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Abstract: The sensitivity of a Boolean function f of n Boolean variables is the maximum

over all inputs x of the number of positions i such that flipping the i-th bit of x changes

the value of f (x). Permitting to flip disjoint blocks of bits leads to the notion of block

sensitivity, known to be polynomially related to a number of other complexity measures of f ,

including the decision-tree complexity, the polynomial degree, and the certificate complexity.

A long-standing open question is whether sensitivity also belongs to this equivalence class.

A positive answer to this question is known as the Sensitivity Conjecture. We present a

selection of known as well as new variants of the Sensitivity Conjecture and point out

some weaker versions that are also open. Among other things, we relate the problem to

Communication Complexity via recent results by Sherstov (QIC 2010). We also indicate

new connections to Fourier analysis.
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1 The Sensitivity Conjecture

For Boolean strings x,y ∈ {0,1}n let x⊕ y ∈ {0,1}n denote the coordinate-wise exclusive or of x and y.

Let ei ∈ {0,1}n denote an n-bit Boolean string whose ith bit is 1 and the rest of the bits are 0.

Let f : {0,1}n →{0,1} be a Boolean function. On an input x∈ {0,1}n, the ith bit is said to be sensitive

for f if f (x⊕ei) 6= f (x), i. e., flipping the ith bit results in flipping the output of f . The sensitivity of f on

input x, denoted by s( f ,x), is the number of bits that are sensitive for f on input x.

Definition 1.1. The sensitivity of a Boolean function f , denoted by s( f ), is the maximum value of s( f ,x)
over all choices of x.
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For B ⊆ [n] = {1,2, . . . ,n} let eB ∈ {0,1}n denote the characteristic vector of B, i. e., the ith bit of

eB is 1 if i ∈ B and 0 otherwise. We write x for x⊕ e[n]. We say that a “block” B is sensitive for f on

x if f (x⊕ eB) 6= f (x). The block sensitivity of f on x, denoted by bs( f ,x), is the maximum number of

pairwise disjoint sensitive blocks of f on x.

Definition 1.2. The block sensitivity of a Boolean function f , denoted by bs( f ), is the maximum possible

value of bs( f ,x) over all choices of x.

The study of sensitivity of Boolean functions originated from Stephen Cook and Cynthia Dwork [10]

and Rüdiger Reischuk [29]. They showed an Ω(logs( f )) lower bound on the number of steps required to

compute a Boolean function f on a CREW PRAM. A CREW PRAM, abbreviated from Consecutive Read

Exclusive Write Parallel RAM, is a collection of synchronized processors computing in parallel with

access to a shared memory with no write conflicts. The minimum number of steps required to compute a

function f on a CREW PRAM is denoted by CREW( f ). After Cook, Dwork and Reischuk introduced

sensitivity, Noam Nisan [23] found a way to modify the definition of sensitivity to characterize CREW( f )
exactly. Nisan introduced the notion of block sensitivity and proved that CREW( f ) = Θ(logbs( f )) for

every Boolean function f [23].

Obviously, for every Boolean function f ,

s( f )≤ bs( f ) .

Block sensitivity turned out to be polynomially related to a number of other complexity measures (see

Section 2); however, to this day it remains unknown whether block sensitivity is bounded above by a

polynomial in sensitivity. This problem was first stated by Nisan and Mario Szegedy [24].

Problem 1.3 (Nisan and Szegedy). Is it true that for every Boolean function f ,

bs( f )≤ poly(s( f ))?

In fact, Nisan and Szegedy even suggested the possibility

bs( f ) = O(s( f )2) . (1.1)

Decades of failed attempts at producing a super-quadratic gap between these quantities have led

the community to lean toward a positive answer. We refer to the positive answer to Problem 1.3 as the

Sensitivity Conjecture.

The rest of the paper is organized as follows. In Section 2 we describe complexity measures of

Boolean functions polynomially related to block sensitivity. In Section 3 we review progress on the

Sensitivity Conjecture. In Section 4 we give a brief introduction to the field of communication complexity.

In Section 5 we present alternative formulations of the Sensitivity Conjecture and point out weaker

versions that are also open. Along the way we encounter important examples of Boolean functions. We

present these functions in Section 6.

To the best of our knowledge the results stated in this paper without attribution have not appeared

previously in the literature.
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2 Measures related to block sensitivity

Block sensitivity is polynomially related to several other complexity measures of Boolean functions,

some of which we describe in this section.

A deterministic decision tree on n variables x1, . . . ,xn is a rooted binary tree, whose internal nodes

are labeled with variables, and the leaves are labeled 0 or 1. There are exactly two edges leaving each

internal node, one labeled 0 and one labeled 1. To evaluate such a tree on input x, start at the root and

query the corresponding variable, then move to the next node along the edge labeled with the outcome of

the query. Repeat until a leaf is reached, at which point the label of the leaf is declared to be the output of

the evaluation. A decision tree computes a Boolean function f if it agrees with f on all inputs.

Definition 2.1. The deterministic decision-tree complexity of a Boolean function f , denoted by D( f ), is

the depth of a minimum-depth decision tree that computes f .

One way to extend the deterministic decision tree model is to add randomness to the computation. A

randomized decision tree computing a Boolean function f with error probability at most 1/3 is given by

a probability distribution µ on all deterministic decision trees, such that for all x the probability that a

tree drawn from µ outputs f (x) is at least 2/3. The depth of a randomized decision tree defined by µ is

the maximum depth of a deterministic decision tree T with µ(T )> 0.

Definition 2.2. The bounded-error randomized decision-tree complexity of a Boolean function f , denoted

by R2( f ), is the minimum depth of a randomized decision tree computing f with error probability at

most 1/3. (The subscript 2 refers to permitting 2-sided error.)

We denote the quantum decision-tree complexity with bounded error of a Boolean function f by

Q2( f ). Discussion of quantum complexity is outside the scope of this paper. For an introduction to

quantum complexity see a survey by de Wolf [37].

A certificate of a Boolean function f on input x is a subset S ⊂ [n] such that

(∀y ∈ {0,1}n)(x|S = y|S ⇒ f (x) = f (y)) .

The certificate complexity of a Boolean function f on input x, denoted by C( f ,x), is the minimum size of

a certificate of f on x.

Definition 2.3. The certificate complexity of a Boolean function f , also known as the non-deterministic

decision-tree complexity of f and denoted by C( f ), is the maximum of C( f ,x) over all choices of x.

Definition 2.4. A polynomial p : Rn → R represents f if

(∀x ∈ {0,1}n)(p(x) = f (x)) .

The degree of a Boolean function f , denoted by deg( f ), is the degree of the unique multilinear polynomial

that represents f .

Definition 2.5. A polynomial p : Rn → R approximately represents f if

(∀x ∈ {0,1}n)(|p(x)− f (x)| ≤ 1/3) .

The approximate degree of a Boolean function f , denoted by d̃eg( f ), is the minimum degree of a

polynomial that approximately represents f .
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bs( f ) D( f ) deg( f ) C( f )

bs( f ) 1(1) 1 [*](1 [*]) 2 [24](log3 6 [25]3) 1 [*](1 [*])

D( f ) 3 [3, 23](2 []4) 1(1) 3 [21](log3 6 [25]3) 2 [3]2(2 []4)

deg( f ) 3 [3, 23](2 []4) 1 [*](1 [*]) 1(1) 2 [3](2 []4)

C( f ) 2 [23](log4 5 [5, 1]1) 1 [*](1 [*]) 3 [21](log3 6 [25]3) 1(1)

Table 1: Known polynomial relations between various complexity measures. An entry in the table shows

the polynomial upper bound on the measure from a row in terms of a measure from a column and the

biggest known gap between two measures. The references to the papers, where the corresponding results

can be found, are given in square brackets.

