
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 32, NO. 6, DECEMBER 2002 711

Varieties of Learning Automata: An Overview
M. A. L. Thathachar, Fellow, IEEE,and P. S. Sastry, Senior Member, IEEE

Abstract—Automata models of learning systems introduced
in the 1960s were popularized as learning automata (LA) in
a survey paper in 1974 [1]. Since then, there have been many
fundamental advances in the theory as well as applications of
these learning models. In the past few years, the structure of LA
has been modified in several directions to suit different applica-
tions. Concepts such as parameterized learning automata (PLA),
generalized learning automata (GLA), and continuous action-set
learning automata (CALA) have been proposed, analyzed, and
applied to solve many significant learning problems. Furthermore,
groups of LA forming teams and feedforward networks have
been shown to converge to desired solutions under appropriate
learning algorithms. Modules of LA have been used for parallel
operation with consequent increase in speed of convergence. All
of these concepts and results are relatively new and are scattered
in technical literature. An attempt has been made in this paper
to bring together the main ideas involved in a unified framework
and provide pointers to relevant references.

Index Terms—Continuous action-set learning automata
(CALA), generalized learning automata (GLA), modules of
learning automata, parameterized learning automata (PLA),
teams and networks of learning automata.

I. INTRODUCTION

I NVESTIGATION of learning automata (LA) began in the
erstwhile Soviet Union with the work of Tsetlin [2], [3].

These early models were referred to asdeterministic and sto-
chastic automata operating in random environments.Further
work was taken up by Fu and others in the U.S. in the 1960s
[4]–[6]. In its current form, an LA roughly corresponds to what
was calledvariable structure stochastic automaton[7] in the
early models. The termlearning automata (LA)was first pub-
licized in the survey paper by Narendra and Thathachar [1]
though earlier uses of this term are known [8], [9]. Since then,
the field has seen much development and a number of books
and survey papers have appeared [10]–[13]. The notion of re-
inforcement learning [14], which has received a lot of attention
in recent years, represents a development closely related to the
work on LA.

Systems built with LA have been successfully employed in
many difficult learning situations over the years. This has also
led to the concept of LA being generalized in a number of di-
rections in order to handle various learning problems. However,
some of these extensions to the structure of LA are not so well
known. This paper is aimed at summarizing the main results
available on such extended notions of LA.

Manuscript received November 15, 2001; revised March 1, 2002. This work
was supported by AICTE through an Emeritus Fellowship. This paper was rec-
ommended by Associate Editor M. S. Obaidat.

The authors are with the Department of Electrical Engineering, Indian
Institute of Science, Bangalore 560012, India (e-mail: malt@ee.iisc.ernet.in;
sastry@ee.iisc.ernet.in).

Publisher Item Identifier S 1083-4419(02)06464-6.

The original notion of LA corresponds to what is calledfinite
action-set learning automata (FALA).This type of LA has been
studied extensively. In many applications, one needs to use a
number of LA and often this leads to teams or networks of LA,
which will be discussed in Section II. In such situations, almost
all of the current algorithms available for FALA assure conver-
gence only to a local maximizer of the reinforcement signal.
One can get convergence to global maximum by modification of
the learning algorithm which entails a random walk term being
superposed on the probability updating. This in turn needs a
parameterization of action probabilities and leads toparame-
terized learning automata (PLA), which are considered in Sec-
tion III. In a number of random environments which naturally
appear in pattern recognition and control problems, the action
probabilities have to be updated based upon thecontext vector,
which is typically a feature vector or a state vector. This leads to
another modified LA structure which has been calledgeneral-
ized learning automata (GLA). This is discussed in Section IV.
In situations where the objective of learning is a continuous
valued parameter, the values of which cannot be discretized, the
action-set corresponds to an interval over the real line. Such con-
tinuous action spaces can be handled bycontinuous action-set
learning automata (CALA),which are described in Section V.
Rapid convergence of LA can be achieved by their parallel oper-
ation. Such parallel operation through the use of modules of LA,
which result in increased speed of convergence, is the subject of
Section VI. In Section VII, we illustrate the utility of some of
the LA models on a pattern classification example. Pointers to
some of the recent applications of automata models are provided
in SectionVIII. Finally, SectionIX concludes the paper.

The common theme running through our discussion of all
the models presented here is an optimization view of learning
briefly outlined below.

