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Abstract

Let π be a permutation of the set [n] = {1, 2, . . . , n}. Two disjoint order-
isomorphic subsequences of π are called twins. How long twins are contained in
every permutation? The well known Erdős-Szekeres theorem implies that there is
always a pair of twins of length Ω(

√
n). On the other hand, by a simple probabilis-

tic argument Gawron proved that for every n > 1 there exist permutations with all
twins having length O(n2/3). He conjectured that the latter bound is the correct size
of the longest twins guaranteed in every permutation. We support this conjecture
by showing that almost all permutations contain twins of length Ω(n2/3/ log n1/3).
Recently, Bukh and Rudenko have tweaked our proof and removed the log-factor.
For completeness, we also present our version of their proof (see Remark 2 below
on the interrelation between the two proofs).

In addition, we study several variants of the problem with diverse restrictions
imposed on the twins. For instance, if we restrict attention to twins avoiding a fixed
permutation τ , then the corresponding extremal function equals Θ(

√
n), provided

that τ is not monotone. In case of block twins (each twin occupies a segment) we
prove that it is (1 + o(1)) logn

log logn , while for random permutations it is twice as large.
For twins that jointly occupy a segment (tight twins), we prove that for every n
there are permutations avoiding them on all segments of length greater than 24.
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∗Supported in part by Simons Foundation Grant #522400.
†Supported in part by Narodowe Centrum Nauki, grant 2015/17/B/ST1/02660.
‡Supported in part by Narodowe Centrum Nauki, grant 2018/29/B/ST1/00426.

the electronic journal of combinatorics 28(3) (2021), #P3.19 https://doi.org/10.37236/9734

https://doi.org/10.37236/9734


1 Introduction

Looking for twin objects in mathematical structures has long and rich tradition, going
back to some geometric dissection problems that culminated in the famous Banach-Tarski
Paradox (see [25]). A general problem is to split a given structure (or a pair of structures)
into few pairwise isomorphic substructures. A related question is: How large disjoint
isomorphic substructures can be found in a given structure?

In this paper we study this question for permutations. To put our work in a broader
context, we mention two similar problems: for graphs and for sequences. More can be
found in a survey by Axenovich [4].

1.1 Twins in graphs

Ulam, inspired (almost surely) by the famous Banach-Tarski Paradox (see [25]), asked
(see [16]) the following question. Given a pair of graphs G and H with the same order
and size, what is the least integer k = U(G,H) such that the edges of G and H can
be partitioned into edge-disjoint subgraphs G1, . . . , Gk of G and H1, . . . , Hk of H such
that Gi is isomorphic to Hi for every i = 1, 2, . . . , k? Let U(n) denote the maximum of
U(G,H) over all pairs of graphs on n vertices with the same number of edges. It was
proved by Chung, Graham, Erdős, Ulam, and Yao in [8], that

U(n) =
2

3
n+ o(n).

More general results and some open problems can be found in [9].
A related problem is to find two large isomorphic subgraphs in two given graphs, or

in one given graph. Let f(m) denote the largest integer k such that every graph with
m edges contains a pair of twins, that is, two edge-disjoint isomorphic subgraphs with
k edges each. The problem was stated independently by Jacobson and Schönheim (see
[12]). Currently, the best general result, due to Lee, Loh, and Sudakov [17], states that

f(m) = Θ(m logm)2/3.

In [1], Alon, Caro, and Krasikov proved that every tree with m edges contains a pair of
twins of total size at least

m−O
(

m

log logm

)
.

1.2 Twins in sequences

By twins in a sequence over an alphabet we mean a pair of identical subsequences with
disjoint sets of indices. Let gr(n) denote the maximum length of twins in every sequence
of length n over an alphabet with r symbols. Axenovich, Person, and Puzynina proved
in [5] that

gr(n) >
1

r
n− o(n).
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This result is particularly surprising for r = 2, as it says that every binary sequence
consists of two identical subsequences plus an asymptotically negligible part. The proof
is based on a new regularity lemma for sequences. Currently, the best lower bound for
gr(n), obtained by Bukh and Zhou [7], asserts that

gr(n) > cr−2/3n− o(n),

for some constant c > 0. It was also proved in [7] that g4(n) 6 0.4932n. The case of
ternary sequences remains open.

1.3 Twins in permutations

By a permutation we mean any finite sequence of distinct positive integers. We say that
two permutations (x1, . . . , xk) and (y1, . . . , yk) are similar if their entries preserve the same
relative order, that is, xi < xj if and only if yi < yj for all pairs {i, j} with 1 6 i < j 6 k.
Note that given a permutation (x1, . . . , xk) and a k-element set y of positive integers,
there is only one permutation of y similar to (x1, . . . , xk).

