Variations on Variable-Metric Methods

By J. Greenstadt

(Appendix by Y. Bard)

Abstract

In unconstrained minimization of a function f, the method of Davidon-FletcherPowell (a "variable-metric" method) enables the inverse of the Hessian H of f to be approximated stepwise, using only values of the gradient of f. It is shown here that, by solving a certain variational problem, formulas for the successive corrections to H can be derived which closely resemble Davidon's. A symmetric correction matrix is sought which minimizes a weighted Euclidean norm, and also satisfies the "DFP condition." Numerical tests are described, comparing the performance (on four "standard" test functions) of two variationally-derived formulas with Davidon's. A proof by Y. Bard, modelled on Fletcher and Powell's, showing that the new formulas give the exact H after N steps, is included in an appendix.

1. The DFP Method. The class of gradient methods for finding the unconstrained minimum of a function $f(x)^{*}$ in which the direction s_{k} of the next iterative step from x_{k} to x_{k+1} is computed from a formula such as:

$$
\begin{equation*}
s_{k}=-G_{k}^{-1} g_{k} \tag{1-1}
\end{equation*}
$$

is called the class of variable-metric methods. Here G_{k} is a (preferably) positivedefinite $N \times N$ matrix and g_{k} is the gradient ∇f evaluated at x_{k}.

The reason for this nomenclature is that s_{k} is the direction in which the directional derivative of f is a minimum, i.e., the direction in which

$$
\begin{equation*}
s_{k}^{T} g_{k} \equiv s_{k}^{T}(\nabla f)_{k}=\text { minimum } \tag{1-2}
\end{equation*}
$$

subject to the length of S_{k} being constant:

$$
\begin{equation*}
\left\|s_{k}\right\|=\text { constant } \tag{1-3}
\end{equation*}
$$

Usually, the length of s_{k} is given in terms of a quadratic form involving a metric matrix (or tensor) G (of order $N \times N$), so that:

$$
\begin{equation*}
\|s\|^{2}=s^{T} G s \tag{1-4}
\end{equation*}
$$

Then, it can easily be shown [2] that the solution to the problem is given by Eq. (1-1). When G varies from point to point (as in Newton's method), the "metric" is variable, hence the name.

Davidon's well-known method [3] was called by him a variable-metric method because it has this feature of using a changing "inverse matrix" from one step to the next. Fletcher and Powell [4] were able to simplify Davidon's method, and to clarify many of its features and characteristics.

[^0]The Davidon-Fletcher-Powell (or DFP) method is very closely related to Newton's method. If G_{k} were equal to the Hessian matrix of f, viz.,

$$
\begin{equation*}
G_{k}=\left[\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right]_{x=x_{k}} \tag{1-5}
\end{equation*}
$$

then Eq. (1-1) would be the Newton formula used for finding the root of $\nabla f=0$. Since Newton's method is usually by far the most efficient of the gradient methods [5], it would be very nice to have available at each step all of the quantities needed to evaluate s_{k} from (1-1). It is usually rather inconvenient, however, and sometimes not feasible, to calculate so many second derivatives.

In the DFP method, a sequence of progressive estimates $\left\{H_{k}\right\}$ is made of the inverse Hessian G^{-1}, based only on the first derivatives of f. The sequence of steps in a cycle is as follows: From the calculated gradient g_{k} at x_{k}, the next step direction is computed using the current estimate for G^{-1}, so that:

$$
\begin{equation*}
s_{k}=-H_{k} g_{k} . \tag{1-6}
\end{equation*}
$$

Then the minimum of f is found along the direction s_{k}. Let the total step σ_{k} to this point be a multiple α_{k} of s_{k}, i.e.,

$$
\begin{equation*}
\sigma_{k}=\alpha_{k} \delta_{k} \tag{1-7}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{k+1}=x_{k}+\sigma_{k} . \tag{1-8}
\end{equation*}
$$

We then define

$$
\begin{equation*}
y_{k} \equiv g_{k+1}-g_{k} . \tag{1-9}
\end{equation*}
$$

The correction to H_{k}, to form the next estimate, H_{k+1}, is as follows:

$$
\begin{equation*}
H_{k+1}=H_{k}+\frac{\sigma_{k} \sigma_{k}^{T}}{\left(\sigma_{k}{ }^{T} y_{k}\right)}-\frac{H_{k} y_{k} y_{k}{ }^{T} H_{k}}{\left(y_{k}{ }^{T} H_{k} y_{k}\right)} \tag{1-10}
\end{equation*}
$$

and, using this new H, the whole cycle is repeated.
As emphasized by Fletcher and Powell, a full appreciation of the significance of formula ($1-10$) rests on an analysis of functions f which are exactly quadratic. For such a function the Hessian G is a constant matrix, so that certain exact relationships are valid among the various quantities involved. In particular, they show that the first part of the correction in (1-10) follows from the form of the spectral resolution of G^{-1}. The second part is related to a very important requirement on H, viz., that it should satisfy a relationship derivable for a function which is an exact quadratic.**

Let us therefore consider a quadratic f of the form:

$$
\begin{equation*}
f=f_{0}+g_{0}{ }^{T} x+\frac{1}{2} x^{T} G_{0} x, \tag{1-11}
\end{equation*}
$$

where f_{0}, g_{0}, and G_{0} are all constants. We then have

$$
\begin{equation*}
g=\nabla f=g_{0}+G_{0} x . \tag{1-12}
\end{equation*}
$$

** Alternative corrections to H_{k} have been derived by Davidon [8], Broyden [9] and Wolfe [10]. These differ from the DFP correction in that they are of rank unity ("rank-one" corrections).

Now, since g_{0} is not known, but only g_{k} (for $x=x_{k}$), we can eliminate g_{0} by differencing two equations of the form of (1-12) which hold at x_{k} and x_{k+1}, respectively. We obtain

$$
\begin{align*}
g_{k+1}-g_{k} & =\left(g_{0}+G_{0} x_{k+1}\right)-\left(g_{0}+G_{0} x_{k}\right) \tag{1-13}\\
& =G_{0}\left(x_{k+1}-x_{k}\right)
\end{align*}
$$

so that if we define $y_{k} \equiv g_{k+1}-g_{k}$ and $\sigma_{k} \equiv x_{k+1}-x_{k}$ (as in (1-8)), we can write

$$
\begin{equation*}
y_{k}=G_{0} \sigma_{k} \tag{1-14}
\end{equation*}
$$

or in terms of H, the inverse of G_{0}

$$
\begin{equation*}
H y_{k}=\sigma_{k} . \tag{1-15}
\end{equation*}
$$

It was shown by Fletcher and Powell that the second term in the correction in (1-10) is the simplest way of making the $(k+1)$ st estimate of H obey Eq. (1-15), namely:

$$
\begin{equation*}
H_{k+1} y_{k}=\sigma_{k} \tag{1-16}
\end{equation*}
$$

as well as satisfying the conditions already mentioned. This condition is central to what follows in this paper, and we shall call it the DFP condition.
2. Variational Formulation. Let us now rephrase the variable-metric problem as follows: We wish to find a correction E_{k} to the estimate H_{k} of the inverse Hessian, as follows:

$$
\begin{equation*}
H_{k+1}=H_{k}+E_{k} \tag{2-1}
\end{equation*}
$$

so that H_{k+1} will satisfy (1-16). Since E_{k} is not thereby rendered unique, we need another principle, or criterion, to define it more precisely.