Definition 2.6. Complexity measures A and B are polynomially related if there exist polynomials p1, p2

over R

(∀ f ) [A( f )≤ p1(B( f )) and B( f )≤ p2(A( f ))] .

Theorem 2.7 ([3],[23],[24]). The following complexity measures of Boolean functions are all polynomi-

ally related:

bs( f ), D( f ), R2( f ), C( f ), deg( f ), d̃eg( f ), Q2( f ) .

Table 1 presents a quick summary of the known polynomial relations between complexity measures

that play a prominent role in this paper. An entry from the table shows the smallest known degree

of a polynomial in the corresponding measure from the column that gives an upper bound on the

corresponding measure from the row, as well as the degree of the biggest known gap between two

measures. An entry also contains references to papers where the result can be found. References of the

form [*] indicate that the result is immediate from the definitions of complexity measures. For example,

entry 3 [21](log3 6 [25]) in the second row and third column means that D( f ) = O(deg( f )3) (see [21])

and that there is a Boolean function f , for which D( f ) = Ω(deg( f )log3 6) (see [25]). For a thorough

treatment of polynomial relations between various complexity measures of Boolean functions (including

variants of quantum query complexity) we refer to the survey by Buhrman and de Wolf [6]. That survey

includes a full proof of Theorem 2.7 and proofs of most of the relations in Table 1.

Using Theorem 2.7, one immediately obtains many equivalent formulations of the Sensitivity Con-

jecture. For instance, “is deg( f )≤ poly(s( f )) for every Boolean function f ?” The following stronger

version of this inequality “is conjectured” according to Gotsman and Linial [13]:

deg( f ) = O(s( f )2) . (2.1)

1The construction appeared in [5] before the notion of block sensitivity was introduced. The analysis of C( f ) and bs( f ) of

the example appears in [1].
2The result is due to [4, 15, 35].
3The example is due to Kushilevitz and appears in footnote 1 on p. 560 of the Nisan-Wigderson paper [25]. See Example 6.3.2

of this paper.
4These gaps are demonstrated by an AND-of-ORs function; see Example 6.2.1 in this paper.
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Currently inequalities (1.1) and (2.1) are not comparable. A function constructed by David Rubinstein

(see Example 6.1.1) shows that the quadratic bound would be best possible in both cases; for that function

f , we have deg( f ) = n, bs( f ) = n/2, s( f ) =
√

n.

The purpose of this paper is to point out some nontrivial variations on the Sensitivity Conjecture

that, to our knowledge, have not been stated explicitly in the literature. We also propose several weaker

versions of the Sensitivity Conjecture which might provide starting points.

We introduce the following pictorial notation to indicate relations between the statements appearing

in this paper and the Sensitivity Conjecture:

- a consequence of the Sensitivity Conjecture.

- implies the Sensitivity Conjecture, but the reverse implication is not known. These might be good

candidates for refutation.

- equivalent to the Sensitivity Conjecture.

- conditionally equivalent to the Sensitivity Conjecture.

3 Progress on the Sensitivity Conjecture

The progress on the Sensitivity Conjecture has been limited. We say that a Boolean function f : {0,1}n →
{0,1} depends on the ith variable if for some input x the ith bit is sensitive for f on x. Hans-Ulrich

Simon [34] proved the first non-trivial lower bound on the sensitivity of an arbitrary Boolean function.

Theorem 3.1 (H.-U. Simon). For every Boolean function f : {0,1}n →{0,1} we have

s( f )4s( f ) ≥ n′

where n′ is the number of variables on which f depends.

Now we present Simon’s proof. First we introduce some notation. Let Qn denote the n-cube graph,

i. e., V (Qn) = {0,1}n and two vertices are adjacent if the corresponding strings differ in exactly one

position. We denote the minimum degree of the graph G by δ (G).

Lemma 3.2. For a non-empty subgraph G = (V,E) of Qn, we have

|V | ≥ 2δ (G).

Proof. We will proceed by induction on n. The claim is trivially true for n = 1. Now, in the inductive step,

for j ∈ {0,1}, let G j = (Vj,E j) be the induced subgraph of G on the set Vj = {v ∈V | v1 = j}, where v is

the string v1v2 · · ·vn. If G j is empty then G=G1− j, so δ (G1− j)= δ (G) and the claim follows by induction.

Otherwise, since a vertex v ∈Vj can have at most one neighbor in V1− j, we have δ (G j)≥ δ (G)−1 for

j ∈ {0,1}. From the inductive hypothesis it follows that |V |= |V0|+ |V1| ≥ 2δ (G0)+2δ (G1) ≥ 2δ (G).

Proof of Theorem 3.1. Let CG(v) denote the connected component of the graph G containing vertex v. To

simplify the proof, we will assume that f depends on all variables, i. e., n = n′. The case n 6= n′ follows

THEORY OF COMPUTING LIBRARY, GRADUATE SURVEYS 4 (2011), pp. 1–27 5

http://dx.doi.org/10.4086/toc
http://dx.doi.org/10.4086/toc.gs


POOYA HATAMI, RAGHAV KULKARNI, AND DENIS PANKRATOV

immediately. For i ∈ [n], pick x such that f (x) 6= f (x⊕ ei). Define the following induced subgraphs of

Qn:

G0 = (V0,E0) where V0 = {v ∈V (Qn) | vi = xi, f (v) = f (x)} ,
G1 = (V1,E1) where V1 = {v ∈V (Qn) | vi = 1− xi, f (v) = f (x⊕ ei)} ,
G̃0 = (Ṽ0, Ẽ0) where Ṽ0 = {v ∈V0 | v ∈CG0

(x),v⊕ ei ∈CG1
(x⊕ ei)} ,

G̃1 = (Ṽ1, Ẽ1) where Ṽ1 = {v ∈V1 | v⊕ ei ∈ Ṽ0} .

Clearly, x ∈ Ṽ0 and for any ṽ ∈ Ṽ0 the ith bit is sensitive for f on ṽ. Now, for a vertex ṽ ∈ Ṽ0 at most s( f )
neighbors of ṽ in Qn lie in Ṽ1. Among the rest of the neighbors of ṽ in Qn, at most s( f )−1 do not become

neighbors of ṽ⊕ ei in G̃1 when their ith variable is flipped. Hence the remaining n−2s( f )+1 neighbors

of ṽ belong to Ṽ0. This shows that δ (G̃0)≥ n−2s( f )+1.

The total number of inputs y ∈ {0,1}n such that the ith bit is sensitive for f on y is at least |Ṽ0| ≥
2n−2s( f )+1 by Lemma 3.2. Then the total number of sensitive bits over all inputs is at least n2n−2s( f )+1.

Therefore, n2n−2s( f )+1 ≤ s( f )2n, since the number of sensitive bits for a particular input is at most s( f ).
This completes the proof.

A simple calculation leads to the following corollary.