Tsypkin [15] was among the first to formalize a unifying
framework for all learning problems as that of optimizing a per-
formance index

(1)

where is a functional of the parameter vectorand
observation vector , and is the space of all . The per-
formance index is the expectation of with respect to the
random , the distribution of which is given by . The special
feature of learning problems is that the probability distribution

is unknown. Hence, given a, the value of cannot be
calculated. We are required to find the optimizer ofbased on
experience with a sequence of’s drawn according to the un-
known distribution .

As an example of the above structure, a two-class pat-
tern recognition problem can be formulated by choosing

1083-4419/02$17.00 © 2002 IEEE

712 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 32, NO. 6, DECEMBER 2002

, where is a (random)
training sample with as the feature vector and as its
associated class label; is the output of a classifier,
with parameter vector , on ; and is an appropriate loss
function. If we consider the case of a 0–1 loss function, then

would be the probability of wrong classification by the
classifier corresponding to the parameter vector. Now the
problem is how to choose some “good” parameterization for a
desirable family of classifiers and then search for a minimizer
of using only values of on some random observations.

The distinguishing characteristic of automata-based learning
is that the search for the optimizing parameter vector is con-
ducted in the space of probability distributions defined over the
parameter space, rather than in the parameter space itself. While
this may appear as complicating the problem further, it means
we do not need to assume that the space is isomorphic to some
real Euclidean space or even that it is a metric space. This per-
mits a great deal of flexibility and allows one to work with, for
example, rich families of classifiers in a pattern recognition con-
text. The different LA models that we discuss in this paper are all
motivated by the requirements of such an optimization frame-
work.

II. FINITE ACTION-SET LEARNING AUTOMATA (FALA)

An LA is an adaptive decision-making device that learns the
optimal action out of a set of actions through repeated interac-
tions with a random environment. The two characteristic fea-
tures of LA are that the action choice is based on a probability
distribution over the action-set and it is this probability distribu-
tion that is updated at each instant based on the reinforcement
feedback from the environment. Traditionally, the action-set is
always considered to be finite. That is why we termed this tradi-
tional model of LAfinite action-set learning automata or FALA.
In this section, we briefly describe the FALA model and how a
number of FALA can be configured as teams or networks for
solving complex problems.

Let , , be theset of actionsavail-
able. At each instant, the automaton chooses anaction

, at random, based on its currentaction probability distribution
, .1 (Here,

and ,). The action chosen
by the automaton is the input to the environment which responds
with a stochasticreactionor reinforcement,
where is the set of possible reactions. Higher values of the
reinforcement signal are assumed more desirable. Letdenote
the expected value of given . Then is called
the reward probabilityassociated with action , .
Define the index by . Then the action is
called theoptimal action. In the above, we have implicitly as-
sumed that , , and hence the identity of the optimal
action are not time-varying. In this case, the environment is said
to bestationary.Otherwise, the environment is said to benon-
stationary.

The LA has no knowledge of the reward probabilities. The
objective for the automaton is to identify the optimal action.
This is to be achieved through a learning algorithm that updates,

1The superscriptt denotes transpose.

at each instant , the action probability distribution into
using the most recent interaction with the environment,

namely, the pair .
Definition 2.1: A learning algorithm is said to be-optimal

if given any , we can choose parameters of the learning
algorithm such that with probability greater than

From the above definition, it is easily seen that-optimality
is achieved if and only if .
Thus, the objective of the learning scheme is to maximize the
expected value of the reinforcement received from the environ-
ment. Hence, an equivalent way of characterizing the goal of an
automata algorithm is

where the optimization is over the-dimensional simplex, that
is, over all possible action probability vectors. (For brevity, such
expectations will be denoted as in the sequel.) This is
the manner in which LA are most often used in applications.
The actions of the automaton represent the possible values of
the parameters and the automata algorithms search in the space
of probability distributions defined over the parameter space.
This special characteristic of the automata algorithms defines
the niche in the application domain where the automata algo-
rithms are most useful.

There are many learning algorithms that are proven to be
-optimal, e.g., linear reward inaction (), estimator algo-

rithms such as the pursuit algorithm, etc. In these algorithms, the
action probabilities are treated as continuous variables. Another
class of FALA are the so-called discrete automata where the ac-
tion probabilities are quantized. There are discrete versions of

and pursuit algorithms which are-optimal and which,
generally, exhibit faster rate of convergence (see, for example,
[16]–[21] for more details of FALA algorithms).

A. Games of FALA

As briefly outlined earlier in this paper, a single automaton
is generally sufficient for learning the optimal value of one pa-
rameter. However, for multidimensional optimization problems,
we need a system consisting of as many automata as there are
parameters. One possible configuration for such a system of au-
tomata is a game of automata.