Let [n] = {1, 2, . . . , n} and π be a permutation of [n], called also an n-permutation.
Two similar disjoint sub-permutations of π are called twins and the length of a pair of
twins is defined as the number of elements in just one of the sub-permutations. For
example, in permutation

(6, 1 , 4 , 7, 3 , 9, 8 , 2 , 5 ),

the blue (1, 4, 2) and red (3, 8, 5) subsequences form a pair of twins of length 3, both
similar to (1, 3, 2).

Let t(π) denote the largest integer k such that π contains a pair of twins of length k.
Let t(n) denote the minimum of t(π) over all permutations π of [n]. In other words, t(n)
is the largest integer k such that every n-permutation contains a pair of twins of length
k. Our aim is to estimate this function, as well as some of its variants subject to various
restrictions.

By the classical result of Erdős and Szekeres [13] concerning monotone subsequences
of permutations, we get t(n) = Ω(

√
n). Indeed, any splitting of a monotone sequence

into two subsequences of the same length gives a pair of twins. On the other hand,
using a probabilistic argument, Gawron [15] proved that t(n) = O(n2/3). He also made a
conjecture that the later bound is the correct order of the function t(n). theorem

Conjecture 1 (Gawron [15]). We have t(n) = Θ(n2/3).

Very recently, Bukh and Rudenko [6] showed that t(n) = Ω(n3/5).
Our main result supports this conjecture and states that a random permutation Πn,

selected uniformly from all n! permutations of [n], satisfies

t(Πn) = Ω

(
n2/3

log1/3 n

)
asymptotically almost surely (a.a.s).
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Remark 2. After our manuscript was uploaded to arXiv [10], we learned from Bukh and
Rudenko that our argument could be tweaked to drop the log term and yield the optimal
lower bound t(Πn) = Ω(n2/3). The new idea delivered by them was to replace estimation of
the maximum degree of the auxiliary bipartite graph B by the estimation of the average
degree (see the proofs below for details). Bukh and Rudenko wrote then a short note
[6] which contains the improvement. In their version they switched to a less standard
way of generating a random permutation by a Poisson point process on the unit square.
Meanwhile, we realized that their idea can be implemented in a more elementary way
avoiding the poissonization. In face of all these circumstances, in the current version of
the manuscript we decided to include this new result, Theorem 5, as well.

We also consider several variants of the function t(n) obtained by imposing various
restrictions on the structure or position of twins in permutations. Let τ be a fixed permu-
tation. We say that a permutation σ avoids τ if there is no sub-permutation of σ similar
to τ . Let t(n, τ) be the largest integer k such that every n-permutation contains a pair
of τ -avoiding twins of length k. Using the celebrated result of Marcus and Tardos [20],
confirming the Stanley-Wilf Conjecture, we prove (Theorem 10) that

t(n, τ) = Θ(
√
n),

provided τ is non-monotone.
Two further variants set restrictions on the occurrence of twins in permutations. By

block twins in π we mean a pair of twins, each occupying a segment of consecutive terms
of π. For instance, in permutation (6, 5 , 2 , 3 , 8, 9, 7 , 1 , 4 ), the red (5, 2, 3) and blue
(7, 1, 4) subsequences form a pair of block twins similar to permutation (3, 1, 2). Let bt(n)
be the largest size of block twins one can find in every n-permutation. We prove (Theorem
14) that

bt(n) = (1 + o(1))
log n

log log n
.

Interestingly, for a random permutation Πn the analogous function is twice as large (The-
orem 15).

If a pair of twins jointly occupies a segment in π, then we call them tight twins. For
example, in permutation (6, 5 , 7 , 1 , 2 , 3 , 4 , 9, 8), the red (5, 2, 3) and blue (7, 1, 4)
subsequences form a pair of tight twins similar to permutation (3, 1, 2). Let tt(n) be the
largest size of tight twins one can find in every n-permutation. By using the Lovász Local
Lemma we prove (Theorem 16) that tt(n) 6 12 for all n > 1 which means that there exist
permutations avoiding tight twins of length at least 13. On the other hand, in Proposition
17 we demonstrate that every permutation of six elements contains tight twins of length
at least 2.

Combining the last two variants of the problem, one may consider the most restrictive
tight block twins, which are block twins jointly occupying a segment. For instance, in
permutation (6, 9, 5 , 2 , 3 , 7 , 1 , 4 , 8), the red (5, 2, 3) and blue (7, 1, 4) subsequences
form a pair of tight block twins similar to permutation (3, 1, 2). Surprisingly, as proved
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by Avgustinovich, Kitaev, Pyatkin, and Valyuzhenich in [3], for every n there exist n-
permutations containing no such twins of length more than one. This result constitutes a
permutation counterpart of the famous theorem of Thue [26] on non-repetitive sequences
which asserts that there exist arbitrarily long ternary sequences avoiding tight block twins
of any possible length (see [18]).