Corollary 3.3 (H.-U. Simon). For every Boolean function f : {0,1}n →{0,1} we have

s( f )≥ 1

2
logn′− 1

2
loglogn′+

1

2

where n′ is the number of variables on which f depends.

Obviously, bs( f )≤ n′, so Theorem 3.1 implies that

bs( f )≤ s( f )4s( f ) (3.1)

for every Boolean function f . This upper bound was later improved by Claire Kenyon and Samuel

(Sandy) Kutin [17]. They introduced a notion of ℓ-block sensitivity, which considers only sensitive blocks

of size at most ℓ. Let bsℓ( f ) denote the ℓ-block sensitivity of a Boolean function f .

Theorem 3.4 (Kenyon and Kutin). For any Boolean function f , we have

s( f )≥ (bsℓ( f )(ℓ−1)!/e)1/ℓ .

In particular, this theorem implies that sensitivity is polynomially related to ℓ-block sensitivity for

any constant ℓ. It is easy to see that the size of any minimal sensitive block of f is at most s( f ). Hence

bs( f ) = bss( f )( f ) and the following corollary follows immediately from Stirling’s approximation.

Corollary 3.5 (Kenyon and Kutin). For any Boolean function f , we have

bs( f )≤
(

e√
2π

)
es( f )

√
s( f ) .
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This is the best known upper bound on block sensitivity in terms of sensitivity. On the other hand, no

gap greater than Rubinstein’s mentioned quadratic gap (Example 6.1.1) has been found.

Gaps between sensitivity and some other complexity measures are surveyed by Buhrman and de

Wolf [6].

Nisan [23] showed that the Sensitivity Conjecture is true for monotone Boolean functions.

Proposition 3.6 (Nisan). For a monotone Boolean function f , we have C( f ) = s( f ) = bs( f ).

Proof. It suffices to show that C( f )≤ s( f ), since s( f )≤ bs( f )≤C( f ). Fix x such that C( f ,x) =C( f )
and let S be a minimum certificate of f on x, i. e., |S|=C( f ,x). Without loss of generality assume that

f (x) = 1. Consider y ∈ {0,1}n, such that yi = 1 if i ∈ S and yi = 0 otherwise. For each i ∈ S, the ith bit is

sensitive for f on y, since otherwise S−{i} would be a certificate for f on x contradicting the minimality

of S. Hence s( f )≥C( f ).

A Boolean function f : {0,1}n → {0,1} is invariant under a permutation σ : [n]→ [n], if for any

string x, f (x1, . . . ,xn) = f (xσ(1), . . . ,xσ(n)). The set of all permutations under which f is invariant forms

a group, called the invariance group of f . A Boolean function is said to be transitive if its invariance

group Γ is transitive, i. e., for each i, j ∈ [n] there is a permutation σ ∈ Γ such that σ(i) = j.

For a graph G on v vertices, let 〈G〉 denote a string of length n =
(

v
2

)
over alphabet {0,1} encoding

the adjacency relation. A graph property is a Boolean function f : {0,1}n →{0,1}, such that for any two

isomorphic graphs G and G′ we have f (〈G〉) = f (〈G′〉). Clearly, a graph property is a transitive function.

György Turán [36] proved that any property of v-vertex graphs has sensitivity Ω(v) = Ω(
√

n). Turán

asked if this result generalizes to transitive functions, i. e., if every transitive function on n variables has

sensitivity at least Ω(
√

n). Sourav Chakraborty [7] answered this question in the negative by constructing

a transitive function with sensitivity Θ(n1/3) and block sensitivity Θ(n2/3) (see Example 6.4.1). We

propose the following modification of Turán’s question:

Question 3.7. If f : {0,1}n →{0,1} is transitive and f (0) 6= f (1), is then s( f ) = Ω(
√

n)?

Remark 3.8. Ronald Rivest and Jean Vuillemin [30] proved that if n is a prime power and f (0) 6= f (1)
then D( f ) = n. From their proof it can be immediately inferred that the stronger statement deg( f ) = n

also holds. This implies that if conjecture (2.1) is true, it would give an affirmative answer to Question 3.7

for n that are prime powers.

4 Communication complexity

In Section 5 we shall examine connections between sensitivity and other complexity measures. Much of

that material will either be directly related to the communication complexity (Sections 5.1 and 5.3) or use

communication complexity as a tool (Section 5.2). In this section we give the communication complexity

background we shall need.

The two-party communication model was introduced by Andrew Chi-Chih Yao [39] in 1979. In this

model, two parties, traditionally called Alice and Bob, are trying to collaboratively compute a known

Boolean function F : X ×Y →{0,1}. Each party is computationally unbounded; however, Alice is only

given input x ∈ X and Bob is only given y ∈ Y . In order to compute F(x,y), Alice and Bob communicate
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in accordance with an agreed-upon communication protocol P. Protocol P specifies as a function of

transmitted bits only whether the communication is over and, if not, who sends the next bit. Moreover, P

specifies as a function of the transmitted bits and x the value of the next bit to be sent by Alice. Similarly

for Bob. The communication is over as soon as one of the parties knows the value of F(x,y). The cost of

the protocol P is the number of bits exchanged on the worst input.

Definition 4.1. The deterministic communication complexity of F , denoted by DC(F), is the cost of an

optimal communication protocol computing F .

A Boolean function F : X ×Y →{0,1} can be described by the communication matrix of F defined

as the |X | × |Y | matrix M with entries Mx,y = F(x,y). We write rank(F) to denote the rank of the

communication matrix of F over R. A classical result due to Kurt Mehlhorn and Erik Schmidt [20] says

that for all F

logrank(F)≤ DC(F) . (4.1)

It is easy to see that for every Boolean function F we have DC(F)≤ rank(F). The gap between the two

bounds is exponential, and reducing this gap or showing that the gap can be achieved is a major open

problem. László Lovász and Michael Saks [19] propose the following question, a positive answer to

which is known as the Log-rank Conjecture.

Question 4.2 (Lovász and Saks). Is DC(F)≤ poly(logrank(F)) for every Boolean function F : X ×Y →
{0,1}?

The largest known gap between the two measures is due to Nisan, Avi Wigderson, and Eyal Kushile-

vitz [25]. They exhibited a function F , for which we have DC(F) = Ω(n) and logrank(F) = O(nlog6 3).
We explain the details in Example 6.3.2.

There are several ways in which the deterministic communication model can be extended to include

randomization. In the public-coin model, Alice and Bob have access to a shared random string r chosen

according to some probability distribution. The only difference in the definition of a protocol is that now

the protocol P specifies the next bit to be sent by Alice as a function of x, the already transmitted bits,

and a random string r. Similarly for Bob. In the private-coin model, Alice has access to a random string

rA hidden from Bob, and Bob has access to a random string rB hidden from Alice.

Definition 4.3. The bounded-error randomized communication complexity of F with public coins (private

coins), denoted by RC2(F) (RC
pri
2 (F)), is the minimum cost of a public-coin (private-coin) randomized

protocol that computes F correctly with probability at least 2/3 on every input. (The subscript 2 refers to

permitting 2-sided error.)

Clearly, for every Boolean F we have RC2(F)≤ RC
pri
2 (F). Ilan Newman [22] showed that the two

measures are identical up to constant multiplicative factors and logarithmic additive terms.