Let be the automata involved in an-player
game. Each play of the game consists of each of the automata
players choosing an action and then getting thepayoffsor re-
inforcements from the environment for this choice of actions
by the group of LA. Let be the action prob-
ability distributions of the automata. Then, at each instant

, each of the automata chooses an action indepen-
dently and at random according to , . This set
of actions is input to the environment which responds with

random payoffs, which are supplied as reinforcements to the
corresponding automata. Let denote the reinforcement to
automaton for the choice of actions made at instant. We

THATHACHAR AND SASTRY: VARIETIES OF LEARNING AUTOMATA: AN OVERVIEW 713

assume , . Let denote the action-set of
. Define functions , by

(2)

The function is called thepayoff functionfor automaton .
Essentially, automata want to maximize their payoff. Since there
are multiple payoff functions, one way of defining the objective
of learning here is to reach aNash equilibrium.

Definition 2.2: The -tuple of actions is
called aNash equilibriumof this game if, for each,

(3)

It is known that if each of the automata in the team uses an
algorithm for updating action probabilities, then the team would
converge to a Nash equilibrium [22].

A useful special case of this model is a game withcommon
payoff. Here, all the automata get the same payoff from the en-
vironment (that is,). Hence, there is only one payoff
function, e.g., . Since all automata here have only finite ac-
tion-sets, we can representas a hyper-matrix
of dimension , where

(4)

Here, we used the notation is the set
of actions of automaton , . is called the re-
ward probability matrix of the game and it is unknown to the au-
tomata. The objective for the team is to maximize the expected
value of the common reinforcement. Define .
For any , we define its neighborhood in

as

s.t. and

Thus, the neighbors of any -tuple of actions is the set of all
action choices that differ only in one action.

Now it is easy to see that a specific-tuple of actions
is a Nash equilibrium for this game with common payoff if

and only if , . The corresponding
element of the reward probability matrix is called a mode of
the matrix. As it is easy to see, a mode would be an element that
is simultaneously maximum along each of the hyper rows to
which it belongs. It is known that if all the automata involved in
a common payoff game use (with sufficiently small value
for the step size parameter), then the team would converge to a
mode of the reward probability matrix [22].

Let denote the tuple
of all action probabilities of all the automata in the team. Then
it is easy to see that once again, the automata team is solving the
optimization problem of

by searching over the -fold product of the -dimensional
simplexes. By searching over this space, the algorithm finds
an -tuple of actions that is a mode. By our earlier explana-
tion of the mode, the corresponding tuple of action probabilities

would be a local maximum of the above problem. Thus, by using
, we can locate a local maximum of the expectation of re-

inforcement in the automata game. It is possible to converge to
the global maximum (that is, the action tuple corresponding to
the largest entry in the reward probability matrix) by employing
the estimator algorithms [23]. The estimator algorithms also ex-
hibit superior speed of convergence. However, these algorithms
have large memory overhead, especially in cases whereis
large.

Such a game model is useful for optimizing a function over
variables or parameters using only noise corrupted values of

the function. The action-sets of different automata represent the
possible values of different parameters. Since we are consid-
ering only FALA here, to use this model we should quantize the
values of different parameters. LA in a common payoff game
are often referred to as a team of LA.

B. Networks of FALA

There are many situations where it is convenient to formu-
late the learning problem in such a way that the optimal action
depends on thestateof the environment made available to the
learning system as an input vector. This input is usually desig-
nated as thecontext vector. Examples of context vectors include
feature vector in a pattern recognition problem and the state of
the system in a control problem. We consider the pattern recog-
nition problem to explain the different ways in which LA sys-
tems can tackle such problems.

One can think of the requirements of a pattern recognition
system as that of outputting a class label for a feature vector that
is input to the system. One way of using automata models for
this problem is to think of actions of automata as possible class
labels. Then, an action is optimal only in thecontextof certain
feature vectors. Such problems have been termed associative
reinforcement learning problems [24] because here the objective
is to learn to associate differentinputswith different actions. To
tackle the problem in this way, we need to have an automata
model whereby the probability of choosing an action depends
also on the context vector input from the environment. Such an
LA model is called aGLA and will be discussed in Section IV.

Another way of solving such problems is through teams of au-
tomata. We first formulate an appropriately parameterized class
of discriminant functions. The learning problem is to obtain the
optimal values of the parameters. If we think of actions of au-
tomata as parameter values, then we can define optimal actions
without reference to any context. As was already discussed, one
can use teams of FALA to learn the optimal parameters in such
problems.