2 General twins

In this section we will prove our main result on twins in random permutations. Let |σ|
denote the length of a permutation σ. Recall that t(π) denotes the maximum length of
twins in a permutation π, that is,

t(π) = max{|σ1| : (σ1, σ2) is a pair of twins in π},

and t(n) is defined as

t(n) = min{t(π) : π is a permutation of [n]}.

For completeness, we begin with reproducing the result of Gawron.

Theorem 3 (Gawron [15]). We have

t(n) = Ω(
√
n) and t(n) = O(n2/3).

Proof. The lower bound follows immediately from the well known theorem of Erdős and
Szekeres [13] asserting that every permutation of length n contains a monotone subse-
quence of length Ω(

√
n).

For the upper bound we use the first moment method. Let Π = Πn be a random
permutation chosen uniformly from the set of all n! permutations of [n]. Let k be a fixed
positive integer and let X be a random variable counting all pairs of twins of length k in
Π. Furthermore, for a pair of disjoint subsequences s, t in [n], each of length k, let Xs,t

be an indicator random variable such that Xs,t = 1 if there is a pair of twins in Π on
subsequences s and t. So, X =

∑
s,tXs,t and by the linearity of expectation

EX =
∑
s,t

EXs,t =
∑
s,t

P(Xs,t = 1).

Since

P(Xs,t = 1) =

(
n
k

)
· (n− k)! · 1

n!
=

1

k!
(1)

and the number of unordered pairs {s, t} is 1
2

(
n
2k

)(
2k
k

)
,

EX =
1

2

(
n

2k

)(
2k

k

)
1

k!
=
n(n− 1) . . . (n− 2k + 1)

2(k!)3
.
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Using the inequality k! > kk

ek
gives

EX <
n2ke3k

2k3k
<

(
n2e3

k3

)k
. (2)

It follows that for k > en2/3 we have EX < 1, which means that there must be an n-
permutation π with X(π) = 0, that is, with no twins of length k. This completes the
proof.

One could naturally hope to improve the upper bound for t(n) by some more refined
probabilistic tools. In fact, in his master thesis [15], Gawron made such an attempt by
using the Lovász Local Lemma. However, the resulting bound turned out to be the same
(up to a constant).

2.1 General twins in random permutations

In view of Theorem 3, to prove Conjecture 1 it is enough to show that t(n) = Ω(n2/3). In
this subsection we will prove that this bound holds for almost all permutations.

Let Π = Πn be a random permutation of [n] and let t(Π) be the corresponding random
variable equal to the maximum length of twins in Π. Recall that by saying that some
property of a random object holds asymptotically almost surely (a.a.s. for short) we mean
that it holds with probability tending to one with the size of the object growing to infinity.

Theorem 4. For a random permutation Πn, a.a.s.

t(Πn) = Ω

(
n2/3

log1/3 n

)
and t(Πn) = O(n2/3).

After proving Theorem 4, we will turn to present a proof of the optimal bound that
was recently obtained by Bukh and Rudenko [6] (see Remark 2).

Theorem 5 ([6]). For a random permutation Πn, a.a.s.

t(Πn) = Θ(n2/3).

Proof of Theorem 4. The upper bound follows immediately from the proof of Theorem 3.
Indeed, by (2) with k = 2en2/3 we have P(X > 1) 6 EX < 2−3k → 0 as n→∞.

Now we proceed with a much more challenging proof of the lower bound. Set a =
(Cn log n)1/3, assume for convenience that a divides n, and partition [n] into n/a consec-
utive blocks of equal size, that is, set

[n] = A1 ∪ · · · ∪ An/a,

where |A1| = · · · = |An/a| = a. For fixed 1 6 i, j 6 n/a, let X = Xij be the number
of elements from the set Aj which Π puts on the positions belonging to the set Ai. We
construct an auxiliary n/a× n/a bipartite graph B with vertex classes U = {1, . . . , n/a}
and V = {1, . . . , n/a}, where ij ∈ B iff Xij > 2.
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Let M = {i1j1, . . . , imjm}, i1 < · · · < im, be a matching in B of size |M | = m. For
every ij ∈ M , let si, ti be some two elements of Ai such that Π(si),Π(tj) ∈ Aj. Then,
{si1 , . . . , sim} and {ti1 , . . . , tim} form a pair of twins. Indeed, if say Π(si1) < Π(si2), then
j1 < j2, and so Π(ti1) < Π(ti2). Hence, it remains to show that a.a.s. there is a matching
in B of size m = Ω(n2/3/ log1/3 n). To this end, we are going to use the obvious fact,
coming from a greedy algorithm, that in every graph G there is a matching of size at least

|E(G)|/(2∆(G)), (3)

where ∆(G) is the maximum vertex degree in G.
Our plan is to first estimate the probability of an edge in B, that is, P(Xij > 2),

and then apply the inequality of Talagrand to show that the degrees in B are tightly
concentrated around their means, that is, around (n/a)P(Xij > 2). Then, the ratio
|E(B)|/(2∆(B)) will easily be estimated.