Theorem 4.4 (Newman). For every Boolean function F : {0,1}n ×{0,1}n →{0,1} we have

RC
pri
2 (F) = O(RC2 + logn) .
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Ramamohan Paturi and Janos Simon [27] introduced the notion of sign-rank to give a characterization

of unbounded-error probabilistic communication complexity, which considers the minimum cost private-

coin protocol with success probability strictly greater than 1/2. It is important that the notion of

unbounded-error probabilistic communication complexity is defined with respect to private-coin protocols,

because every Boolean function admits a 2-bit unbounded-error public-coin protocol.

Definition 4.5. The sign-rank of Boolean function F : X ×Y → {0,1} of two arguments, denoted by

rank±, is defined as

rank±(F) = min
L

{
rank(L)

∣∣∣ (∀x,y)
(
(−1)F(x,y)Lx,y > 0

)}

where the minimum ranges over all |X |× |Y | matrices L with real entries.

For a Boolean function F : {0,1}n ×{0,1}n →{0,1}, let MF denote the matrix

MF =
(
(−1)F(x,y)

)
x,y∈{0,1}n

.

The following remarkable lower bound on the sign-rank was proved by Jürgen Forster [11].

Theorem 4.6 (Forster). For Boolean function F : {0,1}n ×{0,1}n →{0,1}, we have

rank±(F)≥ 2n

‖MF‖
,

where ‖MF‖ denotes the spectral norm of MF .

A k× k matrix H is called an Hadamard matrix if its entries are ±1 and rows are orthogonal. It is

easy to see that ‖H‖=
√

k. Hence, the following corollary.

Corollary 4.7 (Forster). For every Boolean function F : {0,1}n×{0,1}n →{0,1}, if MF is an Hadamard

matrix then logrank±(F)≥ n/2.

In Conjecture 5.7 we propose to relate sign-rank to sensitivity. For more information on communica-

tion complexity see [18].

Following the pioneering work by Alexander Sherstov [32], in the next section we shall study a

Boolean function f by studying the communication problems F(x,y) = f (x◦ y) where ◦ is bitwise ∧, ∨
or ⊕. Notice that for every Boolean function f we have

DC( f (x∨ y))≤ 2D( f ) and DC( f (x∧ y))≤ 2D( f ) . (4.2)

The inequalities follow from the observation that Alice and Bob can solve communication problems

f (x∨ y) and f (x∧ y) by simulating any decision tree for f with just two bits of communication per

queried variable.
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5 Sensitivity vs. other complexity measures

Unlike the complexity measures mentioned in Section 2, some of the complexity measures in this section

are not polynomially related to block sensitivity and yet proving an inequality between these measures

and poly(s( f )) turns out to be equivalent to proving a polynomial relation between block sensitivity and

sensitivity, i. e., the Sensitivity Conjecture itself.

5.1 Log-rank vs. sensitivity

In this section we present some implications of the following recent result by Sherstov, which appears as

Theorem 6.4 in [32].

Theorem 5.1 (Sherstov). For every Boolean function f ,

max{logrank( f (x∧ y)), logrank( f (x∨ y))}= Ω(deg( f )) .

Conjecture 5.2. For every Boolean function f ,

logrank[ f (x∧ y)]≤ poly(s( f )) .

Proposition 5.3. Conjecture 5.2 is equivalent to the Sensitivity Conjecture.

Remark 5.4. We note that this equivalence should be somewhat surprising, because logrank( f (x∧ y))
and s( f ) are not polynomially related. Indeed, for the AND function f : {0,1}n → {0,1} defined by

f (x) =
∧n

i=1 xi, there is a simple protocol to compute f (x∧ y) with just 1 bit of communication. Thus, by

Equation (4.1) we have logrank( f (x∧ y))≤ DC( f (x∧ y))≤ 1, and yet f has sensitivity n.

Proof of Proposition 5.3.

(a) Assume the Sensitivity Conjecture. Beals et al. [3] showed that D( f )≤C( f )bs( f ) and Nisan [23]

proved that C( f )≤ bs( f )2. Therefore, we get D( f )≤ bs( f )3 as a simple corollary. Since DC( f (x∧
y))≤ 2D( f ) (4.2) and for all F we have logrank(F(x,y))≤ DC(F) (4.1), Conjecture 5.2 follows.

(b) Assume Conjecture 5.2. For a Boolean function f , define g(x) = f (x). Clearly, s(g) = s( f ) and

| logrank(g(x∧ y))− logrank( f (x∨ y))| ≤ 1 .

Applying the hypothesis of Conjecture 5.2 to both g and f , we get that

max{logrank( f (x∨ y)), logrank( f (x∧ y))} ≤ poly(s( f )) .

It follows that deg( f )≤ poly(s( f )) by Theorem 5.1. This implies the Sensitivity Conjecture, since

bs( f )≤ 2deg( f )2 [24].

Conjecture 5.5. For every Boolean function f ,

logrank[ f (x⊕ y)]≤ poly(s( f )) .
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Arbitrarily large separations between logrank( f (x⊕ y)) and s( f ) are known. For instance, let f :

{0,1}n →{0,1} be the parity of n bits. Analogous to the argument in Remark 5.4, we have logrank( f (x⊕
y))≤ 1. For the parity function we also have s( f ) = n. Nonetheless, we have the following equivalence.

Corollary 5.6. Conjecture 5.5 is equivalent to the Sensitivity Conjecture.

Proof.

(a) Showing that the Sensitivity Conjecture implies Conjecture 5.5 is similar to part (a) in Proposi-

tion 5.3.

(b) Assume Conjecture 5.5. For a Boolean function f : {0,1}n →{0,1}, define F : {0,1}2n →{0,1}
by F(x,y) = f (x∧ y), where x,y ∈ {0,1}n. Applying the hypothesis of Conjecture 5.5 to F we obtain

logrank(F((x,y)⊕ (x′,y′)))≤ poly(s(F)) .

We can rewrite F((x,y)⊕ (x′,y′)) as F(x⊕ x′,y⊕ y′) = f ((x⊕ x′)∧ (y⊕ y′)). Hence the communication

matrix of F((x,y)⊕ (x′,y′)) contains the communication matrix of f (x∧ y) as a submatrix. In particular,

rank( f (x∧ y))≤ rank(F((x,y)⊕ (x′,y′))) .

The above two inequalities together with the easy observation that s( f ) ≤ s(F) ≤ 2s( f ) imply that

logrank( f (x∧ y))≤ poly(s( f )). The result now follows from Proposition 5.3.

Since rank±(F) ≤ rank(F) for every F , we propose a possibly weaker version of Conjecture 5.5

stated for the sign-rank (see Definition 4.5).

Conjecture 5.7. For every Boolean function f ,

logrank±( f (x⊕ y))≤ poly(s( f )) .

We note that the same function f , namely, the parity, that supplied an arbitrary large separation

between logrank( f (x⊕ y)) and s( f ) also provides an arbitrary separation between logrank±( f (x⊕ y))
and s( f ). We ask the following question inspired by Proposition 5.3 and Corollary 5.6.

Question 5.8. Does Conjecture 5.7 imply Conjecture 5.5? I. e., is Conjecture 5.7 equivalent to the

Sensitivity Conjecture?