Since we need to ultimately find different class regions in the
feature space, our parameterized class of discriminant functions
should be capable of representing them. Depending on the com-
plexity of the problem we may want to employ a number of
teams of FALA.

In such cases, it would be convenient to organize the teams
in an orderly manner so that there is some clarity about the role
played by each team. One such organization is a feedforward
network of learning units where each unit is a team of FALA
involved in a common payoff game [25], [26]. A schematic of a
network is shown in Fig. 1.

714 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 32, NO. 6, DECEMBER 2002

Fig. 1. Network of learning automata. Each of the boxes corresponds to a team
of FALA.

The network superficially resembles a feedforward neural
network, but differs considerably in operation. The input to
each unit could be the context vector from the environment as
well as outputs of other units appearing earlier in the network.
The output of a unit is determined by the actions chosen by a
group of FALA in the unit. Finally, the output of the network to
the external environment is determined by the outputs of some
designated units. The sequence of events in such a system is as
follows.

At each instant, the environment generates a context vector
which is input to the LA network. Based on its internal state
(i.e., the action probability distributions of all of the FALA in the
network) and the context vector, the network outputs an action.
The environment then generates a reinforcement, which indi-
cates the appropriateness of the action for the particular context
vector. This reinforcement is made available to every FALA in
each unit. The network then updates its internal state so as to im-
prove its performance. Unlike a neural network, the updating of
all FALA in all units is based on the same reinforcement signal.

A team of FALA which forms a unit is able to handle the con-
text vector input as follows. Suppose we would like the output
of the unit (e.g.,) to be binary with

if

if (5)

where is a known function of , the context vector input, and
, a parameter vector. (Choice of the functionis part of the

architectural design of the network.) Then, the tuples of actions
that can be chosen by the team correspond to possible values of
the parameter vector . For every value of so chosen by the
team, the value of is used to compute using (5). If
the number of possible actions is, then we can have functions

, and chooseth action if
. To update the state of the network, each of the

FALA in each unit update their action probabilities using the
globally supplied reinforcement.

Suppose the network consists of a total of number
of FALA. (This number includes the FALA in all units of
the network.) Let denote the action probability dis-

tribution of the th FALA at instant , . Then,
represents the internal state of

the network at . The goal for the learning algorithm in this
network is to maximize .

It can be shown that if each FALA uses the algorithm
with the reinforcement that is commonly supplied to all au-
tomata, then the network converges to a local maximum of
under assumptions that are not restrictive in most applications
[25], [26]. How well a local maximum of corresponds to the
desired mapping of context vectors to the best actions depends
both on the complexity of the problem as well as the architec-
ture of the network [25].

An interesting example of a network of FALA is the three-
layer network extensively used in pattern recognition [26], [27].
The objective here is to divide the feature space into two regions
(not necessarily connected) such that each region corresponds to
a pattern class. The first layer of the network forms hyperplanes
in the feature space and the second layer forms convex regions
bounded by these hyperplanes using AND logic. The third layer
forms the final class regions (which could be nonconvex and dis-
connected) by using OR logic on the output of the second-layer
units. Here, the parameter vector in each first-layer unit is
to represent a hyperplane and thus thefunction would be
a linear discriminant function. The parameter vector for each
second-layer unit would be a binary vector with as many com-
ponents as the number of units in the first layer. Hence, in a
second-layer unit all FALA would have two actions and a spe-
cific choice of actions indicates which of the hyperplanes from
the first layer should be used for making the convex region.
Such a feedforward network of FALA would be useful in any
two-class pattern recognition problem because one can well ap-
proximate arbitrary regions of feature space by union of convex
polyhedral sets [27]. It may be noted here that such a network
is actually an alternate representation for the so-called oblique
decision tree classifiers used extensively in pattern recognition
[28].

III. PARAMETERIZED LEARNING AUTOMATA (PLA)

The basic limitation of a team as well as a network of au-
tomata is that with a decentralized learning algorithm such as

, they can converge only to a local maximum of .
In order to facilitate convergence to the global maximum, one
has to change the learning algorithm.

It is known that estimator algorithms such as the pursuit al-
gorithm lead to the global maximum, but it has a large memory
overhead. Another approach would be to use an algorithm sim-
ilar to simulated annealing for global optimization [29]. This
would mean imposing a random perturbation while updating
the action probability vector so that the learning process
moves out of local maxima. Introducing a random term directly
in the updating equations is difficult for two reasons. First, it
is cumbersome to ensure that the resulting vector after the up-
dating remains a probability vector. Second, the resultingdiffu-
sionwould be on a manifold rather than the entire space, thus
making the analysis difficult.