Fact 6. We have

P(Xij > 2) ∼ a4

2n2
.

Proof. Notice that

P(Xij = 0) =
1

n!

(
n− a
a

)
a!(n− a)! =

(
n−a
a

)(
n
a

)
and

P(Xij = 1) =
1

n!

(
n− a
a− 1

)(
a

1

)2

(a− 1)!(n− a)! =
a2

n− 2a+ 1

(
n−a
a

)(
n
a

) ∼ a2

n

(
n−a
a

)(
n
a

) .

Since
(
m
k

)
∼ mk

k!
if k2 = o(m), we obtain(

n−a
a

)(
n
a

) ∼ (n− a
n

)a
=
(

1− a

n

)a
∼ exp(−a2/n) ∼ 1− a2

n
+

a4

2n2
+ o(a4/n2)

and hence

P(Xij = 0) + P(Xij = 1) ∼
(

1− a2

n
+

a4

2n2
+ o(a4/n2)

)(
1 +

a2

n

)
∼ 1− a4

2n2
,

which is equivalent to the statement of Fact 6.

We continue with the proof of Theorem 4. Let Y = Yi =
∑n/a

j=1 I(Xij > 2). We are
going to apply to Y a concentration inequality which follows from some more general
results in [24]. Here is a slightly simplified version from [19] (see also [22]).

Theorem 7 (Luczak and McDiarmid [19]). Let h(π) be a function defined on the set of
all n-permutations which, for some positive constants c and r, satisfies
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(i ) if π2 is obtained from π1 by swapping two elements, then |h(π1)− h(π2)| 6 c;

(ii ) for each π and s > 0, if h(π) = s, then in order to show that h(π) > s, one needs
to specify only at most rs values π(i).

Then, for every ε > 0,

P(|h(Π)−m| > εm) 6 4 exp(−ε2m/(32rc2)),

where m is the median of h(Π).

Observe that Y = Y (Π) satisfies assumptions (i ) and (ii ) with c = 1 and r = 2,
respectively. Indeed, swapping two elements of Π changes I(Xij > 2) for at most one
value of j. Moreover, to exhibit the event Y > s, it is sufficient to reveal 2s values of Π.
Let m be the median of Y . Then, by Theorem 7,

P(|Y −m| > m/2) 6 4 exp(−m/256).

Moreover, it follows (see for example [24], Lemma 4.6, or [22], page 164) that |EY −m| =
O(
√
m). In particular,

P(|Y − EY | > (2/3)EY ) 6 4 exp(−EY/300).

Note that

EYi =

n/a∑
j=1

P(Xij > 2) ∼ n

a
· a

4

2n2
=
a3

2n
= (C/2) log n,

so, for C large enough, the union bound implies that a.a.s. for all i = 1, . . . , n/a, we have

a3

7n
6

1

3
EYi 6 Yi 6

5

3
EYi 6

a3

n
.

This implies that two further facts hold a.a.s.:

|E(B)| =
n/a∑
i=1

Yi >
n

3a
EY >

a2

7

and

∆(B) 6 maxYi 6
a3

n
.

Finally, the largest matching in B has size at least

|E(B)|
2∆(B)

>
n

14a
= Ω

(
n2/3

log1/3 n

)
.

This completes the proof of Theorem 4.
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Now we show, based on [6], how to modify the previous proof obtaining the optimal
lower bound Ω(n2/3). One difference is that instead of the Talagrand inequality applied to
the degrees in B, we invoke Azuma-Hoeffding inequality directly to our principal random
variable t(Πn). Another modification lies in using inequality (3) not for the entire graph
B, but for its suitable chosen subgraph.

Proof of Theorem 5. Let C > 3. Set a = (Cn)1/3, assume for convenience that a divides n,
and as in the previous proof we construct the auxiliary n/a× n/a bipartite graph B. We
are going to use (3) again, however, this time we will apply this fact to a subgraph of B
obtained after deleting vertices of large degrees.

For each i ∈ U ∪ V , let Yi =
∑n/a

j=1 I(Xij > 2) be the degree of vertex i in B. Let
ν(B) be the size of a largest matching in B. Note that ∆(B) 6 a/2. Further, let Zk be
the number of vertices of degree k in B, k = 0, . . . , a/2, and set C ′ = de2C/2e. Then, by
applying inequality (3) to the subgraph B′ of B obtained by deleting all vertices of degree
at least C ′, we get

ν(B) > ν(B′) >
|E(B′)|
2∆(B′)

>
|E(B)| −

∑a/2
k=C′ kZk

2C ′
.