Let us ask for the "best" correction E_{k} in some sense. There are many possible choices to make, but a good one is to ask for the smallest correction E_{k}, in the sense of some norm. To a certain extent, this would tend to keep the elements of H from growing too large, which might cause an undesirable instability.

The simplest type of norm, and one which would be expected to lead to simple solutions for E, is a quadratic form in the components of E. The most general form of this kind is

$$
\begin{equation*}
N_{G}(E)=\sum_{i j k m} C_{i j k m} E_{i j} E_{k m} \tag{2-2}
\end{equation*}
$$

However, investigation of this general norm [6] yielded rather unsatisfactory, complicated formulas for E, which seemed to involve an amount of calculation comparable to that of calculating the Hessian directly.

The simplest quadratic norm is, of course, the Euclidean norm, given by

$$
\begin{equation*}
N_{E}(E)=\sum_{i j} E_{i j}^{2}=\operatorname{Tr}\left(E E^{T}\right) \tag{2-3}
\end{equation*}
$$

where the symbol Tr indicates the trace. Since this is too specialized, E was first transformed as follows:

$$
\begin{equation*}
F=A E B \tag{2-4}
\end{equation*}
$$

and the Euclidean norm of F was calculated:

$$
\begin{align*}
N_{E}(F) & =\operatorname{Tr}\left(F F^{T}\right)=\operatorname{Tr}\left(A E B B^{T} E^{T} A^{T}\right) \tag{2-5}\\
& =\operatorname{Tr}\left(A^{T} A E B B^{T} E^{T}\right)
\end{align*}
$$

This form also rendered a solution for E too complicated; however, when $A=B$, and $A^{T} A$ is denoted by W (a positive-definite symmetric matrix), the problem turned out to have a rather simple solution.

Hence, we shall take for $N\left(E_{k}\right)$:

$$
\begin{equation*}
N\left(E_{k}\right)=\operatorname{Tr}\left(W E_{k} W E_{k}^{T}\right) \tag{2-6}
\end{equation*}
$$

and we shall try to minimize $N\left(E_{k}\right)$, subject to (1-16), and to a symmetry condition:

$$
\begin{equation*}
E_{k}^{T}-E_{k}=0 \tag{2-7}
\end{equation*}
$$

which is required because the Hessian is symmetric, and we wish to preserve the symmetry of H (when we start with a symmetric first guess). We shall rewrite (1-16) in terms of E_{k} :

$$
\begin{equation*}
\sigma_{k}=H_{k+1} y_{k}=\left(H_{k}+E_{k}\right) y_{k} \tag{2-8a}
\end{equation*}
$$

which reduces to:

$$
\begin{equation*}
E_{k} y_{k}=\sigma_{k}-H_{k} y_{k} \equiv r_{k} \tag{2-8b}
\end{equation*}
$$

In the remainder of this derivation, we shall ignore the subscript k.
We shall solve this constrained minimization problem by the use of Lagrange multipliers. We form the composite function Φ as follows:

$$
\begin{equation*}
\Phi \equiv \frac{1}{2} \operatorname{Tr}\left(W E W E^{T}\right)+\lambda^{T}(E y-r)+\operatorname{Tr}\left[\Gamma\left(E-E^{T}\right)\right] . \tag{2-9}
\end{equation*}
$$

We also note that

$$
\begin{equation*}
\lambda^{T}(E y-r)=\operatorname{Tr}\left[(E y-r) \lambda^{T}\right] . \tag{2-10}
\end{equation*}
$$

Our next task is to differentiate Φ with respect to E. We note that

$$
\begin{equation*}
\frac{\partial}{\partial E}[\operatorname{Tr}(E A)]=\left\{\frac{\partial}{\partial E_{k m}} \sum_{i j} E_{i j} A_{j i}\right\}=\left\{A_{m k}\right\}=A^{T} \tag{2-11a}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial}{\partial E}\left[\operatorname{Tr}\left(E^{T} A\right)\right]=\left\{\frac{\partial}{\partial E_{k m}} \sum_{i j} E_{j i} A_{j i}\right\}=\left\{A_{k m}\right\}=A \tag{2-11b}
\end{equation*}
$$

Hence, we have

$$
\begin{equation*}
\frac{\partial \Phi}{\partial E}=W E W+\lambda y^{T}+\Gamma^{T}-\Gamma=0 \tag{2-12}
\end{equation*}
$$

so that

$$
\begin{equation*}
E=-M\left[\lambda y^{T}+\Gamma^{T}-\Gamma\right] M \tag{2-13}
\end{equation*}
$$

where $M \equiv W^{-1}$. Transposing E, we have

$$
\begin{equation*}
E^{T}=-M\left[y \lambda^{T}+\Gamma-\Gamma^{T}\right] M \tag{2-14}
\end{equation*}
$$

since M is symmetric. Subtracting E^{T} from E should give zero, so that

$$
\begin{equation*}
E-E^{T}=-M\left\{\lambda y^{T}-y \lambda^{T}+2 \Gamma^{T}-2 \Gamma\right\} M=0 \tag{2-15}
\end{equation*}
$$

and we have

$$
\begin{equation*}
\Gamma^{T}-\Gamma=\frac{1}{2}\left(y \lambda^{T}-\lambda y^{T}\right) . \tag{2-16}
\end{equation*}
$$

Substituting this into (2-13) gives

$$
\begin{align*}
E & =-M\left\{\lambda y^{T}+\frac{1}{2}\left(y \lambda^{T}-\lambda y^{T}\right)\right\} M \tag{2-17}\\
& =-\frac{1}{2} M\left\{y \lambda^{T}+\lambda y^{T}\right\} M .
\end{align*}
$$

Now we take note of the DFP condition; Eq. (2-8b):

$$
\begin{equation*}
E y-r=-\frac{1}{2} M\left[y \lambda^{T}+\lambda y^{T}\right] M y-r=0 . \tag{2-18}
\end{equation*}
$$

Premultiplying by $2 W$, we have

$$
\begin{equation*}
\left(y \lambda^{T}+\lambda y^{T}\right) M y+2 W r=0 \tag{2-19}
\end{equation*}
$$

from which we solve for the λ which is free from the inner product. The result is

$$
\begin{equation*}
\lambda=-\left(y^{T} M y\right)^{-1}\left[2 W r+y\left(\lambda^{T} M y\right)\right] \tag{2-20}
\end{equation*}
$$