One way of overcoming such difficulties is to parameterize
the action probabilities in terms of some real numbers and up-

THATHACHAR AND SASTRY: VARIETIES OF LEARNING AUTOMATA: AN OVERVIEW 715

date these real numbers based on the reinforcement received.
Such a FALA is referred to as aparameterized learning au-
tomaton (PLA).

A PLA will have an internal state vector of real numbers,
which is not necessarily a probability vector. The probabilities
of various actions are calculated, based on the value of, using
aprobability generating function . Teams and networks of
PLA can be formed along the same lines as FALA. We explain
next the learning algorithm to be used with a PLA under the
notation of a network of automata.

Consider the th PLA in a network. We denote by
the vector of real numbers that constitutes the

stateof this PLA. The probability of theth PLA choosing the
th action can be generated from as

(6)

Now, will be inside the probability simplex irrespective of
the values taken by . Other types of probability generating
functions are also possible.

The optimization problem addressed by PLA has to be
slightly modified in relation to that connected with FALA as
it is the that is updated now. This problem can be stated as
follows:

maximize

subject to

Here, represents the
tuple of all state vectors of all PLA in the system. The constant

is introduced to avoid unbounded behavior of the learning
algorithm. However, we can chooseto be sufficiently large so
that there is insignificant difference between the constrained and
unconstrained global maxima.

A learning algorithm for updating the state of theth PLA,
which ensures convergence to the global maximum is described
below

ln

(7)

In the above algorithm

• is the derivative of , which is defined as

for

for

for (8)

• is
a set ofiid random variables with zero mean and variance

; and are positive real constants; is a positive
integer; and is the learning parameter.

The second term on the right-hand side of (7) is a gradient
term. The third term containing is introduced to keep

bounded. This is similar to the penalty term in many constrained
optimization algorithms. The last term containing is the
random perturbation term which is responsible for the algorithm
getting out of local maxima that are not global maxima. This
is similar to the simulated annealing-type algorithms for global
optimization over except for the fact that here we keep the
variance of perturbations constant.

It can be shown that for sufficiently small values of the
learning parameter, the behavior of the algorithm can be well
approximated by the Langevin equation. More precisely, one
can show that an appropriately interpolated continuous-time
version of the state of the network converges to the solu-
tion of the stochastic differential equation of the Langevin-type
given by

(9)

where

(10)

and is the standard Brownian motion process of appropriate
dimension. It is known that the solutions of the Langevin equa-
tion concentrate on the global maximum ofas tends to zero.
Because of our choice of the function , this means that (for
sufficiently small values of and) the algorithm would con-
verge to a state that is the global maximum of the expected re-
inforcement [that is, the function] if the global maximum
state vector is such that each component is less than. Other-
wise, the algorithm would find aconstrainedglobal maximum
of inside the bounded region allowed for the algorithm [30].

IV. GENERALIZED LEARNING AUTOMATA (GLA)

As mentioned in Section II-B, one method of handling asso-
ciative reinforcement learning problems is to use a GLA, where
the structure of LA is modified to allow for context vector input.

A single GLA is described by the tuple .
Here, is the set of all context vectors that can be input to the
GLA; is the (finite) set of outputs or actions of GLA; is
the set of values that the reinforcement signal can take (which
is usually taken to be the interval); is the probability
generating function; and is the internal state which is a vector
of real numbers. is the learning algorithm that updates.

Let the action-set of the GLA be . The
action probabilities of a GLA are generated by

(11)

where the function satisfies , ,
and . At each instant , the
learning algorithm updates based on the current values
of , the reinforcement signal , and the action
chosen by the GLA . Dependence of the updating on the
context vector is the main characteristic of GLA.

The motivation for defining GLA is to be able to tackle asso-
ciative reinforcement learning problems directly. Hence, with
the same state vector, the probabilities with which a GLA
chooses different actions can (and most often, would) be depen-
dent on the context vector. This is why the probability gener-

716 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 32, NO. 6, DECEMBER 2002

ating function of the GLA is dependent on both the stateand
the context vector . This may be contrasted with that of PLA,
where the probability generating function is dependent only on

. In a PLA, the state is only arepresentationfor the action
probability distribution. In a GLA, the state (along with the
function), is arepresentationfor a mapping from set of con-
text vectors to set of action probability distributions.