Taking expectation on both sides and noticing that EZk = (2n/a)P(Y1 = k), we infer
that

E[ν(B)] >
1

2C ′

E[|E(B)|]− (2n/a)

a/2∑
k=C′

kP(Y1 = k)

 . (4)

Observe that, trivially, |E(B)| is at least as large as the number of vertices i ∈ U with
positive degree. Thus, to estimate E(|E(B)|) from below it suffices to estimate P(Yi = 0).
By using standard approximations(

m

k

)
∼ mk

k!
if k2 = o(m) and

(
m

k

)
∼ mk

k!
exp

(
− k2

2m
− k3

6m2

)
if k = o(m3/4),

we get

P(Yi = 0) =

(
n
a

a

)(
a

1

)a
a!(n− a)! · 1

n!
=

(
n
a

a

)
aa · 1(

n
a

)
∼
(
n
a

)a
a!

exp

(
− a2

2n/a
− a3

6(n/a)2

)
aa · a!

na
∼ exp

(
− a

3

2n

)
= e−C/2 <

1

2

and so

E[|E(B)|] > n

a
P(Y1 > 1) >

n

2a
=

n2/3

2C1/3
.

Now we estimate P(Y1 = k) for k ∈ {C ′, . . . , a/2}. Observe that

P(Y1 = k) 6

(
n
a

k

)(
a

2

)k(
a

2k

)
(2k)!(n− 2k)! · 1

n!
=

(
n
a

k

)(
a

2

)k(
a

2k

)
· 1(

n
2k

)
6

(
n
a

)k
k!

a2k

2k
a2k

(2k)!

(2k)!

n2k
=

a3k

2knkk!
6

a3k

2knk(k/e)k
= exp

(
−k log

(
2kn

ea3

))
6 e−k,
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since k > C ′ > e2C/2. Thus, since C ′ > 4,

a/2∑
k=C′

kP(Y1 = k) 6
a/2∑
k=C′

ke−k 6
∞∑

k=C′

ke−k =
C ′(1− 1/e) + 1/e

(1− 1/e)2
e−C

′
6

1

8
.

Finally, returning to (4), we conclude that

E[ν(B)] >
n2/3

2C ′C1/3

(
1

2
− 2 · 1

8

)
=

n2/3

8C ′C1/3
= Ω(n2/3).

Since t(Πn) > ν(B), to complete the proof of Theorem 5 it remains to show that t(Πn) is
highly concentrated about its mean.

For this, we are going to use the Azuma-Hoeffding inequality for random permutations
(see, e.g., Lemma 11 in [14] or Section 3.2 in [21]):

Theorem 8. Let h(π) be a function defined on the set of all n-permutations such that
if a permutation π2 is obtained from a permutation π1 by swapping two elements, then
|h(π1)− h(π2)| 6 1. Then, for every η > 0,

P(|h(Πn)− E[h(Πn)]| > η) 6 2 exp(−η2/(2n)).

To verify the Lipschitz assumption, note that if π2 is obtained from a permutation
π1 by swapping any two of its elements, then |t(π1) − t(π2)| 6 2. Indeed, let π′2 be
obtained from π2 by removing the elements that were swapped. Then, clearly, π′2 is a
sub-permutation of π1 and t(π1) > t(π′2) > t(π2) − 2. Similarly, one can argue that
t(π2) > t(π1) − 2. Consequently, Theorem 8 applied with h(π) = t(π)/2 and η = n3/5

implies
P(|t(Πn)− E[t(Πn)]| > n3/5) = o(1),

finishing the proof.

2.2 Twins with a forbidden pattern

In this subsection we prove tight asymptotic bounds for the maximum length of twins
avoiding a fixed non-monotone permutation τ . Recall that a permutation σ avoids τ ,
or is τ -free, if no subsequence of σ is similar to τ . We will need the following result of
Marcus and Tardos [20] confirming a famous conjecture stated independently by Stanley
and Wilf (see [23]).

Theorem 9 (Marcus and Tardos [20]). Let τ be a fixed permutation and let dτ (k) de-
note the number of k-permutations avoiding τ . Then there exists a positive constant c,
depending only on τ , such that dτ (k) 6 ck.

Let t(π, τ) denote the maximum length of τ -free twins in a permutation π:

t(π, τ) = max{|σ1| : (σ1, σ2) is a pair of τ -free twins in π},

and let t(n, τ) be defined by

t(n, τ) = min{t(π, τ) : π is a permutation of [n]}.
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Theorem 10. Let τ be a non-monotone permutation. Then

t(n, τ) = Θ(
√
n).

Proof. Owing to the non-monotonicity of τ , the lower bound follows from the Erdős-
Szekeres theorem in the same way as the bound t(n) = Ω(

√
n) in Theorem 3. For the

upper bound, let Π be a random permutation of [n], and let Xτ denote the random
variable counting the number of τ -free twins of size k in Π. Further, let dτ be the number
of τ -free permutations of [k]. We have

E(Xτ ) =
1

2

(
n

k

)(
n− k
k

)
· pτ ,

where

pτ =

(
n
k

)
dτ ·

(
n−k
k

)
· 1 · (n− 2k)!

n!
=

dτ
(k!)2

.