5.2 Parity decision trees

Parity decision trees are similar to decision trees; the difference is that instead of querying only one

variable at a time, one may query the sum modulo 2 of an arbitrary subset of variables. (See [40] for a

brief introduction to parity decision trees.) The parity decision-tree complexity of a Boolean function f is

denoted by D⊕( f ). Obviously, D⊕( f )≤ D( f ). Similarly to Equation (4.2) we have

DC( f (x⊕ y))≤ 2D⊕( f ) . (5.1)

In this section, we explore the relationship between D⊕ and sensitivity.
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Conjecture 5.9. For every Boolean function f ,

D⊕( f )≤ poly(s( f )) .

Note that parity decision trees are strictly more powerful than decision trees. For instance, deciding

the parity of n bits requires a decision tree of depth n whereas a parity decision tree of depth 1 suffices.

For the parity function we also have s( f ) = n. The seemingly weaker Conjecture 5.9 actually turns out to

be equivalent to the Sensitivity Conjecture.

Proposition 5.10. Conjecture 5.9 is equivalent to the Sensitivity Conjecture.

Proof.

(a) The Sensitivity Conjecture implies Conjecture 5.9 since D⊕( f )≤ D( f ) (5.1) and D( f )≤ bs( f )3.

(b) Assume Conjecture 5.9. The Sensitivity Conjecture follows from Corollary 5.6 and the fact that

logrank( f (x⊕ y))≤ DC( f (x⊕ y))≤ 2D⊕( f ).

In Example 6.2.1 we exhibit a quadratic gap between D⊕ and sensitivity.

5.3 Fourier-analytic setting

In the previous sections, we considered Boolean functions from {0,1}n to {0,1}. For the purpose of

studying the Fourier spectrum of Boolean functions, it is convenient to use the range {+1,−1}, replacing

0 with +1 and 1 with −1. This replacement preserves polynomial relations between the complexity

measures studied in this section. So, in Sections 5.3 and 5.4 only, the term “Boolean function” will refer

to functions {0,1}n →{+1,−1}. For a brief introduction to Fourier Analysis on the Boolean cube, we

refer to the survey by de Wolf [38].

The functions {0,1}n → R form an inner product space V with the inner product defined by

〈 f ,g〉= E
x∈{0,1}n

[ f (x)g(x)] (5.2)

where the expectation is over the uniform distribution.

Definition 5.11. For S ⊆ [n], the character χS : {0,1}n →{−1,1} is defined as

χS(x) = (−1)∑i∈S xi .

The set of characters forms an orthonormal basis for V. Hence, every function f : {0,1}n →R can be

written uniquely as

f = ∑
S

〈 f ,χS〉χS . (5.3)

Equation (5.3) is referred to as the Fourier expansion of f . The Fourier coefficient of f corresponding to

S is defined as

f̂ (S) = 〈 f ,χS〉 .
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Equation (5.3) immediately implies Parseval’s Identity,

〈 f , f 〉= ∑
S

f̂ (S)2 . (5.4)

Note that for Boolean functions f we have 〈 f , f 〉= 1 by (5.2).

Recall that every Boolean function f admits a unique multilinear polynomial representation (see

Definition 2.4). For S ⊆ [n] define

λS(x) = ∏
i∈S

xi .

Then f can be written uniquely as

f = ∑
S

cSλS , (5.5)

for some cS ∈ R. Since f (eS) = ∑B⊆S cB, it is easy to see by induction on |S| that, in fact, we have

cS ∈ Z. The following proposition establishes connections between the coefficients of the multilinear

representation and the Fourier coefficients.

Proposition 5.12. Let f be a Boolean function and f = ∑S cSλS be its multilinear expansion where

cS ∈ Z. We have

1. cS = (−2)|S| ∑B:S⊆B⊆[n] f̂ (B) and

2. f̂ (S) = ∑B⊆[n],B′⊆S cB(−1)|B
′|2−|B\B′|.

Proof.

1. We can express

χB(x) = (−1)∑i∈B xi = ∏
i∈B

(1−2xi) = ∑
S⊆B

(−2)|S|λS(x) .

Thus

f = ∑
B⊆[n]

f̂ (B)χB = ∑
B⊆[n]

f̂ (B) ∑
S⊆B

(−2)|S|λS = ∑
S⊆[n]

(−2)|S| ∑
B:S⊆B⊆[n]

f̂ (B)λS .

The claim follows.

2. Observe that 〈λS,λT 〉= 2−|S∪T |. We have

f̂ (S) = 〈 f ,χS〉=
〈

∑
B⊆[n]

cBλB, ∑
B′⊆S

(−2)|B
′|λB′

〉

= ∑
B⊆[n],B′⊆S

cB〈λB,λ
′
B〉= ∑

B⊆[n],B′⊆S

cB(−1)|B
′|2|B

′|−|B∪B′| .

The claim follows.

Corollary 5.13. Every Fourier coefficient of a Boolean function f is an integer multiple of 2−deg( f ).
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Proof. The claim follows from part 2 of Proposition 5.12 and the fact that |B| ≤ deg( f ).

Conjecture 5.14. For every Boolean function f ,

|{S | f̂ (S) 6= 0}| ≤ 2poly(s( f )) .

The proof that the above conjecture is equivalent to the Sensitivity Conjecture relies on the following

characterization of the number of nonzero Fourier coefficients.

Lemma 5.15. For every Boolean function f ,

|{S | f̂ (S) 6= 0}|= rank( f (x⊕ y)) .

Proof. Consider the matrix M with entries Mx,y = f (x⊕ y). It is easy to check that for each S ⊆ [n], the

vector (χS(y))y∈{0,1}n is an eigenvector of M with a corresponding eigenvalue 2n f̂ (S). Since the χS form

a basis of V, the values 2n f̂ (S) are all the eigenvalues of M. Noting that the rank of a symmetric matrix is

the number of its nonzero eigenvalues, we obtain |{S | f̂ (S) 6= 0}|= rank(M).

The equivalence of Conjecture 5.14 and the Sensitivity Conjecture is immediate from this lemma and

Corollary 5.6.

Conjecture 5.16. For every Boolean function f ,

min
S: f̂ (S)6=0

| f̂ (S)| ≥ 2−poly(s( f )) .

We show that Conjecture 5.16 is also equivalent to the Sensitivity Conjecture.

Proposition 5.17. Conjecture 5.16 is equivalent to the Sensitivity Conjecture.

Proof.

(a) Assume the Sensitivity Conjecture. For every Boolean function f we have

min
S: f̂ (S)6=0

| f̂ (S)| ≥ 2−deg( f ) ≥ 2−poly(s( f )) ,

where the first inequality follows from Corollary 5.13 and the second inequality follows from the

Sensitivity Conjecture. This shows Conjecture 5.16 holds.

(b) Assume Conjecture 5.16. Let α = min
S: f̂ (S)6=0

| f̂ (S)|. By Parseval’s Identity (5.4), the number

of non-zero Fourier coefficients is at most α−2. By Lemma 5.15, α−2 is also an upper bound on

rank( f (x⊕y)). Hence, α ≥ 2−poly(s( f )) implies rank( f (x⊕y)≤ 2poly(s( f )). By Corollary 5.6, this implies

the Sensitivity Conjecture.

The following consequence of the Sensitivity Conjecture appears to be open.

Conjecture 5.18. For every Boolean function f ,

∑
S

| f̂ (S)| ≤ 2poly(s( f )) .
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Proposition 5.19. Conjecture 5.14 implies Conjecture 5.18. In particular, the Sensitivity Conjecture

implies Conjecture 5.18.