A simple example of a probability generating function for
a GLA is as follows. Suppose the context vectorbelongs to

. We choose the internal stateto also be -dimensional.
Suppose there are only two actions so that . Then
a probability generating function for the GLA could be

It is easy to see that learning an “optimal”with such a GLA
is like learning an “optimal” linear discriminant function in a
two-class pattern recognition problem.

In general, the goal for a GLA is to learn the desired mapping
from context vectors to actions. Since the probability generating
function is fixed, chosen by us, and since the environment is
unknown, it is not possible to know whether there exists a vector

so that the desired mapping can be represented by a GLA.
Hence, to be able to prove that a GLA learns properly in this
fashion, we may have to make very stringent assumptions on
the problem [24]. A better choice for the objective of learning is
to maximize . This would ensure learning of the
best mapping that is allowed after having chosen a probability
generating function [25].

From the example of a probability generating function given
earlier, it is easy to see that a single GLA is like a team of au-
tomata. A network of GLA can be formed just like a network
of FALA with the change that each unit (which was a team
of FALA) now corresponds to one GLA. The context vector
input for each GLA in the network could consist of the external
context vector from the environment or the outputs (actions) of
other GLA connected to this GLA or a combination of both.

Consider theth GLA in the network. Its state vector is
. The objective of the network is to maximize

, where , subject to boundedness
of the components of . A learning algorithm which ensures the
boundedness of solutions is as follows. (This is a modification of
the REINFORCE algorithm [32]). Let denote the state of
th GLA at ; its output at ; and its context input at
. Let be the reinforcement obtained by the network from

the environment at instant

ln

(12)

where

with

for

for

for

where
probability generating function of theth GLA;
learning parameter;
constants.

Analysis of the network of GLA can be carried out using
weak convergence techniques [25], [33]. It can be shown that
under some broad assumptions, the network of GLA using the
above algorithm converges to a constrained local maximum of

.
The network can be made to converge to the global maximum

of the expected reinforcement function by introducing perturba-
tion terms in the updating which are similar to those with a PLA.
This global algorithm is as follows:

ln

(13)

where
derivative of the function defined by (8);
learning parameter;
sequence ofiid random variables with zero mean and
variance .

The analysis of the global algorithm is similar to that of the
global algorithm for PLA via approximation using the Langevin
equation.

As mentioned earlier, a single GLA is essentially like a team
of FALA. However, there are interesting applications where a
GLA is the more natural choice. For example, a GLA can be
used as a gating network in models such as adaptive mixture of
local experts [31]. Here, each input (context vector) from the en-
vironment would be sent to all the experts and the final output
from the system is determined by the gating network which de-
cides how to combine the outputs of different expert networks.
Such models are useful for learning mixture densities or for
learning a pattern classification system in which different (types
of) classifiers are to be used in different regions of the feature
space. In such problems, a team of FALA does not appear suit-
able for the task of a gating network.

V. CONTINUOUSACTION-SET LEARNING AUTOMATA (CALA)

So far, we have considered the LA model where the set of ac-
tions is finite. Hence, while finding the optimal parameter values
to maximize a performance index, we need to discretize the pa-
rameter space so that actions of LA can be possible values of
parameters. A more satisfying solution would be to employ an
LA model where the action-set can be continuous. Such a model
is calledcontinuous action-set learning automaton or CALA.

The action-set of CALA is the real line. The action probability
distribution at is , the normal distribution with
mean and standard deviation . At each instant, the
CALA updates its action probability distribution by updating

and . As before, let be the action chosen at
and let be the reinforcement at. Here, instead of reward

probabilities for various actions, we now have a reward function
defined by . We shall

denote the reinforcement in response to actionas and thus
.

THATHACHAR AND SASTRY: VARIETIES OF LEARNING AUTOMATA: AN OVERVIEW 717

The objective for CALA is to learn the value ofat which
attains a maximum. That is, we want the action probability

distribution to converge to where
is a maximum of . However, we do not let converge to
zero to ensure that the algorithm does not get stuck at a nonop-
timal point. Therefore, we use another parameter, (with

sufficiently small) and keep the objective of learning as
converging to and converging to a maximum of.

The learning algorithm for CALA is described next. Since the
updating given for does not automatically guarantee that

, we always use a projected version of , denoted
by , while choosing actions. Furthermore, unlike FALA,
CALA interacts with the environment through a choice of two
actions at each instant.