By Theorem 9, pτ 6 ck/(k!)2, which implies

E(Xτ ) 6
1

2

(
n

k

)(
n− k
k

)
ck

(k!)2
=

1

2

n!ck

(k!)4(n− 2k)!

=
1

2

(n)2kc
k

(k!)4
6

1

2

n2kck

(k!)4
6

1

2

n2kck

(k/e)4k
=

1

2

(
nc1/2

(k/e)2

)2k

< 1

for k > ec1/4
√
n. Thus, t(n, τ) = O(

√
n) which completes the proof.

3 Variations

In this part of the paper we consider twins with some restrictions on positions they occupy
in a permutation. We focus on blocks in permutations, that is, subsequences whose index
sets are segments of consecutive integers. As a key technical tool we are going to use two
versions of the Local Lemma which we state first.

3.1 Two versions of the Local Lemma

In the next subsection, we will make use of the following symmetric version of the Lovász
Local Lemma [11] (see [2]). For events E1, . . . , En in any probability space, a dependency
graph D = ([n], E) is any graph on vertex set [n] such that for every vertex i the event Ei
is jointly independent of all events Ej with ij 6∈ E.

Lemma 11 (The Local Lemma; Symmetric Version [11] (see [2])). Let E1, . . . , En be
events in any probability space. Suppose that the maximum degree of a dependency graph
of these events is at most ∆, and P(Ai) 6 p, for all i = 1, 2, . . . , n. If ep(∆ + 1) 6 1,

then P

(
n⋂
i=1

Ei
)
> 0.
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In another proof it will be convenient to use the following version of the Lovász Local
Lemma, which is equivalent to the standard asymmetric version (see [2]).

Lemma 12 (The Local Lemma; Multiple Version (see [2])). Let E1, . . . , En be events in
any probability space with a dependency graph D = (V,E). Let V = V1 ∪ · · · ∪ Vt be a
partition such that all members of each part Vr have the same probability pr. Suppose
that the maximum number of vertices from Vs adjacent to a vertex from Vr is at most

∆rs. If there exist real numbers 0 6 x1, . . . , xt < 1 such that pr 6 xr
t∏

s=1

(1− xs)∆rs, then

Pr

(
n⋂
i=1

Ei
)
> 0.

3.2 Block twins

A pair of twins (σ1, σ2) in a permutation π is called block twins if both sub-permutations,
σ1 and σ2, are blocks of π. Let bt(π) denote the largest length of block twins in π, that is,

bt(π) = max{|σ1| : (σ1, σ2) is a pair of block twins in π},

and let
bt(n) = min{bt(π) : π is a permutation of [n]}.

The proofs in this and the next subsection rely on the following simple fact about the
probability of appearance of r pairs of twins on fixed positions in a random permutation.

Fact 13. For r > 2 let Ai, Bi, i = 1, . . . , r be k-elements segments of [n] with Ai ∩Bi = ∅
as well as A1 ∩

⋃r
i=2(Ai ∪ Bi) = ∅. Further, let Ei be the event that the pair (Ai, Bi)

induces block twins in Π. Then,

P(E1 ∩ · · · ∩ Er) = P(E1)P(E2 ∩ · · · ∩ Er).

Proof. By (1), P(E1) = 1/k!. Let N be the number of permutations of the set [n] \ A1

such that all pairs Ai, Bi, i = 2, . . . , r span block twins. Observe that

|E1 ∩ · · · ∩ Er| =
(
n

k

)
N and |E2 ∩ · · · ∩ Er| = (n)kN,

where the first equality follows from the fact that once the values of Π(i) are fixed on
[n] \ A1, the rest of Π is determined. Hence,

P(E1 ∩ · · · ∩ Er) =

(
n
k

)
N

n!
=

(
n
k

)
|E2 ∩ · · · ∩ Er|

(n)kn!
=

1

k!
P(E2 ∩ · · · ∩ Er).

The following result gives an asymptotic formula for the function bt(n).

Theorem 14. We have

bt(n) = (1 + o(1))
log n

log log n
.

the electronic journal of combinatorics 28(3) (2021), #P3.19 12



Proof. First we show the lower bound. Let n = k(k! + 1) and let π be any permutation
of [n]. Divide π into k! + 1 blocks, each of length k. By the pigeonhole principle, there
are two blocks that induce similar sub-permutations (forming thereby a pair block twins).
The choice of n, together with the Stirling formula, imply that k = (1 + o(1)) logn

log logn
.

For the upper bound we use Lemma 11 and Fact 13. Let n = (k−1)!
4e

and let Πn

be a random permutation. For a given pair of indices i and j with 1 6 i 6 j − k 6
n − 2k, define the event Ei,j that subsequences (Π(i),Π(i + 1)), . . . ,Π(i + k − 1)) and
(Π(j),Π(j + 1)), . . . ,Π(j + k − 1)) are block twins. We have p = P(Ei,j) = 1/k!.