We now premultiply by $y^{T} M$ to obtain:

$$
\begin{equation*}
y^{T} M \lambda=-\left(y^{T} M y\right)^{-1}\left[2\left(y^{T} r\right)+\left(y^{T} M y\right)\left(\lambda^{T} M y\right)\right] \tag{2-21}
\end{equation*}
$$

and, since $y^{T} M \lambda$ is the same as $\lambda^{T} M y$, we can solve for $\lambda^{T} M y$. The result is

$$
\begin{equation*}
\lambda^{T} M y=-\left(y^{T} M y\right)^{-1}\left(y^{T} r\right) . \tag{2-22}
\end{equation*}
$$

We now substitute this back into (2-20) to obtain:

$$
\begin{align*}
\lambda & =-\left(y^{T} M y\right)^{-1}\left[2 W r-\left(y^{T} M y\right)^{-1}\left(y^{T} r\right) y\right] \tag{2-23}\\
& =\left(y^{T} M y\right)^{-2}\left(y^{T} r\right) y-2\left(y^{T} M y\right)^{-1} W r
\end{align*}
$$

and we are in a position to replace λ in Eq. (2-17). We then have for E

$$
\begin{equation*}
E=\frac{1}{\left(y^{T} M y\right)}\left\{r y^{T} M+M y r^{T}-\left(\frac{y^{T} r}{y^{T} M y}\right) M y y^{T} M\right\} \tag{2-24}
\end{equation*}
$$

and, finally, replacing r by $\sigma-H y$, we obtain

$$
\begin{align*}
& E=\frac{1}{\left(y^{T} M y\right)}\left\{\sigma y^{T} M+M y \sigma^{T}-H y y^{T} M-M y y^{T} H\right. \tag{2-25}\\
&\left.-\frac{1}{\left(y^{T} M y\right)}\left[\left(y^{T} \sigma\right)-\left(y^{T} H y\right)\right] M y y^{T} M\right\}
\end{align*}
$$

which is our final formula for E. The two obvious choices for the weighting matrix W, both of which lead to relatively simple formulas for E are

$$
\begin{align*}
W^{-1} & \equiv M=H \tag{2-26a}\\
W & =I
\end{align*}
$$

We obtain for E respectively

$$
\begin{align*}
& E_{I}=\frac{1}{\left(y^{T} H y\right)}\left\{\sigma y^{T} H+H y \sigma^{T}-\left[1+\left(\frac{y^{T} \sigma}{y^{T} H y}\right)\right] H y y^{T} H\right\} \tag{2-27a}\\
& E_{I I}=\frac{1}{\left(y^{T} y\right)}\left\{\sigma y^{T}+y \sigma^{T}-H y y^{T}-y y_{r}^{T} H\right. \tag{2-27~b}\\
& \\
& \left.\quad-\frac{1}{\left(y^{T} y\right)}\left[\left(y^{T} \sigma\right)-\left(y^{T} H y\right)\right] y y^{T}\right\} .
\end{align*}
$$

The DFP correction, for comparison, is

$$
\begin{equation*}
E_{D}=\frac{1}{\left(y^{T} \sigma\right)} \sigma \sigma^{T}-\frac{1}{\left(y^{T} H y\right)} H y y^{T} H \tag{2-28}
\end{equation*}
$$

so that E_{I}, to some extent, resembles E_{D}.
The resemblance between E_{I} and E_{D} goes deeper than mere appearance. Fletcher and Powell showed that for a quadratic function f, the DFP formula for E would lead to an exact solution of the minimization problem in N steps, and that the value of H attained at that point would be exactly $G_{0}{ }^{-1}$. The Appendix of this paper contains a proof, by the author's colleague, Dr. Y. Bard, that E_{I} also has this desirable property. In the experimental tests, to be described in Section 4, this is borne out.
3. The Problem of Stability. The derivative of f in the direction s_{k} at x_{k}, is proportional to the expression in Eq. (1-2), i.e.,

$$
\begin{equation*}
(d f / d t)_{k}=\mu_{k} s_{k}{ }^{T} g_{k} \tag{3-1}
\end{equation*}
$$

where t is any parameter measured along s_{k}, and μ is some positive number independent of s_{k}. When s_{k} is found from a formula such as (1-6), we have

$$
\begin{equation*}
(d f / d t)_{k}=-\mu_{k} g_{k}{ }^{T} H_{k} g_{k} \tag{3-2}
\end{equation*}
$$

which is a quadratic form in the components of g_{k}.
Fletcher and Powell showed that, in the DFP method, H_{k} is positive definite for any k, provided that H_{0} is positive definite, and that the line search for minimum f along s_{k} is carried out to sufficient accuracy. This is a very good property of the DFP estimates for G^{-1} since it guarantees that some progress can be made at each step in decreasing f. Fletcher and Powell called this stability.

Neither of the correction formulas (2-27) has this desirable property; this shows up in the numerical trials described in Section 4, in which it frequently happened that $(d f / d t)_{k}>0$, when it was necessary to reverse s_{k}, i.e., to go backwards in order to make f decrease.

The question can now be raised: Is it not possible to formulate a "best" correction problem which will have some sort of stability, i.e., some guarantee that $d f / d t<0$ in the direction calculated from H_{k+1} ? This can be done, but it is a problem involving an inequality constraint, which follows from the condition on $d f / d t$.

Let us assume that we had made a step σ_{k} from x_{k} to x_{k+1}, have evaluated g_{k+1}, and have somehow calculated H_{k+1}, and, from it

$$
\begin{equation*}
s_{k+1}=-H_{k+1} g_{k+1} \tag{3-3}
\end{equation*}
$$

We wish now to assure that, in accordance with the requirement that $(d f / d t)_{k+1}<0$, we have

$$
\begin{equation*}
-g_{k+1}^{T} H_{k+1} g_{k+1}<0 \tag{3-4}
\end{equation*}
$$

In order to make the conditions independent of the scale of g_{k+1}, and to allow a little leeway, we shall instead require:

$$
\begin{equation*}
-g_{k+1}^{T} H_{k+1} g_{k+1} \leqq-\omega g_{k+1}^{T} g_{k+1} \tag{3-5}
\end{equation*}
$$

where ω is a small number. (It may not always be possible to achieve (3-5), but this would only occur if x_{k+1} were at a true stationary point.)

Inequality (3-5) can be changed into an equality constraint by using a device due to Klein [7]. We introduce a new variable u, and set

$$
\begin{equation*}
g_{k+1}^{T} H_{k+1} g_{k+1}-\omega g_{k+1}^{T} g_{k+1}-u^{2}=0 \tag{3-6}
\end{equation*}
$$

From this point on, we shall drop the subscripts, and denote quantities associated with x_{k+1} by a subscript asterisk. Those associated with x_{k} will be unmarked.

