilbert series

are equal, in the same way as presented in the preceding subsection. As an example, for

n = 1, these are equal to the Coulomb branch Hilbert series of the G2 gauge theory with

4 flavours [51, (5.28)]:

H[H(6.15)|n=1] = H[C(6.15)|n=1] = PE
[
2t4 + t6 + t8 + t10 + 2t12 + . . .

]
. (6.17)

We finally remark that since we can perform an “S-folding” at any blue node, this

confirms that each blue node labelled by 4 is indeed USp′(4).

– 38 –



J
H
E
P
0
3
(
2
0
1
9
)
1
7
1

6.3 More mirror pairs by adding flavours

In this subsection, we add fundamental flavours to the self-mirror models discussed earlier

and obtain mirror pairs that are not self-dual.

6.3.1 Models with a T (G2) link

Let us start the discussion by adding n flavours to the USp′(4) gauge group in (6.6).

This yields

G2 G2

4′

2n

T (G2)

(6.18)

where the flavour symmetry is SO(2n). The dimensions of the Higgs and Coulomb branches

of this quiver are

dimH H(6.18) = 4n+ 2 , dimH C(6.18) = 2 . (6.19)

We propose that (6.18) is mirror dual to

...

4′

5

4′

5

4′

G2

G2

(n+ 1) blue circular nodes + n red

circular nodes + 2 G2 nodes

connected by T (G2)

(6.20)

The Higgs branch dimension of this model is

dimH H(6.20) = (14− 2) + 2

(
1

2
× 7× 4

)
+ 10(2n)

− 14− 14− 10(n+ 1)− 10n

= 2 .

(6.21)

and the Coulomb branch dimension of this is dimH C(6.20) = 2(2n + 1). This is consistent

with mirror symmetry. We shall soon match the Higgs/Coulomb branch Hilbert series

of (6.18) with the Coulomb/Higgs branch Hilbert series of (6.20) for n = 1.

Although we do not have a brane construction for (6.20) due to the presence of the

G2 gauge groups, the part of the quiver that contains alternating USp′(4)/SO(5) gauge

groups could be “realised” by a series of brane segments involving alternating Õ3
+

/Õ3
−
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across NS5 branes. In other words, starting from (6.18), the mirror theory (6.20) can be

obtained by making the following replacement:

4′ 2n −→ ...

4′

5

4′

5

4′

(n+ 1) blue circular nodes

+ n red circular nodes

(6.22)

In the absence of the S-fold, the two G2 gauge groups that were connected by T (G2)

merge into a single one. We thus obtain the mirror pair between the following elliptic

models:

G2

4′

2n

←→ ...

4′
5

4′
5

4′

G2

(n+ 1) blue circular nodes +

n red circular nodes + 1 G2 node

(6.23)

The case of n = 2. Let us first focus on (6.18). The Higgs branch Hilbert series can be

computed simply by putting the term PE[(x+x−1)χC2

[1,0](z)t] in the integrand of (6.7), where

x is the SO(2) flavour fugacity. Performing the integral, we obtain (after setting x = 1):

H
[
H(6.18)|n=1

]
(t;x = 1) = 1 + t2 + 9t4 + 15t6 + 60t8 + 113t10 + . . . . (6.24)

The Coulomb branch Hilbert series for (6.18) is equal to that of the 3d N = 4 USp(4)

gauge theory with 7 + 1 = 8 flavours. The latter is given by

H
[
C(6.18)|n=1

]
(t) = PE

[
t4 + 2t8 + t10 + t12 + t14 − t24 − t28

]
. (6.25)

Let us now turn to (6.20). The Higgs branch Hilbert series is given by (6.10) with the

following replacement:∫
dµG2(w)→

∫
dµSO(5)(w) , χG2

[1,0](w)→ χB2

[1,0](w) , χG2

[0,1](w)→ χB2

[0,2](w) . (6.26)

We checked that the result of this agrees with (6.25) up to order t10. The Coulomb branch

Hilbert series of (6.20) can be obtained in a similar way from (6.11) with the following
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replacement:

∆vec
G2

(n)→ ∆vec
B2

(n) = |n1|+ |n2|+ |n1 + n2|+ |n1 − n2|

∆hyp
G2−C2

(n,a or b)→ ∆hyp
B2−C2

(n,a or b)

PG2(t;n)→ PC2(t;n)

(6.27)

with

∆hyp
B2−C2

(n,a) =
1

2
× 1

2

1∑
s1,s2=0

2∑
j=1

[
|(−1)s2aj |+

2∑
i=1

|(−1)s1ni + (−1)s2aj |

]
. (6.28)

Again, we checked that the result of this agrees with (6.24) up to order t10.