Proof. Observe that f̂ (S) ∈ [−1,1] for all S, so ∑S | f̂ (S)| ≤ |{S | f̂ (S) 6= 0}|.

We shall see that Conjecture 5.18 is equivalent to the Sensitivity Conjecture, assuming the following

conjecture due to Vince Grolmusz [14] holds.

Conjecture 5.20 (Grolmusz). Let F : {0,1}m ×{0,1}n →{−1,1}. Then

RC2(F)≤ poly
(
log ∑

S⊆[m+n]

|F̂(S)|
)
.

To prove the equivalence claimed above, we need the following result by Sherstov [32, Theorem 5.1].

Theorem 5.21 (Sherstov). Let F1(x,y) := f (x∧ y) and F2(x,y) := f (x∨ y), then

max{RC2(F1),RC2(F2)}= Ω(bs( f )1/4) .

Proposition 5.22. If Grolmusz’s conjecture holds then Conjecture 5.18 is equivalent to the Sensitivity

Conjecture.

Proof. By Proposition 5.19, it suffices to show that Conjecture 5.18 implies the Sensitivity Conjecture.

Consider two Boolean functions F1 and F2 on 2n variables defined as in Theorem 5.21. It is easy to check

that s( f )≤ s(F1) and s(F2)≤ 2s( f ). Assuming Conjecture 5.18 we get that

log∑ |F̂1(S)| ≤ poly(s( f )) and log∑ |F̂2(S)| ≤ poly(s( f )) .

Now bs( f )≤ poly(s( f )) follows from Theorem 5.21 assuming Conjecture 5.20.

5.4 Fourier entropy

In this section, we outline some connections between measures introduced in Section 5.3 and Information

Theory.

Let P be a probability distribution on a sample space Ω. Let supp(P) denote the support of P.

Definition 5.23. The entropy of P is defined as

H(P) = ∑
ω∈Ω

P(ω) log
1

P(ω)
,

the max-entropy of P is

Hmax(P) = max
ω∈supp(P)

log
1

P(ω)
,

and the min-entropy of P is

Hmin(P) = min
ω∈Ω

log
1

P(ω)
.
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For every distribution P the following inequalities hold

Hmin(P)≤ H(P)≤ Hmax(P) .

By Parseval’s Identity (5.4), we can view { f̂ (S)2 | S ⊆ [n]} as a probability distribution on Ω = 2[n],

the power set of [n]. We denote this probability distribution by f̂ 2.

The following Conjecture is equivalent to the Sensitivity Conjecture. In fact, it is a restatement of

Conjecture 5.16 in the terms of Definition 5.23 and the probability distribution f̂ 2.

Conjecture 5.24. For every Boolean f we have

Hmax ( f̂ 2)≤ poly(s( f )) .

Arbitrarily large separations between Hmax( f̂ 2) and s( f ) are known. For example, consider the

parity function f : {0,1}n →{−1,1}, which can be expressed as f (x) = (−1)∑
n
i=1 xi . The whole Fourier

spectrum is concentrated on a single coefficient, namely, f̂ ([n]). Hence Hmax( f̂ 2) = 0, yet s( f ) = n.

Definition 5.25. The average sensitivity (also called influence or total influence) of a Boolean function

f : {0,1}n →{−1,1} is defined as

as( f ) = Ex∈{0,1}n(s( f ,x)) ,

where the expectation is over the uniform distribution.

Compare Conjecture 5.24 with the Fourier Entropy-Influence Conjecture due to Ehud Friedgut

and Gil Kalai [12].

Conjecture 5.26 (Friedgut and Kalai). There exists a constant C such that for every Boolean function f

we have

H( f̂ 2)≤C ·as( f ) .

While Conjecture 5.26 seems only analogous to Conjecture 5.24, the authors are unaware of any

formal connections between the two conjectures. Recently, Ryan O’Donnell, John Wright, and Yuan

Zhou [26] verified the Fourier Entropy-Influence Conjecture for certain classes of Boolean functions,

including symmetric functions.

5.5 Shi’s characterization of sensitivity

In this section we present some applications of Yaoyun Shi’s work [33], which contains an interesting

characterization of the sensitivity of Boolean functions.

Let f be a Boolean function {0,1}n →{0,1}. With some abuse of notation, we use f to denote the

unique multilinear extension f : Rn → R of this function (cf. Definition 2.4).

Definition 5.27. For a,b ∈ [0,1]n, the linear restriction of f on the line segment ℓ= [a,b], denoted by

fℓ : [0,1]→ R, is defined as

fℓ(t) := f ((1− t)a+ tb) (t ∈ [0,1]) .
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Denote the supremum norm of a function g : [0,1] → R by ‖g‖∞ = supt∈[0,1] |g(t)|. Let g′ denote the

derivative of g. Shi [33] gave the following characterization of sensitivity.

Theorem 5.28 (Shi). For every Boolean function f , s( f ) = supℓ ‖ f ′ℓ‖∞.

Proof. It is easy to check that it suffices to consider the lines that join two points of the Boolean cube.

For x ∈ [0,1]n, let x(i,1) (x(i,0)) denote a vector whose ith coordinate is 1 (0) and the other coordinates

match with those of x. Let a,b ∈ {0,1}n and ℓ= (a,b) be the line joining a and b.

f ′ℓ(t) =
n

∑
i=1

(bi −ai) ·
∂ f

∂xi

((1− t)a+ tb) .

Since f is multilinear, we have:
∂ f

∂xi

(x) = f (x(i,1))− f (x(i,0)) .

Thus we have:

| f ′ℓ(t)| ≤ E
p∈Dt

[
n

∑
i=1

∣∣∣ f (p(i,1))− f (p(i,0))
∣∣∣
]
, (5.6)

where Dt denotes the following probability distribution on the Boolean cube: for each k, Pr(pk = 1) =
(1− t)ak + tbk. Notice that the right hand side of (5.6) is at most s( f ).

For the other direction let a ∈ {0,1}n and b be obtained from a by flipping each bit. It is easy to check

that:

f ′ℓ(0) = ∑ | f (a⊕ ei)− f (a)|= s( f ,a) .

Choosing a vector a with maximum sensitivity completes the proof.

Combining Theorem 5.28 with Conjecture 5.16 puts the Sensitivity Conjecture into an analytic

setting.

Definition 5.29. The approximate degree of linear restrictions of a Boolean function f is defined as

follows:

deg( f ) = max
ℓ

min{deg(g) |g ∈ R[t],‖ fℓ−g‖∞ ≤ 1/3} .

The connection between deg( f ) and s( f ) was established by Shi [33].

Theorem 5.30 (Shi). The complexity measures deg( f ) and s( f ) are polynomially related.

Observe that, unlike all previous equivalence results, Theorem 5.30 gives a complexity measure

polynomially related to s( f ) rather than bs( f ). Theorem 5.30 implies that the following conjecture due to

Shi [33] is equivalent to the Sensitivity Conjecture.

Conjecture 5.31 (Shi). For every Boolean function f ,

d̃eg( f )≤ poly
(
deg( f )

)
.
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5.6 Subgraphs of the n-cube

Recall that Qn denotes the n-cube graph (see Section 3). Denote the maximum degree of graph G by

∆(G). For an induced subgraph G of a graph H let H −G denote the subgraph of H induced on the vertex

set V (H)\V (G). Let Γ(G) = max{∆(G),∆(H −G)}. Craig Gotsman and Nati Linial [13] proved the

following remarkable equivalence.