We now replace $H_{*}\left(\equiv H_{k+1}\right)$ as follows:

$$
\begin{equation*}
H_{*}=H+E \tag{3-7}
\end{equation*}
$$

and Eq. (3-6) becomes:

$$
\begin{equation*}
g_{*}^{T} E g_{*}+\kappa-u^{2}=0 \tag{3-8}
\end{equation*}
$$

where

$$
\begin{equation*}
\kappa=g_{*}^{T}(H-\omega I) g_{*} \tag{3-9}
\end{equation*}
$$

The composite function analogous to that in Eq. (2-9) is:

$$
\begin{align*}
\Phi \equiv & \frac{1}{2} \operatorname{Tr}\left(W E W E^{T}\right)+\operatorname{Tr}\left[(E y-r) \lambda^{T}\right] \tag{3-10}\\
& +\operatorname{Tr}\left[\Gamma\left(E-E^{T}\right)\right]+\xi\left(g_{*}{ }^{T} E g_{*}+\kappa-u^{2}\right)
\end{align*}
$$

and we have

$$
\begin{align*}
& \partial \Phi / \partial E=W E W+\lambda y^{T}+\Gamma^{T}-\Gamma+\xi g_{*} g_{*}^{T}=0 \tag{3-11a}\\
& \partial \Phi / \partial u=-2 \xi u=0 \tag{3-11b}
\end{align*}
$$

$$
\begin{gather*}
\partial \Phi / \partial \lambda=E y-r=0 \\
\partial \Phi / \partial \Gamma=E^{T}-E=0 . \tag{3-11d}
\end{gather*}
$$

By the same sort of manipulations as used before, the solution for E is

$$
\begin{align*}
E=\tau^{-1}\left\{r y^{T} M+M y r^{T}\right. & -\tau^{-1}\left(y^{T} r-\xi \epsilon^{2}\right) M y y^{T} M \tag{3-12}\\
& \left.-\xi \in\left[M g_{*} y^{T} M+M y g_{*}{ }^{T} M\right]+\xi M g_{*} g_{*}{ }^{T} M\right\}
\end{align*}
$$

where

$$
\begin{align*}
\epsilon & \equiv g_{*}{ }^{T} M y \tag{3-13a}\\
\tau & \equiv y^{T} M y \tag{3-13b}
\end{align*}
$$

In order to apply condition (3-11b), we note that if $u \neq 0$, then ξ must vanish. Hence, we first evaluate E for $\xi=0$, and test for whether

$$
\begin{equation*}
g_{*}{ }^{T} E_{0} g_{*}+\kappa>0 \tag{3-14}
\end{equation*}
$$

(where E_{0} stands for E calculated with $\xi=0$). If this is so, then E_{0} is already satisfactory, and can be added to H.

TABLE 1

Rosenbrock's function (strong search)

	DFP		Var. I		Var. II	
Step	f	NF	f	NF	f	NF
0	24.2	1	24.2	1	24.2	1
2	3.79	23	3.79	23	3.79	23
4	2.89	36	3.04	41	2.11	47
6	2.05	53	2.07	52	1.56	64
8	1.27	71	1.87	74	9.9×10^{-1}	80
10	6.4×10^{-1}	90	6.4×10^{-1}	100	6.9×10^{-1}	90
12	3.7×10^{-1}	106	2.9×10^{-1}	123	4.2×10^{-1}	116
14	2.0×10^{-1}	128	1.4×10^{-1}	141	1.9×10^{-1}	134
16	8.2×10^{-2}	144	5.3×10^{-2}	157	3.7×10^{-3}	154
18	3.6×10^{-2}	161	1.5×10^{-2}	179	6.4×10^{-4}	181
20	3.4×10^{-3}	177	1.4×10^{-3}	204	1.7×10^{-6}	198
22	1.9×10^{-4}	189	2.2×10^{-7}	212	6.6×10^{-10}	209
24	4.8×10^{-8}	197	3.2×10^{-14}	221		
26	(25) 3.2×10^{-12}	200				
T.B.U.		0		10		8

If, on the other hand, (3-14) does not hold, then u cannot differ from zero, but must be set equal to zero, and ξ cannot vanish. The result of substituting (3.12) into (3-8) (with $u=0$) is

$$
\begin{equation*}
\tau^{-1}\left\{2 \eta \epsilon+\tau^{-1}\left(\rho-\xi \epsilon^{2}\right)-2 \xi \theta \epsilon^{2}+\xi \theta^{2}\right\}+\kappa=0 \tag{3-15}
\end{equation*}
$$

where

$$
\begin{align*}
& \tau \equiv y^{T} M y, \quad \eta \equiv g_{*}^{T} r \tag{3-16}\\
& \theta \equiv g_{*}^{T} M g_{*}, \quad \rho \equiv y^{T} r .
\end{align*}
$$

Solving (3-15) for ξ gives

$$
\begin{equation*}
\xi=\frac{\tau \kappa+2 \eta \epsilon+\tau^{-1} \rho \epsilon^{2}}{\tau^{-1} \epsilon^{4}+2 \epsilon^{2} \theta-\theta^{2}} \tag{3-17}
\end{equation*}
$$

M still must be selected, as previously; the most natural choices are as before. However, this analysis will not be carried further here, since no numerical tests have been made on these formulas.

TABLE 2
Rosenbrock's function (weak search)

	DFP		Var. I		Var. II	
Step	f	NF	f	NF	f	NF
0	2.42	1	2.42	1	2.42	1
4	2.33	16	2.33	16	1.90	17
8	1.90	30	1.45	35	1.50	30
12	1.39	49	8.4×10^{-1}	54	5.4×10^{-1}	41
16	1.10	62	2.7×10^{-1}	75	3.0×10^{-1}	56
20	6.5×10^{-1}	78	9.2×10^{-3}	90	5.1×10^{-2}	74
24	4.8×10^{-1}	97	8.0×10^{-5}	105	1.3×10^{-2}	91
28	3.3×10^{-1}	113	8.9×10^{-7}	115	9.0×10^{-8}	112
32	2.5×10^{-1}	130	3.9×10^{-9}	136	$(31) 0.0$	122
36	1.0×10^{-1}	148	$(33) 8.7 \times 10^{-13}$	138		
40	1.2×10^{-2}	161				
44	1.5×10^{-3}	175				
48	4.3×10^{-8}	186				
56	$(51) 0.0$	192				
T.B.U.						