At each instant , CALA chooses a at random from
its current action probability distribution ,
where is the function specified below. Then, it gets the
reinforcement from the environment for the two actions:
and . Let these reinforcements be and . Then, the
distribution is updated as follows:

(14)

where

for

for (15)

and
step size parameter for learning ();
large positive constant;
lower bound on standard deviation, as explained earlier.

The CALA algorithm can be used as an optimization tech-
nique without discretizing the parameter space. It is similar to
stochastic approximation algorithms [34] though here the ran-
domness in choosing the next parameter value makes the algo-
rithm explore better search directions. Furthemore, unlike the
classical stochastic approximation algorithms, here we do not
explicitly estimate the gradient. For this algorithm, it is proven
that with arbitrarily large probability, will converge close
to a maximum of and will converge close to , if
we choose and sufficiently small [35], [36].

As in the case of FALA, we can consider, for example, a
common payoff game played by number of CALA. Since the
action-set of each automaton is the real line, the payoff function
would have domain . It can be shown that if each CALA in
the team uses the algorithm described above (with sufficiently
small values for the learning parameters), then the team would
converge to a local maximum (in the standard Euclidean sense)
of the payoff function [35]. Such a team model would be useful
for optimizing a function of variables using only noise cor-
rupted values of the function and without needing (or explicitly

estimating) any gradient information [37]. Unlike the case with
FALA teams, we do not need to discretize the parameter space.

Another interesting model is a game withnumber of FALA
and number of CALA. Now, the payoff function is defined
over variables out of which are discrete and are
continuous. We can define optimal points of the game to be those
which are like Nash equilibria with respect to the discrete part
and local maxima (in the Euclidean sense) with respect to the
continuous part. It can be shown that if each of the FALA uses

algorithm and each of the CALA uses the algorithm given
earlier in this section, then the team would converge to one of the
optimal points [38]. Such optimization problems, where the ob-
jective function is defined over some discrete and some contin-
uous variables, are useful in applications such as learning con-
cepts in the form of logic expressions [38], [39].

It is possible to conceive of networks of CALA along the
same lines as networks of FALA. However, at present, there are
no convergence results available for networks of CALA.

VI. M ODULES OFLEARNING AUTOMATA

A decisive aspect of any learning system is its rate of learning
or equivalently, speed of convergence. It is decisive because
most learning systems operate in slowly changing environments
and the learning process should be completed well before signif-
icant changes take place in the environment; otherwise learning
is ineffective. In the case of LA, speed of convergence can be in-
creased by increasing the value of the learning parameter. How-
ever, this results in reduced accuracy in terms of probability of
convergence to the correct action. The problem therefore is to
increase speed without reducing accuracy. This is not possible
in the models considered so far because a single parameter con-
trols both speed and accuracy.

Parallel operation is known to increase the speed of conver-
gence in general. In order to conceive of parallel operation of
LA, one has to change the sequential nature of the models con-
sidered earlier. If we have a number of LA acting in parallel,
each of these automata generates its own action and gets a cor-
responding reinforcement signal from the environment simulta-
neously.2

The basic idea in such a parallel operation of LA is that, since
the environmental responses are stochastic, updating of action
probabilities based on several responses would have less ex-
pected error than that based on a single response and would fa-
cilitate faster convergence.

Consider FALA operating in parallel in the place of a single
LA. These LA could be said to form amodule. The schematic
of such a module is shown in Fig. 2. The main features of the
module are the following. The action-set is . The
action probability vector is common to all the automata
of the module. Each LA (e.g., theth) in the module selects an
action based on the common action probability vector

2Such a model would be useful in applications such as pattern recognition
where actions of automata are possible parameter values and one can test sev-
eral parameter vectors simultaneously using the next available example. On the
other hand, in applications such as routing in communication networks where
the action corresponds to choice of a route, simultaneous choice of several ac-
tions is not possible unless one is working with a simulation model of the system.
Hence, in general, whether or not parallel operation is feasible depends on the
application.

718 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 32, NO. 6, DECEMBER 2002

Fig. 2. Module of learning automata.

and obtains its reinforcement signal . The common ac-
tion probability vector is updated depending on all the actions
selected and the reinforcements obtained. Afusercombines all
this information into quantities that are used in probability up-
dating. It is assumed that , . The fuser com-
putes the following quantities at each instant.

• The total response to at is

where is the indicator function of event .
• The total response at instantis

The learning algorithm is given by

(16)

where is the learning parameter, and is
called itsnormalized value.