Generalisation of (6.18) to a polygon with flavours added. We can generalise (6.18) to a

polygon consisting of alternating G2/USp′(4) gauge groups, with n flavours added to one

of the USp′(4) gauge group. This is depicted below.

4′

G2

...

4′

2n

· · ·
G2

4′

G2

G2

m blue nodes + (m− 1) G2 usual

circular nodes + 2 G2 nodes

connected by T (G2)

T (G2)

(6.29)

The mirror theory can simply be obtain by applying the replacement rule (6.22). For

example, we have the following mirror pair

4′

G2

4′ 2

G2

4′

G2

G2

T (G2) ←→

4′

G2

4′

5

4′

G2

4′

G2

G2

T (G2)

(6.30)

As emphasised before, as a by-product, one may obtain a mirror pair between the usual

field theories, without an S-fold, by simply merging the two G2 nodes that are connected

by T (G2). The replacement rule described in (6.22) still applies. As an example, (6.30)
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becomes

4′ G2

4′ 2

G24′

G2G2
←→

4′

G2

4′

5

4′

G2

4′

G2G2

(6.31)

6.3.2 Models with a T (USp′(4)) link

Instead of S-folding the G2 node as in (6.29), we can S-fold the USp′(4) node and obtain

G2

4′

...

2n1

2n2

4′

G2

4′

4′

m G2 nodes + (m− 1) usual blue

circular nodes + 2 blue nodes

connected by T (USp′(4))

T (USp′(4)) (6.32)

The mirror theory of this quiver can be obtained by applying the replacement rule (6.22),

with one of the external legs on each side being a T -link. As an example, we have the

following mirror pair:

4′ 4′

G2

2n1 2n2

T (USp′(4))

←→ G2

4′

4′

· · ·
5

4′

5
· · ·

4′

n1 red and n1 blue nodes

n2 red and n2 blue nodes

(6.33)

Yet another generalisation one can possibly consider is to add flavour to any of the

4′-node that is not connected by the T -link in (6.32). The mirror theory can simply be

obtained, again, by applying the replacement rule given by (6.22).

As emphasised before, as a by-product, one may obtain a mirror pair between the

usual field theories, without an S-fold, by simply merging the two USp′(4) nodes that are

connected by T (USp′(4)).
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7 Conclusions and perspectives

We propose new classes of three dimensional S-fold CFTs and study their moduli spaces in

detail. These generalise and extend the previous results of [15, 17], whose central role was

played by quivers that contain a T (U(N)) theory connecting two unitary gauge groups. In

this paper, we explore the possibility of replacing T (U(N)) by a more general T (G) theory,

where G is self-dual under the S-duality. In particular, we investigate the cases where G

is taken be SO(2N), USp′(2N) and G2.

For G = SO(2N) and USp′(2N), we propose that the quiver can be realised from

an insertion of an S-fold into a brane configuration that involves D3 branes on top of

orientifold threeplanes, possibly with NS5 and D5 branes [9]. In which case, the S-fold

needs to be inserted in an interval of the D3 brane where the orientifold is of the O3−

type or the Õ3
+

type for G = SO(2N) or USp′(2N), respectively. The resulting quiver

contains alternating orthogonal and symplectic gauge groups, along with a T (G) theory

connecting two gauge groups G in the quiver. Moreover, we also obtain the mirror theory

by performing S-duality on the brane system. Under the action of latter, the O3− and

Õ3
+

planes, as well as the S-fold remain invariant. Hence the resulting mirror theory can

be obtained from the S-dual configuration discussed in [9], with an S-fold inserted in the

position corresponding to the original set-up.