4. Numerical Experiments. A program was written which enabled a comparison to be made of the three H-corrections; viz., E_{D}, E_{I} and $E_{I I}$. This program used the same line-search subroutine for all three methods, with the same set of stopping
thresholds, etc. Provision was made for printing out the step number k, the values of f_{k}, g_{k}, H_{k}, etc. at each step. Whenever, a nonnegative starting directional derivative was detected, a notation to this effect was printed out, and the sign of s_{k} was reversed. The problem was considered solved when the Euclidean norm of g_{k} fell below 10^{-4}. An additional test was made on the magnitude of σ_{k}; when this fell below 10^{-6} before the minimum was reached, the method was considered to have failed. The reason for this is that when $|d f / d t|$ was too small, it was impossible to

TABLE 3

Powell's function (strong search)

	DFP		Var. I		Var. II	
Step	f	NF	f	NF	f	NF
0	2.15×10^{-2}	1	2.15×10^{-2}	1	2.15×10^{2}	1
4	2.9×10^{-2}	46	3.0×10^{-2}	46	2.2	49
8	1.9×10^{-3}	69	1.6×10^{-3}	73	3.5×10^{-3}	78
12	1.2×10^{-6}	102	1.8×10^{-5}	103	1.1×10^{-3}	101
16	1.2×10^{-9}	123	3.2×10^{-8}	138	1.0×10^{-3}	126
20	(18) 4.9×10^{-11}	134	(19) 1.5×10^{-10}	163	1.2×10^{-3}	151
24					1.1×10^{-4}	178
28					3.9×10^{-6}	204
32					3.4×10^{-7}	226
36					3.4×10^{-7}	257
40					3.1×10^{-7}	279
44					3.1×10^{-7}	304
48					2.6×10^{-7}	341
52					9.6×10^{-8}	362
56					7.5×10^{-8}	391
60					5.9×10^{-8}	431
64					5.3×10^{-8}	457
68					4.7×10^{-8}	498
72					(69) 4.5×10^{-8}	501
Г.в.U		0		8		33

TABLE 4

Powell's function (weak search)

	DFP		Var. I		Var. II	
Step	f	NF	f	NF	f	NF
0	2.15×10^{2}	1	2.15×10^{2}	1	2.15×10^{2}	1
4	9.0	16	8.5	16	1.6×10	18
8	3.2×10^{-2}	29	4.4×10^{-2}	28	2.2×10^{-1}	26
12	3.6×10^{-4}	43	2.7×10^{-2}	49	2.5×10^{-2}	41
16	1.6×10^{-4}	61	6.1×10^{-7}	63	5.0×10^{-4}	58
20	1.0×10^{-4}	75	1.4×10^{-7}	74	1.9×10^{-5}	72
24	5.0×10^{-5}	91	7.4×10^{-8}	96	1.4×10^{-5}	88
28	2.5×10^{-6}	111	4.7×10^{-10}	113	6.5×10^{-6}	102
32	8.7×10^{-8}	125	(29)2.1×10 ${ }^{-10}$	118	5.6×10^{-6}	119
36	2.6×10^{-9}	139			4.4×10^{-6}	134
40	(37) 2.4×10^{-10}	144			3.1×10^{-6}	153
44					5.4×10^{-7}	174
48		-			1.2×10^{-7}	191
52					4.8×10^{-8}	206
56					(53)9.8×10 ${ }^{-8}$	211
T.B.U.		0		9		22

obtain a detectable change in f in the s_{k}-direction in any reasonable step. This was the result, usually, of a poorly chosen direction s_{k} due to the lack of positive definiteness of H_{k}, which pointed up the desirability of this attribute.

There were two line searches used in the tests; in the first, which we shall call the "strong" one, the search was terminated when a certain quantity, estimated from current and past values of f, fell below 10^{-2}. This quantity is the lowest-order dimensionless ratio associated with minimization, and it is given by:

$$
\begin{equation*}
\rho \equiv f^{\prime \prime \prime} f^{\prime} / f^{\prime \prime 2} \tag{4-1}
\end{equation*}
$$

where the primes denote directional derivatives of the various orders. This ratio is closely connected to the error made in estimating the minimum of a nonquadratic
function by an interpolated parabola, and does not depend on the scale of f or on that of the independent variable along s_{k}, so that this termination criterion is independent of whether the minimum is a sharp one or a flat one, and gave uniformly quite accurate minima.

TABLE 5

```
Fletcher-Powell's function (strong search)
```

	DFP		Var. I		Var. II	
Step	f	NF	f	NF	f	NF
0	2.5×10^{3}	1	2.5×10^{3}	1	2.5×10^{3}	1
2	1. 3×10^{2}	19	1.29×10^{2}	19	1.29×10^{2}	19
4	2.7×10	40	2.7×10	46	5.6×10	37
6	1. 1×10	48	1.1×10	67	1. 2×10	52
8	6.5	68	1.0×10	79	2.8	64
10	2.2	84	7.6	99	1.7	85
12	7.0×10^{-1}	100	3.1	114	8.5×10^{-1}	98
14	1.7×10^{-1}	114	1.9	131	4.4×10^{-1}	110
16	2.6×10^{-2}	131	6.3×10^{-1}	144	3.3×10^{-1}	124
18	2.2×10^{-4}	139	7.5×10^{-2}	167	4.4×10^{-2}	138
20	4.2×10^{-10}	145	9.3×10^{-3}	179	3.1×10^{-2}	161
22	(21) 2.1×10^{-13}	148	7.7×10^{-5}	187	1.2×10^{-2}	181
24			2.6×10^{-12}	194	4.5×10^{-3}	192
26					2.8×10^{-5}	201
28					9.4×10^{-7}	210
30					2.6×10^{-7}	223
32					3.4×10^{-8}	237
34					1.1×10^{-11}	245
36					(35) 6.6×10^{-15}	252
T.B.U	.	0		10		10

The second line search-the "weak" one, terminated as soon as a point along s_{k} was found at which f was smaller than the values at the points immediately to
its left and to its right; i.e., as soon as a point was "bracketed," it was taken as the solution point of the line search. The significance of this weakening is twofold: on the one hand, the successive directions $\left\{s_{k}\right\}$ will usually not be conjugate, since this depends on finding a rather accurate minimum in the search, and this causes the Fletcher-Powell proof of positive definiteness to break down. On the other hand, many fewer time-consuming evaluations are required before the search is terminated. Dr. M. J. D. Powell, who suggested trying the "weak" search, was interested in the outcome of this competition, with regard to overall efficiency.

TABLE 6

```
Fletcher-Powell's function (weak search)
```

	DFP		Var. I		Var. II	
Step	f	NF	f	NF	f	NF
0	2.5×10^{3}	1	2.5×10^{3}	1	2.5×10^{3}	1
2	1. 2×10^{3}	11	1.2×10^{3}	11	1.2×10^{3}	11
4	3.2×10	18	3.3×10	18	9.8×10^{2}	18
6	1.5×10	24	(5) 3.3×10	39	2.1×10^{2}	22
8	1.2×10	31	failed		4.0×10	28
10	9.6	43			2.7×10	37
12	8.4	55			2.3×10	41
14	6.1	65			2.2×10	47
16	4.5	89			2.1×10	54
18	4.4	113			2.0×10	74
20	4.4	126			1.9×10	81
22	4.4	132			1.8×10	91
24	4.4	143			1.7×10	98
26	4.4	147			1.7×10	108
28	4.4	152			1.6×10	127
30	4.4	159			1.2×10	137
32	failed				1.0×10	143
34					1.0×10	163
36					failed	
+ B.U		3		0		5

TABLE 7

Steps to Decreasef to Below Set Level
 Box's 2D function (strong search)