Theorem 5.32 (Gotsman and Linial). The following are equivalent for any monotone function h : N→R:

(a) For any induced subgraph G of Qn with |V (G)| 6= 2n−1 we have Γ(G)≥ h(n).

(b) For any Boolean function f we have s( f )≥ h(deg( f )).

Proof. Statement (b) is equivalent to the following:

(b’) For any Boolean function f with deg( f ) = n we have s( f )≥ h(n).

Clearly, (b) implies (b’). To prove the reverse implication, let f be a Boolean function of degree d. Fix a

monomial of degree d of the representing polynomial of f . Without loss of generality we may assume

the monomial is x1 · · ·xd . Define g(x1, . . . ,xd) := f (x1, . . . ,xd ,0, . . . ,0). Then, s( f ) ≥ s(g) ≥ h(d), as

desired.

(a) ⇒ (b’) We prove the contrapositive. Given a Boolean function f with s( f )< h(n), consider an

induced subgraph G of Qn with

V (G) = {x ∈ {0,1}n | f (x)p(x) = +1} ,

where p(x) = (−1)∑xi is the parity function (as in Section 5.3, we take the range of Boolean functions

to be {+1,−1}). Observe that f̂ (I) = f̂ p([n]− I) for any subset I ⊆ [n]. Hence, f̂ p( /0) = f̂ ([n]) 6= 0,

since deg( f ) = n. Straight from the definition of Fourier coefficients, Ex[ f (x)p(x)] = f̂ p( /0) 6= 0, so

|V (G)| 6= 2n−1. Furthermore, s( f p,x) = n− s( f ,x) and degG(x) = n− s( f p,x) = s( f ,x). By a similar

argument, degQn−G(x) = s( f ,x) for all x in V (Qn)\V (G). Thus, Γ(G)≤ s( f )< h(n).
(a) ⇐ (b’) Observe that the steps in the proof of (a) ⇒ (b’) are reversible.

The proof of Theorem 5.32 translates a Boolean function with a polynomial gap between degree and

sensitivity into a graph with the same polynomial gap between Γ and n, and vice versa. For example,

observe that Rubinstein’s function (see Example 6.1.1) has sensitivity
√

n and full degree, which can be

easily verified by a direct computation of f̂ ([n]). Therefore, Rubinstein’s function can be used to obtain a

graph G with the surprising property Γ(G) = Θ(
√

n). Fan Chung, Zoltán Füredi, Ronald Graham, and

Paul Seymour [9] independently constructed a graph G with Γ(G)<
√

n+1. Their example can be also

obtained from Theorem 5.32 by applying the reduction in the proof of (a) ⇒ (b’) to the AND-of-ORs

function (see Example 6.2.1), but note that the Gotsman-Linial theorem was not available at the time

when Chung et al. gave their construction.

Theorem 5.32 immediately implies that the following conjecture is equivalent to the Sensitivity

Conjecture.

Conjecture 5.33. There is a constant c > 0 such that for every induced subgraph G of Qn with

|V (G)| 6= 2n−1 we have Γ(G)≥ nc.
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5.7 Two-colorings of integer lattices

We call lattice points a,b ∈ Z
d “neighbors” if ‖a−b‖1 = 1. We say that a two-coloring C of Zd with

colors red and blue is non-trivial if the origin is colored red, and there is a point colored blue on each of

the coordinate axes. The sensitivity of a point a ∈ Z
d under coloring C, denoted by S(a,C), is the number

of neighbors of a that are colored differently from a.

Definition 5.34. The sensitivity of a coloring is defined by S(C) = maxa S(a,C).

Scott Aaronson [2] stated the following question, a positive answer to which would imply the

Sensitivity Conjecture.

Question 5.35 (Aaronson). Does every non-trivial coloring of Zd have sensitivity at least dΩ(1)?

Proposition 5.36 (Aaronson). A positive answer to Question 5.35 implies the Sensitivity Conjecture.

We present Andrew Drucker’s version of Aaronson’s proof.

Proof. Given a Boolean function f on n variables, let x be an input on which f achieves the highest

block sensitivity b = bs( f ). Let S1, . . . ,Sb be pairwise disjoint sensitive blocks of f on x, and let

R = [n]− (
⋃

i Si). Take a closed walk w on the Boolean cube Q|Si| passing through x|Si
and x|Si

. Let

γi : Z→ {0,1}|Si| denote a periodic function with period |w| such that γi|{0,...,|w|−1} is the walk w and

γi(0) = x|Si
. Consider the following mapping φ : Zb →{0,1}n: a point a ∈ Z

b is mapped to the Boolean

string y ∈ {0,1}n with y|Si
= γi(ai) and y|R = x|R. Finally, obtain coloring C of Zb by composing f

with φ . By construction, we have bs( f ) = b. Since C is non-trivial, we can apply the hypothesis of

Question 5.35 to obtain b ≤ poly(s(C)). It is easy to see that s(C) ≤ 2s( f ). Putting it all together, we

have bs( f ) = b ≤ poly(s(C))≤ poly(s( f )).

6 Some Boolean functions

In this section we present some interesting examples of Boolean functions. They provide lower or upper

bounds for various complexity measures, and some of them appear in more than one context.

6.1 Rubinstein’s function

The following function was constructed by David Rubinstein [31]. It was discussed in Section 2, Section 3

and Section 5.6 of this paper.

Example 6.1.1 (Rubinstein’s function). Assume we have n = k2 variables (k even), which are divided

into k blocks with k variables each. The value of the function is 1 if there is at least one block with exactly

two consecutive 1s in it, and it is 0 otherwise.

The block sensitivity of Rubinstein’s function is n/2 (hence, the certificate complexity and the

decision-tree complexity both are at least n/2) and the sensitivity is
√

n.

Proposition 6.1.2. Rubinstein’s function has full degree.
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Proof. It suffices to show that f̂ ([n]) 6= 0. We will actually compute f̂ ([n]) and find that

f̂ ([n]) = (−1)k(k−1)k/2k2

.

By definition, we have

f̂ ([n]) = Ex∈{0,1}n

(
(−1)∑

n
i=1 xi+ f (x)

)
=

1

2k2 ∑
x

(−1)∑
n
i=1 xi+ f (x) .

We shall prove the following statement by induction on k− j.

∑
x : x1=···=xk j=0

(−1)∑
n
i=k j+1 xi+ f (x) = (−1)k− j(k−1)k− j .

The equation holds for j = k. For the inductive step, define

A= {x | x1 = · · ·= xk j = 0 and there exists exactly one pair of consecutive 1s among xk j+1, . . . ,xk( j+1)}

and

B= {x | x1 = · · ·= xk j = 0}\A .

Then we have

∑
x : x1=···=xk j=0

(−1)∑
n
i=k j+1 xi+ f (x) = ∑

x∈A
(−1)∑

n
i=k j+1 xi+ f (x)+ ∑

x∈B
(−1)∑

n
i=k j+1 xi+ f (x) .