As observed in our previous paper [15], the U(N) gauge nodes, with zero Chern-Simons

levels, that are connected by T (U(N)) link do not contribute to Coulomb branch of the

quiver. We dub this phenomenon the “freezing rule”. This has been successfully tested by

study the moduli spaces of various quiver theories and their mirrors. The results turned out

be nicely consistent with mirror symmetry, namely the Higgs and Coulomb branches of the

original theory get exchanged with the Coulomb and Higgs branches of the mirror theory.

In this paper, we perform a similar consistency checks. We find that the freezing rule still

holds for the quiver with T (SO(2N)) and T (USp′(2N)) and the results are consistent with

mirror symmetry. Such consistency supports the statement that the S-fold can be present

in the background of O3− and Õ3
+

planes.

Following the same logic, we also investigate the presence of the S-fold in the back-

ground of orientifold fiveplanes. In particular, we examine the insertion of the S-fold into

the brane configurations involving orientifold fiveplanes, studied in [8]. The correspond-

ing quiver contains several interesting features such as the presence of the antisymmetric

hypermultiplet, along with the T (U(N)) link connecting two unitary gauge groups. The

mirror configuration consists of an ON plane that gives rise to a bifurcation in the mirror

quiver [7], with the S-fold inserted in the position corresponding to the original set-up. An

important result that we discover for this class of theories is that, in order for the freezing

rule to hold and for the moduli spaces of the mirror pair to be consistent with mirror

symmetry, the S-fold must not be inserted “too close” to the orientifold plane; there must

be a sufficient number of NS5 branes that separate the S-fold from the orientifold plane.

This suggests that the NS5 branes provide a certain “screening effect” or “shielding effect”

in the combination of the orientifold plane and the S-fold. We hope to understand this

phenomenon better in the future.
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Finally, we propose a novel class of circular quivers that contains the exceptional G2

gauge groups. In particular, the quiver contains alternating G2 and USp′(4) gauge groups,

possibly with flavours under USp′(4). Although the Type IIB brane configuration for

this class of theories is not known and the S-fold supergravity solution for the exceptional

group is not available, we propose that it is possible to “insert an S-fold” into the G2 and/or

USp′(4) gauge groups in the aforementioned quivers. This results in the presence of the

T (G2) link connecting two G2 gauge groups, and/or the T (USp′(4)) link connecting two

USp′(4) gauge groups. Furthermore, we propose the mirror theory which is also a circular

quiver, consisting of the G2, USp′(4) and possibly SO(5) gauge groups if the original theory

has the flavours under USp′(4). To the best of our knowledge, such mirror pairs are new and

have never been studied in the literature before. We check, using the Hilbert series, that

moduli spaces of such pairs satisfy the freezing rule and are consistent with mirror sym-

metry. This, again, serves as strong evidence for the existence of an S-fold of the G2 type.

The results in this paper leads to a number of open questions. First of all, we restricts

ourself to models with equal-rank gauge nodes; this avoids problem arising from non-

complete Higgsing of the gauge symmetries. It would be interesting to generalise all the

result to the unequal-rank cases. This amounts to consider S-fold configurations with

fractional branes.

Secondly, so far we have taken the Chern-Simons levels of all gauge groups connected

by the T -link to be zero. It would be interesting to study the moduli spaces as well as the

duality between theories with non-zero Chern-Simons levels.

Finally, it would be interesting to generalise our result on the G2 group to other

exceptional groups, including F4 and E6,7,8, which are also invariant under the S-duality.