Also notice that by Fact 13, a fixed event Ei,j is jointly independent of all the events
Ei′,j′ for which

{i, i+ 1, . . . , i+ k − 1} ∩ ({i′, i′ + 1, . . . , i′ + k − 1} ∪ {j′, j′ + 1, . . . , j′ + k − 1}) = ∅.

Thus, there is a dependency graph D with maximum degree at most

∆ = 2(2k − 1)(n− k) 6 4kn− 1.

This and the choice of n gives that

e(∆ + 1)p 6 e · 4kn · 1

k!
= 1.

Thus, Lemma 11 implies that there exists a permutation of [n] with no block twins of
length k. Again, the Stirling formula yields that k = (1 + o(1)) logn

log logn
.

3.3 Block twins in random permutations

In the previous subsection we used a random permutation Π as a tool of the probabilistic
method to estimate bt(n). Now we are interested in block twins in random permutations.
The result below shows that the maximum length of block twins in Π is a.a.s. roughly
twice as big as in the worst case.

Theorem 15. For a random n-permutation Π, a.a.s. we have

bt(Π) = (2 + o(1))
log n

log log n
.

Proof. For 1 6 i 6 j − k 6 n− 2k, recall from the proof of Theorem 14 that Ei,j denotes
the event that (Π(i), . . . ,Π(i+ k − 1)) and (Π(j), . . . ,Π(j + k − 1)) are block twins. Let
Xi,j be the indicator random variable of the event Ei,j, that is Xi,j = 1 if Eij holds and
Xi,j = 0 otherwise, and set X =

∑
Xi,j.

By (1), we have P(Xi,j = 1) = P(Ei,j) = 1/k! and thus E(X) = Θ(n2/k!). Set ω(n)
for any sequence of integers such that ω(n)→∞ but ω(n) = o(log log n/ log log log n). It
is easy to check, using the Stirling formula, that

log

(
n2

k!

)
→

−∞ if k =
⌈
2 logn

log logn

(
1 + 1

ω(n)

)⌉
+∞ if k =

⌊
2 logn

log logn

(
1− 1

ω(n)

)⌋
.
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Thus, in the former case EX = o(1) and, by Markov’s inequality, a.a.s. there are no block
twins of length k in Π.

We will use the second moment method to show that in the latter case, when EX →∞,
a.a.s. there is a pair of block twins of length k in Π. Note that, in fact, in this case we
have

n2

k!
= eΩ(logn/ω(n)). (5)

For 1 6 i1 6 j1−k 6 n−2k and 1 6 i2 6 j2−k 6 n−2k, let A = {i1, . . . , i1 +k−1},
B = {j1, . . . , j1 + k − 1}, C = {i2, . . . , i2 + k − 1} and D = {j2, . . . , j2 + k − 1}. If either
A ∩ (C ∪D) = ∅ or B ∩ (C ∪D) = ∅, then, by Fact 13,

P(Xi1,j1 = Xi2,j2 = 1) =
1

(k!)2
,

that is, Xi1,j1 and Xi2,j2 are independent.
The number of the remaining pairs of indicators Xi1,j1 and Xi2,j2 is O(n2k2).
Hence, using the trivial bound

P(Xi1,j1 = Xi2,j2 = 1) 6 P(Xi1,j1 = 1) =
1

k!
,

we have

V ar(X) =
∑
i1,j1

∑
i2,j2

Cov(Xi1,j1 , Xi2,j2) = O

(
n2k2

k!

)
and, by Chebyshev’s inequality and (5),

P(X = 0) 6
V ar(X)

(EX)2
= O

(
k2k!

n2

)
= o(1).

3.4 Tight twins

Recall that a pair of twins (σ1, σ2) in a permutation π is called tight if their union is a
block in π. Note that unlike general twins and block twins, tight twins are not ‘monotone’,
that is the absence of tight twins of length k does not exclude the presence of length bigger
than k. Let tt(π) denote the maximum length of tight twins in π:

tt(π) = max{|σ1| : (σ1, σ2) is a pair of tight twins in π},

and let
tt(n) = min{tt(π) : π is a permutation of [n]}.

We will prove that tt(n) 6 12, which means that for every n there exists a permutation
of [n] with no tight twins of length 13 or longer.

Theorem 16. For every n > 1 we have tt(n) 6 12.
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Proof. Let Π be a random permutation of [n]. We will apply Lemma 12 in the fol-
lowing setting. For a fixed segment R of length 2r, let AR denote the event that a
sub-permutation of Π occupying R consists of tight twins. We consider only segments of
length at least 26, so we assume that r > 13. Let Vr denote the collection of all such
events AR for all possible segments of length 2r. By (1) and the union bound, for every
AR ∈ Vr,

P(AR) 6
1

2

(
2r

r

)
/r!.