Observe that f (x) = 1 for every x ∈A, so by symmetry the first term in the equation is 0. For x ∈B the

value of f (x) does not depend on xk j+1, . . . ,xk( j+1). Thus we obtain

∑
x∈B

(−1)∑
n
i=k j+1 xi+ f (x) =

(
k

∑
j=0

(−1) j

(
k

j

)
− (k−1)

)
∑

x : x1=···=xk( j+1)=0

(−1)∑
n
i=k( j+1)+1

xi+ f (x)

= −(k−1) ∑
x : x1=···=xk( j+1)=0

(−1)∑
n
i=k( j+1)+1

xi+ f (x)

= (−1)k− j(k−1)k− j,

where the last step follows by induction.

For the case j = 0 we obtain ∑x(−1)∑
n
i=1 xi+ f (x) = (−1)k(k−1)k, completing proof of the claim.

6.2 AND-of-ORs

The following folklore example was discussed in Section 2 and Section 5.6 of this paper.

Example 6.2.1 (AND-of-ORs function). AND-of-ORs function is defined on k blocks of k variables

each:

f (x11, . . . ,xkk) =
k∧

i=1

k∨

j=1

xi j .
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The block sensitivity and sensitivity of AND-of-ORs function on n = k2 variables is k. AND-of-

ORs has full degree and hence its decision-tree complexity is also n. The certificate complexity of

AND-of-ORs function is k. To see that D⊕( f ) = n, consider the mod 2 degree of f defined as follows.

Definition 6.2.2. The mod 2 degree of a Boolean function f , denoted by deg⊕( f ), is the degree of the

unique multilinear polynomial over F2 (the field of two elements) that represents f .

Observe that the OR function (and consequently the AND function) has full mod 2 degree. It follows

that AND-of-ORs has full mod 2 degree, which shows that D⊕( f ) = n, since for any Boolean function f ,

deg⊕( f )≤ D⊕( f ).

6.3 Kushilevitz’s function

We begin with a definition of a composition function.

Definition 6.3.1. For a Boolean function f : {0,1}m →{0,1} and a Boolean function g : {0,1}n →{0,1},

we define the composition function f ⋄g on mn variables as follows:

( f ⋄g)(x11, . . . ,xmn) = f
(
g(x11, . . . ,x1n), . . . ,g(xm1, . . . ,xmn)

)
.

Eyal Kushilevitz constructed a function f that provides the largest known gap in the exponent of a

polynomial in deg( f ) that gives an upper bound on bs( f ). Never published by Kushilevitz, the function

appears in footnote 1 of the Nisan-Wigderson paper [25]. It was discussed in Section 2 and Section 4 of

this paper.

Example 6.3.2 (Kushilevitz’s function). Define an auxiliary function h on 6 variables:

h(z1, . . . ,z6) = ∑i zi −∑i j ziz j + z1z3z4 + z1z2z5 + z1z4z5 + z2z3z4+
z2z3z5 + z1z2z6 + z1z3z6 + z2z4z6 + z3z5z6 + z4z5z6 .

Kushilevitz’s function is defined as fk = h⋄h⋄ · · · ⋄h (k times).

Observe that h is a function of 6 variables, has degree 3 and full sensitivity on the 0 input. Kushilevitz’s

function fk is obtained by composing h with itself k times. It is defined on n = 6k variables and has

full sensitivity, block sensitivity, decision-tree complexity, and certificate complexity, yet its degree is

3k = nlog6 3 ≈ n0.613.

Kushilevitz’s function gives rise to the communication problem fk(x∧ y) with the largest known

separation between the logrank and the deterministic communication complexity. In fact, this gap exists

between the logrank and the bounded-error randomized communication complexity. This connection was

made by Nisan and Wigderson [25].

Theorem 6.3.3 (Nisan and Wigderson). For Kushilevitz’s function fk on n = 6k variables we have

DC( fk(x∧ y)) = Ω(n), RC2( fk(x∧ y)) = Ω(n), logrank( fk(x∧ y)) = O(nlog6 3 logn).
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In the proof of this result, we shall refer to the “disjointness function,” denoted by UDISJ : {0,1}n ×
{0,1}n →{0,1}. It is a partial function defined by

UDISJ(x,y) =

{
0 if there is unique i such that xi = yi = 1,

1 if for all i we have xi = 0 or yi = 0.

A communication protocol P is said to compute a partial function F if the outputs of P and F agree on

the inputs where F is defined.

The lower bound in Theorem 6.3.3 will follow from the Ω(n) lower bound on the bounded-error

randomized communication complexity of UDISJ due to Bala Kalyanasundaram and Georg Schnitger [16]

(see also [28] and [18, Chapter 4.6]).

Theorem 6.3.4 (Kalyanasundaram and Schnitger).

RC2(UDISJ) = Ω(n) .

In particular, DC(UDISJ) = Ω(n).

Corollary 6.3.5 (Nisan-Wigderson). For every f : {0,1}n →{0,1} such that f (0) = 0 and s( f ,0) = n

we have DC( f (x∧ y)) = Ω(n) and RC2( f (x∧ y)) = Ω(n).

Proof. Observe that if f has properties f (0) = 0 and s( f ,0) = n, then any protocol for ¬ f (x∧ y) directly

solves the UDISJ problem.

The following general result will provide the upper bound on the rank in Theorem 6.3.3.

Proposition 6.3.6 (Nisan and Wigderson). Let f be the polynomial representation of a Boolean function

{0,1}n →{0,1}. Let m denote the number of monomials in f . Then rank( f (x∧ y)) = m. In particular,

rank( f (x∧ y))≤
deg( f )

∑
i=0

(
n

i

)
= 2O(deg( f ) logn) .

Proof. Let f = ∑S cSλS be a multilinear expansion of f (5.5). Define C = {S | cS 6= 0}. Note that m = |C|.
For each S ⊆ [n] define the column vector vS = (λ (x))x. Clearly {vS} is a linearly independent set of

vectors. Let M be the communication matrix of f (x∧ y). We have M(x,y) = f (x∧ y) = ∑S cSλS(y)λS(x).
Thus each column of M belongs to the span of {vS | S ∈C}. Consequently, rank( f (x∧ y))≤ m. Since

M(x,eB) = ∑S⊆B cSλS(x), it is easy to see by induction on |S| that the column space of M contains vS for

each S ∈C. This in turn implies that rank( f (x∧ y))≥ m.

Corollary 6.3.5 shows that for Kushilveitz’s function fk on n = 6k variables we have DC( fk(x∧ y)) =
Ω(n) and RC2( fk(x∧y)) = Ω(n), while Proposition 6.3.6 shows that logrank( fk(x∧y)) = O(nlog6 3 logn).
This completes the proof of Theorem 6.3.3.
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6.4 Chakraborty’s function

The following function was constructed by Sourav Chakraborty [7]. It was discussed in Section 3 of this

paper.

Example 6.4.1 (Chakraborty’s function). Define an auxiliary function h on k2 variables by a regular

expression:

h(z11, . . . ,zkk) = 1 ⇐⇒ z ∈ 110k−2(11111(0+1)k−5)k−211111(0+1)k−8111 .

Chakraborty’s function f on n ≥ k2 variables is defined as follows:

f (x0, . . . ,xn−1) = 1 ⇐⇒
(
∃i ∈ [n]

)(
g(xi,x(i+1), . . . ,x(i+k2)) = 1

)
,

where indices in the arguments of function g are taken modulo n.

Chakraborty shows that for n = k3 his function has sensitivity Θ(n1/3) [7], block sensitivity Θ(n2/3)
and certificate complexity Θ(n2/3) [8].
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