It is natural to expect that the S-fold associated with such groups should exist and, in that

case, it should be possible to find quivers as well as their mirror theories that describe such

S-fold CFTs. Moreover, it would be nice to find a string or an F-theoretic construction for

such theories. This would certainly lead to a deeper understanding of such CFTs.
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A Models with an O5+ plane

In this appendix, we analyse models with O5+ plane. In particular, we focus on a theory

with one symmetric hypermultiplet and its mirror theory. One of the important features is

that the mirror theory does not admit a conventional Lagrangian description. Nevertheless,

we can represent it by a quiver diagram with a “multiple-lace”, in the same sense of the

Dynkin diagram of the CN algebra [32, 52]. As pointed out in [32], it is possible to

compute the Coulomb branch Hilbert series of such a mirror theory with the multiple-lace,

and equate the result with the Higgs branch Hilbert series of the original theory with one

symmetric hypermultiplet.
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The point of this appendix is to demonstrate that one may insert an S-fold into the

brane system of the original theory and the corresponding mirror configuration, and still

obtain a consistent mirror theory. Again, one can compute the Coulomb branch Hilbert

series of the latter and match it with the Higgs branch Hilbert series of the former.

Models without an S-fold. We start by looking at the following theory:

O5+

with an NS5 on top

• • . . . •

n physical D5s

NS5

2N

D3

2N

S

n (A.1)

The presence of the O5+ plane gives rise to a rank-two symmetric hypermultiplet. The

Higgs and Coulomb branch dimensions for theory are as follows

dimH C(A.1) = 2N ,

dimHH(A.1) =
1

2
2N(2N + 1) + 2Nn− 4N2 = 2Nn− 2N2 +N .

(A.2)

Applying S-duality to the brane system (A.1) we get

ON+

•D5
2N

2N

2N

D3 2N

1
2

NS5

...

· · · · · ·

D5
2N NS5sn− 2N NS5s

2N D3s

(A.3)

and, after moving the rightmost D5 brane into the brane interval, we arrive at

ON+

•D5
2N

2N

2N

D3 2N

1
2

NS5

· · · · · ·•
D5

2N NS5sn− 2N NS5s

(A.4)

The corresponding quiver theory associated to this system is [32, 52]

2N

1

2N · · · 2N 2N − 1 · · · 1

1

n− 2N + 1 circular nodes

(A.5)
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The presence of the ON+ plane gives rise to the double lace at the left end. This part of

the quiver does not have a known Lagrangian description. However, as explained in [32],

the part of the quiver that corresponds to a double lace, whose arrow goes from the gauge

group U(N1) to U(N2), contributes to the dimension of the monopole operator as

∆(U(N1))⇒(U(N2))(m
(1),m(2)) =

1

2

N1∑
i=1

N2∑
j=1

|2m(1)
i −m

(2)
j |, (A.6)

where m(1) and m(2) are the magnetic fluxes associated with the gauge groups U(N1) and

U(N2) respectively. For (A.5), the Coulomb branch has dimension

dimH C(A.5) = 2N(n− 2N + 1) +
2N−1∑
i=1

i = 2Nn− 2N2 +N , (A.7)

equal to the Higgs branch dimension of (A.1), as expected from mirror symmetry. Note

that we have assumed that the two gauge nodes connected by the double lace contribute

as the others. Since we do not have information about matter associated with the double

lace, we cannot compute the Higgs branch dimension of (A.5) using the quiver description.

Let us consider a specific example by choosing N = 1 and n = 4. The unrefined Higgs

branch Hilbert series of (A.1) is

H[H(A.1)] =

∮
|z|=1

dz

2πiz
(1− z2)

∮
|q|=1

dq

2πiq
PE
[
4(z + z−1)(q + q−1)

+ (z2 + 1 + z−2)(q2 + q−2)t− (z2 + 1 + z−2 + 1)t2
]

= PE [16t2 + 20t3 − 12t5 − 32t6 + . . . ] .

(A.8)

For the mirror theory (A.5) the unrefined Coulomb branch Hilbert series can be computed

in the same way as described in [32]. The result is

H[C(A.5)] =
∑

m
(1)
1 ≥m

(1)
2 >−∞

∑
m

(2)
1 ≥m

(2)
2 >−∞

∑
m

(3)
1 ≥m

(3)
2 >−∞

∑
m∈Z

t2∆(m(1),m(2),m(3),m)

× PU(2)(t,m
(1))PU(2)(t,m

(2))PU(2)(t,m
(3))PU(1)(t,m)

= PE [16t2 + 20t3 − 12t5 − 32t6 + . . . ],

(A.9)
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where m(i) = (m
(i)
1 ,m