	Starting Point					
Method	Level	I	I I	I II	IV	V
	1	3	1	1	1	1
	10-1	6	1	26	1	1
DFP	10-2	8	3	39	7	1
	10-4	10	6	42	10	1
	10-8	11	7	44	11	3
Total	f. evals.	69	66	443	91	34
	1	3	1	1	1	1
	10-1	6	1	failed	1	1
Var. I	10-2	7	3		4	1
	10-4	9	5		6	1
	10-8	10	7		7	3
Total	f. evals.	81	66		56	34
	1	3	1	1	1	1
Var.II	10-1	6	1	6	1	1
	10-2	7	3	8	4	1
	10-4	10	5	9	6	1
	10-8	12	7	11	7	3
Total	f. evals.	93	71	88	59	33

The tests were made on four "difficult" functions which have been used previously to test other minimization methods. These are:
(a) Rosenbrock's function (tested in [4])

$$
\begin{equation*}
f\left(x_{1}, x_{2}\right)=100\left(x_{2}-x_{1}^{2}\right)^{2}+\left(1-x_{1}\right)^{2} \tag{4-2}
\end{equation*}
$$

with a starting point of $(-1.2,1.0)$.
(b) Powell's function (tested in [4])

$$
\begin{align*}
f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)= & \left(x_{1}-10 x_{2}\right)^{2}+5\left(x_{3}-x_{4}\right)^{2} \tag{4-3}\\
& +\left(x_{2}-2 x_{3}\right)^{4}+10\left(x_{1}-x_{4}\right)^{4}
\end{align*}
$$

with a starting point of $(3,-1,0,1)$.
(c) Fletcher-Powell function (tested in [4])

$$
\begin{equation*}
f\left(x_{1}, x_{2}, x_{3}\right)=100\left\{\left(x_{3}-10 \theta\right)^{2}+(r-1)^{2}\right\}+x_{3}{ }^{2} \tag{4-4}
\end{equation*}
$$

where $r=\left(x_{1}{ }^{2}+x_{2}{ }^{2}\right)^{1 / 2}$ and

$$
\begin{aligned}
& \theta=\frac{1}{2 \pi} \arctan \left(\frac{x_{2}}{x_{1}}\right), \quad \text { if } x_{1}>0 \\
& \theta=\frac{1}{2 \pi} \arctan \left(\frac{x_{2}}{x_{1}}\right)+\frac{1}{2}, \quad \text { if } x_{1}<0
\end{aligned}
$$

with a starting point of $(-1,0,0)$.
(d) Box's function [1]

$$
\begin{equation*}
f\left(x_{1}, x_{2}, x_{3}\right)=\sum_{\mu}\left\{\left[e^{\mu x_{1}}-e^{\mu x_{2}}\right]-x_{3}\left[e^{-\mu}-e^{-10 \mu}\right]\right\}^{2} \tag{4-5}
\end{equation*}
$$

where the summation is over the values of $\mu=.1, .2, \cdots, 1$. There are two cases considered:

Case 1. x_{3} is fixed at the value 1 , and the minimum with respect to x_{1} and x_{2} is sought.

Case 2. The minimum in terms of x_{1}, x_{2} and x_{3} is sought.
The starting points were those chosen by Box, and were
Case 1.

$$
\begin{aligned}
\left(x_{1}, x_{2}\right)= & (0,0) ;(0,20) ;(5,0) \\
& (5,20) ;(2.5,10)
\end{aligned}
$$

Case 2.

$$
\begin{aligned}
\left(x_{1}, x_{2}, x_{3}\right)= & (0,20,1) ;(2.5,10,10) ; \\
& (0,0,10) ;(0,10,1) \\
& (0,10,10) ;(0,10,20) \\
& (0,20,0) ;(0,20,10) \\
& (0,20,20)
\end{aligned}
$$

The results of the trials are shown in Tables 1-10, which are largely self-explanatory. They are modelled after the tables published by Fletcher and Powell, and by Box. A few explanations with regard to certain markings are, however, in order.
(a) Whenever a sequence terminates at a step whose number is not in the table, the actual terminal step number is placed in parentheses just preceding the f-value reached.
(b) The NF column contains the number times the function f was evaluated up to the completion of the step in question. The gradient at this point would have been evaluated a number of times equal to the step number.
(c) The entry "T.B.U." refers to the total number of "back-ups" due to $d f / d t$ being positive.
(d) In Tables 7 through 10, the starting point numbers refer to the lists given above for the Box cases.
(e) In Tables 9 and 10, the asterisk indicates that the "wrong" solution was found (see Box [1]). This does not mean that the method failed, but that the starting point was unfortunate.

TABLE 8

```
Steps to Decrease f to Below Set Level
Box's 2D function (weak search)
```

Merhod	Starting Point					
	Leve1	I	II	III	IV	V
DFP	1	2	2	1	1	1
	10-1	7	4	30	3	1
	10-2	8	77	66	36	2
	10-4	11	137	95	39	4
	10-8	12	142	100	42	30
Total	f. evals.	45	628	441	204	114
Var. I	1	2	2	1	1	1
	10-1	7	4	failed	3	1
	10-2	10	11		9	2
	10-4	12	14		12	4
	10-8	14	16		15	9
Total	f. evals.	54	60		67	38
Var. II	1	2	2	1	1	1
	10-1	4	4	11	3	1
	10-2	7	9	14	9	2
	10-4	10	13	18	11	4
	10-8	16	17	20	16	10
Total	f. evals.	74	69	97	78	39

5. Conclusions. There are no very clear-cut implications in the results of the numerical experiments. In certain cases, the DFP method is best, and in others the worst. "Var I" seems to be competitive with the DFP methods, but "Var II" is almost always worse than the others. It is also clear that sometimes the weak search is more economical and sometimes not. It is certainly not as dependable as the strong search.
Steps to Decrease f Below Set Level
Box's $3 D$ function (strong search)

	Starting Point									
Method	Level	I	I I	I I I	I V	V	V I	V I I	V I I I	I X
	1	1	1	2	1	1	5	1	2	5
	10-1	1	1	2	1	1	7	1	4	7
DFP	10-2	6	2	2	3	4	9	1	14	15
	10-4	11	4	7	4	11	16	1	23	18
	10-8	14	9	10	$6\left(10^{-6}\right)$	13	19	1	25	20
Total	evals.	114	60	86*	30	110	127	8*	228	141
		1	1	2	1	1	5	1	2	5
	10-1	1	1	2	1	1	7	1	4	7
Var. I	10-2	6	2	2	3	4	9	1	9	12
	10-4	9	4	5	$4{ }^{6}$	8	13	1	10	15
	10-8	10	8	10	$7\left(10^{-}\right)$	11	16	1	13	17
Total	evals	64	62	92*	45	88	99	8*	108	104
	1	1	1	2	1	1	5	1	2	5
	10-1	1	1	2	1	1	7	1	4	7
Var. II	10-2	31	2	2	3	4	9	1	13	13
	10-4	failed	3	5	4	7	25	1	17	19
	10-8		15	8	$12\left(10^{-6}\right)$	$45\left(10^{-7}\right)$	44	1	30	26
Total	evals.		102	77 *	83	445	314	8*	237	186