Hence, we may take pr = 1
2

(
2r
r

)
/r!.

By Fact 13, any event AR depends only on those events AS whose segments S inter-
sect R. Hence, if S is any segment of length 2s, with s > 13 and S 6= R, then we may
take ∆rs = 2r + 2s− 1. Furthermore, we take xs = (2/3)s, s > 13.

We are going to prove that for every r > 13

pr 6 xr

n/2∏
s=13

(1− xs)∆rs .

Since xs 6 1/2 for s > 13, we may use the inequality 1−xs > e−2xs and obtain the bound

n/2∏
s=13

(1− xs)∆rs >
n/2∏
s=13

(1− xs)2(r+s) > exp

(
−4

∞∑
s=13

xs(r + s)

)

= exp

(
−4r

∞∑
s=13

(
2

3

)s)
· exp

(
−4

∞∑
s=13

s

(
2

3

)s)

= exp

(
−12r ·

(
2

3

)13
)
· exp

(
−180 ·

(
2

3

)13
)
,

since
∑∞

s=a

(
2
3

)s
= 3

(
2
3

)a
and

∑∞
s=a s

(
2
3

)s
= (3a+ 6)

(
2
3

)a
. Therefore, we will be done by

showing that

1

2

(
2r

r

)
· 1

r!
6

(
2

3

)r
· exp

(
−12r ·

(
2

3

)13
)
· exp

(
−180 ·

(
2

3

)13
)

which is equivalent to proving that for r > 13

f(r) =

(
2
3

)r · e−12r·( 2
3)

13

· e−180·( 2
3)

13

1
2

(
2r
r

)
· 1
r!

> 1.

To this end, observe that f(r + 1) > f(r) for r > 13. Indeed,

f(r + 1)

f(r)
=

(r + 1)2

6r + 3
e−12·( 2

3)
13

>
r + 1

6
e−12·( 2

3)
13

>
7

3
e−12·( 2

3)
13

> 1.

Thus, checking on a calculator that f(13) > 1 completes the proof.
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Our next result provides an easy lower bound on tt(n).

Proposition 17. We have tt(n) > 2 for all n > 6.

We start with the following observation.

Claim 18. Let π be a permutation of length 6. Assume that for some i ∈ {1, 2} either
π(i) > π(i+ 1) > π(i+ 2) or π(i) < π(i+ 1) < π(i+ 2). Then, π contains a pair of tight
twins.

Proof. Without loss of generality assume that π(1) > π(2) > π(3). We will show that one
cannot avoid tight twins of length 2 within (π(1), . . . , π(5)).

Suppose to the contrary. By considering (π(1), . . . , π(4)) we must have π(3) < π(4).
Furthermore, by considering (π(1), . . . , π(4)) and (π(2), . . . , π(5)), we infer that, respec-
tively, π(1) < π(4) and π(4) < π(5). But now π(2) < π(5) and π(3) < π(4) yielding a
pair of twins in (π(2), . . . , π(5)), a contradiction.

Proof of Proposition 17. Without loss of generality we may assume that π(1) < π(2).
Then, π(3) > π(4); otherwise we are done. But now either π(1) < π(2) < π(3) or
π(2) > π(3) > π(4) and the statement follows from Claim 18.

4 Concluding Remarks

The major open problem concerning twins in permutations is to determine the asymptotic
shape of the function t(n). In view of Theorem 5 and the Bukh and Rudenko result it
would be nice to know the following.

Problem 19. Is t(n)� n3/5 ?

Another challenging problem concerns the case of tight twins. In Theorem 16 we
proved that there exist arbitrarily long permutations avoiding tight twins of length at
least 13. How far is this constant from the optimum? On the one hand, by taking
x12 = 9/500 and xs = (2/3)s for s > 13 one can show, by a tedious adaptation of the
proof that tt(n) 6 11. On the other hand, in Proposition 17 we demonstrated that one
cannot avoid tight twins of length 2 in any n-permutation for n > 6.

Problem 20. Is it true that there exist arbitrarily long permutations without tight twins
of length at least 3?

Here is an example of a permutation of length 18 avoiding tight twins of length 3 or
more (but we do not know how to generalize it for larger n):

(14, 15, 16, 3, 2, 1, 10, 11, 12, 5, 4, 18, 8, 9, 17, 7, 6, 13).

Let us conclude the paper with a problem in the spirit of Ulam. Two n-permutations
α and β are called k-similar if they can be split into k sub-permutations, respectively,
α1, . . . , αk and β1, . . . , βk, so that αi is similar to βi for all i = 1, 2, . . . , k. Let U(α, β) be
the least number k such that α and β are k-similar.

Problem 21. What is the average value of U(α, β) over all pairs of n-permutations?
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