(i)
2 ) for i = 1, 2, 3 and we define

∆(m(1),m(2),m(3),m) = ∆U(2)⇒U(2)(m
(1),m(2)) + ∆U(2)−U(2)(m

(2),m(3))

+ ∆U(2)−U(1)(m
(3),m) + ∆U(2)−U(1)(m

(1), 0)

+ ∆U(2)−U(1)(m
(3), 0)−

3∑
i=1

∆vec
U(2)(m

(i))

2∆U(N1)⇒U(N2)(m,n) =

N1∑
i=1

N2∑
j=1

|2mi − nj |

2∆U(N1)−U(N2)(m,n) =

N1∑
i=1

N2∑
j=1

|mi − nj |

∆vec
U(2)(m) = |m1 −m2|

PU(2)(t;m1,m2) =

{
(1− t2)−2 , m1 6= m2

(1− t2)−1(1− t4)−1 , m1 = m2

PU(1)(t;m) = (1− t2)−1 .

(A.10)

The two Hilbert series are equal as expected.

The case with an S-fold. One can insist with the insertion of an S-fold also for theories

involving an O5+ plane. The brane configuration and the quiver theory are as follows

O5+

with an NS5 on top

• . . . •

n1

• . . . •

n2

NS5

2N

D3

2N 2N

S

n1 n2

T (U(2N))

(A.11)

This theory has Coulomb and Higgs branches with the following dimensions

dimH C(A.11) = 0,

dimHH(A.11) = dimHH(A.1)|n=n1+n2 + (4N2 − 2N)− 4N2

= 2N(n1 + n2)− 2N2 −N ,

(A.12)

where the first line follows from the fact that the two circular nodes are connected by the

T -link and hence do not contribute to the Coulomb branch. The brane system we get after
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applying S-duality is

ON+

•D5
2N

2N

D3

2N 2N

1
2

NS5

· · · · · · · · ·•
D5

2N NS5sn2 − 2N NS5sn1 NS5s

(A.13)

whose associated gauge theory reads

2N

1

2N · · · 2N 2N · · · 2N 2N − 1 · · · 1

1

T (U(2N))

n1 + 1 nodes n2 − 2N + 1 nodes

(A.14)

The Coulomb branch dimension of this theory reads

dimH C(A.14) = 2N(n1 + 1 + n2 − 2N + 1− 2) +

2N−1∑
i=1

i = 2N(n1 + n2)− 2N2 −N , (A.15)

which equal to (A.12).

Let us consider the example of N = 1, n1 = 2 and n2 = 2. The Higgs branch of (A.11)

splits into a product of two hyperKähler spaces as usual. The right part gives the nilpotent

cone of su(2) (which is isomorphic to C2/Z2), as pointed out in (3.8); the corresponding

unrefined Hilbert series is PE[3t2 − t4]. The left part contributes to the Hilbert series as∮
|z|=1

dz

2πiz
(1− z2)

∮
|q|=1

dq

2πiq
PE
[
2(z + z−1)(q + q−1)

+ (z2 + 1 + z−2)(q2 + q−2)t+ (z2 + 1 + z−2)t2 − t4

− (z2 + 1 + z−2 + 1)t2
]

= PE [4t2 + 6t3 + 4t4 + . . . ] .

(A.16)

Hence the Higgs branch Hilbert series of (A.11) is

H[H(A.11)] = PE [4t2 + 6t3 + 4t4 + . . . ] PE [3t2 − t4]. (A.17)

The Coulomb branch Hilbert series of (A.14), with N = 1, n1 = 2 and n2 = 2, can

be obtained by taking the circular nodes connected by the T -link to be separated flavour

nodes. Hence, the quiver splits into two parts. The right part contributes as the U(1)

gauge theory with 2 flavours, whose Coulomb branch is C2/Z2. The Coulomb branch

Hilbert series of the left part can be computed in a similar way as (A.9). The result is

therefore

H[C(A.14)] = PE [4t2 + 6t3 + 4t4 + . . . ] PE [3t2 − t4]. (A.18)

This is equal to the Higgs branch Hilbert series of (A.11) and is, therefore, consistent with

mirror symmetry.
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