TABLE 10
Steps to Decrease f to Below Set Level

	Starting Point									
Method	Level	I	I I	I I I	IV	V	V I	VII	VII I	IX
	1	2		9	1	11	5	1	9	5
	10-1	4	failed	9	2	11	5	1	10	5
DFP	10-2	41		10	4	45	7	1	45	94
	10-4	79		11	6	68	14	1	82	179
	10-8	85		13	$9\left(10^{-6}\right)$	72	71	1	89	187
Total	f. evals.	375		36 *	25	309	322	4*	395	866
	1	2	6	8	1	8	11	1	6	10
	10-1	4	8	10	2	11	13	1	9	11
Var. I	10-2	11	11	10	4	21	21	1	19	20
	10-4	14	12	11	5	25	23	1	23	24
	10-8	17	24	12	$8\left(10^{-6}\right)$	32	28	1	29	31
Total	f.evals.	66	90	35*	26	128	109	4*	129	137
	1	2	5	13	1	10	7	1	8	6
	10-1	4	6	14	2	15	9	1	11	11
Var. II	10-2	37	8	15	4	22	14	1	23	15
	10-4	51	25	16	8	33	24	1	32	22
	10-8	59	28	20	$12\left(10^{-6}\right)$	39	$27\left(10^{-8}\right)$	1	failed	33
Total	f.evals.	235	122*	62*	37	143	119	4*		145

One fact is clear: it is possible to derive efficient DFP-like correction formulas by variational methods. In fact, by suitably choosing M, it is possible to obtain the DFP formula by variational means. This has been done by Dr. D. Goldfarb, who has also derived other important formulas in this manner. (See his paper [11] which follows the present one.)

This sort of thing suggests that it might be possible to derive other types of correction formulas on variational grounds. The writer has in fact derived a correction to the gradient, based on f evaluations alone (and an assumed H), but it has so far not been tested numerically.
6. Acknowledgement. I wish to thank Dr. R. T. Mertz, whose remark, during one of our discussions, about the advisability of looking for the "best" H-correction, consistent with the DFP condition, started me on the variational path. I am also grateful to Dr. D. Goldfarb, who pointed out various errors in the manuscript and a substantial mathematical error in my attempt to derive Davidon's formula variationally.

APPENDIX

Proof that $H_{k} \rightarrow G^{-1}$ for the E_{I} Correction

By Yonathan Bard

Theorem. Let $f(x)=a+g^{T} x+\frac{1}{2} x^{T} G x$ be a quadratic function of the N-dimensional vector x, H_{0} any nonsingular symmetric matrix, and x_{0} an arbitrary point. Let the following quantities be defined iteratively, for $i=0,1, \cdots$

$$
\begin{align*}
g_{i} & \equiv \nabla f\left(x_{i}\right), \tag{A1}\\
\sigma_{i} & \equiv-\alpha_{i} H_{i} g_{i}, \tag{A2}
\end{align*}
$$

with α_{i} chosen so as to make $\phi_{i}(\alpha)=f\left(x_{i}+\alpha s_{i}\right)$ stationary (line search).

$$
\begin{align*}
x_{i+1} & =x_{i}+\sigma_{i}, \tag{A3}\\
y_{i} & \equiv g_{i+1}-g_{i}, \tag{A4}\\
\tau_{i} & \equiv y_{i}^{T} H_{i} y_{i}, \tag{A5}\\
A_{i} & \equiv \sigma_{i} y_{i}{ }^{T} H_{i}, \tag{A6}\\
B_{i} & \equiv H_{i} y_{i} y_{i}^{T} H_{i}, \tag{A7}\\
H_{i+1} & =H_{i}+\frac{1}{\tau_{i}}\left\{A_{i}+A_{i}{ }^{T}-B_{i}-\left(\frac{y_{i}^{T} \sigma_{i}}{\tau_{i}}\right) B_{i}\right\} . \tag{A8}
\end{align*}
$$

This is equivalent to Eq. (2-27a) (with $\tau_{i} \equiv y_{i}{ }^{T} H_{i} y_{i}$).
Then, if either:
(a) G is nonsingular and the $\sigma_{i}(i=0,1, \cdots, N-1)$ are linearly independent, or
(b) G is positive definite and the $\sigma_{i}(i=0,1, \cdots, N-1)$ are nonzero, we have

$$
\begin{equation*}
H_{N}=G^{-1} \tag{A9}
\end{equation*}
$$

and
(A10)

$$
g_{N}=0, i . e, x_{N}=-G^{-1} g
$$

(the stationary point of $f(x)$).
Proof. The proof follows exactly the argument presented by Fletcher and Powell for Davidon's method (except for a minor error in Fletcher and Powell's induction argument; their Eq. (10) makes no sense for $k=1$).

By definition

$$
\begin{equation*}
g_{i}=g+G x_{i} \tag{A11}
\end{equation*}
$$

Hence, $y_{i} \equiv g_{i+1}-g_{i}=G\left(x_{i+1}-x_{i}\right)$, i.e.,

$$
\begin{equation*}
y_{i}=G \sigma_{i} . \tag{A12}
\end{equation*}
$$

We have

$$
H_{i+1} G \sigma_{i}=H_{i+1} y_{i}=H_{i} y_{i}+\left(1 / \tau_{i}\right)\left(A_{i} y_{i}+A_{i}{ }^{T} y_{i}-B_{i} y_{i}-\left(y_{i}{ }^{T} \sigma_{i} / \tau_{i}\right) B_{i} y_{i}\right) .
$$

But $A_{i} y_{i}=\tau_{i} \sigma_{i} ; A_{i}{ }^{T} y_{i}=y_{i}{ }^{T} \sigma_{i} H_{i} y_{i} ; B_{i} y_{i}=H_{i} y_{i}$. Hence, after cancellations:

$$
\begin{equation*}
H_{i+1} G \sigma_{i}=\sigma_{i} \tag{A13}
\end{equation*}
$$

From the choice of α_{i}, it is clear that

$$
\begin{equation*}
g_{i+1}^{T} \sigma_{i}=0 \tag{A14}
\end{equation*}
$$

Since $\sigma_{i+1}^{T} G \sigma_{i}=-\alpha_{i+1} g_{i+1}^{T} H_{i+1} G \sigma_{i}=-\alpha_{i+1} g_{i+1}^{T} \sigma_{i}$ (from (A13)), it follows that

$$
\begin{equation*}
\sigma_{i+1}^{T} G \sigma_{i}=0 \tag{A15}
\end{equation*}
$$

With $i=0$, Eqs. (A13) and (A15) demonstrate that for $k=1$,

$$
\begin{array}{rlrl}
H_{k} G \sigma_{i} & =\sigma_{i}, & & (0 \leqq i<k) \\
\sigma_{j}^{T} G \sigma_{i} & =0, & (0 \leqq i<j \leqq k) \tag{A17}
\end{array}
$$

Let us assume that (A16) and (A17) are true for some value k. We shall prove that they must then be true for $k+1$. Using (A16) and then (A12), we have

$$
y_{k}^{T} H_{k} G \sigma_{i}=y_{k}^{T} \sigma_{i}=\sigma_{k}^{T} G \sigma_{i}, \quad(0 \leqq i<k)
$$

Thus, from (A17),

$$
\begin{equation*}
y_{k}{ }^{T} H_{k} G \sigma_{i}=0 \tag{A18}
\end{equation*}
$$

It follows that

$$
\begin{aligned}
A_{k} G \sigma_{i} & =\sigma_{k} y_{k}^{T} H_{k} G \sigma_{i}=0 \quad(\text { from (A18)) }, \\
A_{k}{ }^{T} G \sigma_{i} & =H_{k} y_{k} \sigma_{k}^{T} G \sigma_{i}=0 \quad(\text { from (A17)) }, \\
B_{k} G \sigma_{i} & =H_{k} y_{k} y_{k}^{T} H y_{k} G \sigma_{i}=0 \quad(\text { from (A18)) }
\end{aligned}
$$

and

$$
\begin{align*}
H_{k+1} G \sigma_{i}=H_{k} G \sigma_{i}+\frac{1}{\tau_{k}}\left\{A_{k} G \sigma_{i}+\right. & A_{k} G \sigma_{i} \tag{A19}\\
& \left.-B_{k} G \sigma_{i}-\frac{y_{k}^{T} \sigma_{k}}{\tau_{k}} B_{k} G \sigma_{i}\right\}=H_{k} G \sigma_{i}=\sigma_{i}
\end{align*}
$$

(from (A16), and (A13), (with $i=k$ in the latter), we have

$$
\begin{equation*}
H_{k+1} G \sigma_{i}=\sigma_{i}, \quad(0 \leqq i<k+1) \tag{A20}
\end{equation*}
$$

Now, for any $0 \leqq i<k$,

$$
g_{k+1}=g_{i+1}+G\left(x_{k+1}-x_{i+1}\right)=g_{i+1}+\sum_{j=i+1}^{k} G \sigma_{j}
$$

whence

$$
\begin{equation*}
g_{k+1}^{T} \sigma_{i}=g_{i+1}^{T} \sigma_{i}+\sum_{j=i+1}^{k} \sigma_{j}^{T} G \sigma_{i}=0 \tag{A21}
\end{equation*}
$$

Therefore, substituting (A20) in (A21),

$$
\begin{equation*}
g_{k+1}^{T} H_{k+1} G \sigma_{i}=0 \tag{A22}
\end{equation*}
$$

But, from (2), $g_{k+1}^{T} H_{k+1}=-\left(1 / \alpha_{k+1}\right) \sigma_{k+1}^{T}$, and (A22) becomes

$$
\begin{equation*}
\sigma_{k+1}^{T} G \sigma_{i}=0, \quad(0 \leqq i<k) \tag{A23}
\end{equation*}
$$

(assuming $\alpha_{k+1} \neq 0$). Again, combining (A17), (A23) and (A15) (with $i=k$), we have

$$
\begin{equation*}
\sigma_{j}{ }^{T} G \sigma_{i}=0, \quad(0 \leqq i<j \leqq k+1) . \tag{A24}
\end{equation*}
$$

Equations (A20) and (A24) are equivalent to (A16) and (A17), respectively, with k replaced by $k+1$. Thus, (A16) and (A17) are proven by induction for all k.

Consider the matrix $C_{N} \equiv H_{N} G$. According to (A16), $\sigma_{i}(i=0,1, \cdots, N-1)$ are all eigenvectors of C_{N} with eigenvalues 1 . These vectors are linearly independent, either from assumption (a) or from assumption (b) combined with Eq. (17), for were, say, $\sigma_{m}=\sum_{i \neq m} \mu_{i} \sigma_{i}$, then, with $j \neq m$,

$$
\sigma_{m}^{T} G \sigma_{j}=\sum_{i \neq m} \mu_{i} \sigma_{i}^{T} G \sigma_{j}=\mu_{j} \sigma_{j}^{T} G \sigma_{i}=0
$$

from (A17), but this is impossible if $\sigma_{j} \neq 0$ and G is definite.
Thus, there exists a nonsingular $N \times N$ matrix Δ (whose i th column is σ_{i+1}) such that $H_{N} G \Delta=\Delta$. Postmultiplying by $\Delta^{-1} G^{-1}$, we have $H_{N}=G^{-1}$ as was to be proven. Also, from (A21), g_{N} must be orthogonal to the $N-1$ independent vectors $\sigma_{0}, \sigma_{1}, \cdots, \sigma_{N-2}$, and from (A14), g_{N} is also orthogonal to σ_{N-1}. Thus, $g_{N}=0$, and x_{N} is the stationary point of $f(x)$.

IBM
New York Scientific Center
New York, New York 10021

[^1]5. J. Greenstadt, "On the relative efficiencies of gradient methods," Malh. Comp., v. 21, 1967, pp. 360-367. MR 36 \#6122.
6. J. Greenstadt, Variations on Variable-Metric Methods, IBM NY Scientific Center Report 320-2901, June, 1967.
7. B. Klein, "Direct use of extremal principles in solving certain optimizing problems involving inequalities,' J. Operations Res. Soc. Amer., v. 3, 1955, pp. 168-175. MR 16, 937.
8. W. C. Davidon, "Variance algorithm for minimization," Comput. J., v. 10, 1968, pp. 406-410. MR 36 \#4790.
9. C. G. Broyden, "Quasi-Newton methods and their application to function minimisation," Math. Comp., v. 21, 1967, pp. 368-381. MR 36 \#7317.
10. P. Wolfe, Another Variable-Metric Method, Working Paper, 1967.
11. D. Goldfarb, "A family of variable-metric methods derived by variational means," Math. Comp., v. 24, 1970, pp. 23-26.

[^0]: Received August 27, 1968, revised June 30, 1969.
 AMS Subject Classifications. Primary 30; Secondary 10.
 Key Words and Phrases. Variable-metric, Davidon method, unconstrained minimization, variational method.

 * By which we mean $f\left(x_{1}, x_{2}, \cdots, x_{N}\right) . f$ is assumed twice-differentiable.

[^1]: 1. M. J. Box, "A comparison of several current optimization methods, and the use of transformations in constrained problems," Comput.J., v. 9, 1966, pp. 67-77. MR 33 \#870.
 2. J. B. Crockett \& H. Chernoff, "Gradient methods of maximization," Pacific J. Math., v. 5, 1955, pp. 33-50. MR 17, 790.
 3. W. C. Davidon, Variable Metric Method for Minimization, AEC Res. and Develop. Report, ANL-5990 (Rev.), 1959.
 4. R. Fletcher \& M. J. D. Powell, "A rapidly convergent descent method for minimization," Comput. J., v. 6, 1963/64, pp. 163-168. MR 27 \#2096.