To get an intuitive feel for the updating, we note that the quan-
tity can be considered as a figure of merit for the ac-
tion . The algorithm moves toward . Com-
putationally, is updated only once and not necessarily by
each LA. The updated value is shared by all the LA
in the module for their next action selection. It can be shown
that the algorithm is-optimal in all stationary random environ-
ments [40].

In this algorithm, the accuracy of the learning algorithm is
controlled by . The speed of convergence is controlled
by . Hence, for the required accuracy,and can be varied
to control the speed. Higher speed of convergence for a given
accuracy needs higher value of, that is, more members in the
module. However, since we need , there is a natural limi-
tation on the achievable speed-up.

Simulation results indicate that the speed of convergence in-
creases almost linearly with, the size of the module [40]. Other

LA algorithms such as the pursuit algorithm can also be paral-
lelized in a similar fashion. In fact, in the case of pursuit algo-
rithm, one can achieve convergence in a single step for a suffi-
ciently large size of the module [41].

The common payoff game of a team of FALA also has a par-
allel version where each LA is replaced by a module ofau-
tomata. Thus, there areparallel teams here with theth team
being formed by theth LA of each module. Using the above al-
gorithm for each member of each of the parallel teams, we can
ensure convergence to local optima of the payoff function while
increasing rate of convergence. The same idea can be extended
to feedforward networks of units where each unit is a team of
automata. Similar properties of increased rate of convergence
without sacrificing accuracy follow for such parallel networks.
Modules of other types of LA, such as PLA, GLA, and CALA,
can also be formed along similar lines [41].

VII. PATTERN CLASSIFICATION USING LA M ODELS

In this section, we use the pattern classification problem as
an example to illustrate how the different LA models can be
employed in an application. We consider learning the “optimal”
discriminant function (from a given parameterized class of dis-
criminant functions) in a two-class pattern recognition problem.
We denote the feature vector byand the parameter vector (of
any discriminant function) by .

We first need to decide on a parameterized family of discrim-
inant functions. Then, it is straightforward to use a team of
automata to learn the optimal values ofparameters. To use
a FALA team, we have to quantize the range of each of the pa-
rameters. Then, the action-set of each FALA would be the (fi-
nite) set of all possible values for the corresponding parameter.
A choice of action-tuple by the team results in the choice of
a specific classifier. We classify the next training pattern with
this classifier and supply a “1” or “0” as common reinforcement
to all FALA, based on whether or not this classification agrees
with that given in the training sample. From the results given in
Section II-A, it is clear that, if we use the algorithm, we
converge to a local optimum. We can alternatively use the PLA
model and the corresponding global algorithm to converge to
the global optimum. We can use a team of CALA instead of a
team of FALA if we do not want to quantize the parameters. In
all these cases, it is easily shown that we can tolerate up to 50%
noise in the classification of the training samples [23].

In the above, the learning algorithm does not impose any re-
strictions on the discriminant function. Thus, the method can
easily handle discriminant functions that are nonliner both in
and . For example, the classifier chosen can be a feedforward
neural network and the CALA team algorithm then would be
an alternative to the standard backpropagation, as well as being
able to handle noisy samples.

In general, we can choose for our discriminant function an
arbitrary logic expression, the literals of which are algebraic in-
equalities (involving feature vector components and some pa-
rameters). This can be handled by a network of FALA. For ex-
ample, we can employ a three-layer network of FALA (which
is briefly described in Section II-B) and then we can learn a

THATHACHAR AND SASTRY: VARIETIES OF LEARNING AUTOMATA: AN OVERVIEW 719

TABLE I
SIMULATION RESULTS FORIRIS DATA. THE ENTRY IN THE FOURTH COLUMN

REFERS TORMS ERROR FORBPM AND PROBABILITY OF MISCLASSIFICATION

FORL . (NC STANDS FORNO CONVERGENCE)

logic expression, the literals of which are linear inequalities. We
can also handle it by a network of GLA. In both of the network
models, we can use the global algorithms so as to converge to
the global optima. Finally, in any of these models, we can re-
place a single automaton by a module of automata to improve
the speed of convergence without sacrificing the accuracy. A
more detailed account of LA models for pattern classification
can be found in [42].

In the remaining part of this section, we describe some simu-
lation results obtained with the network of LA model on a pat-
tern recognition problem to get a flavor of the type of possible
results.

Example: In this example, a two-class version of the iris data
is considered. The data was obtained from the machine learning
databases maintained at the University of California at Irvine.
This is a three-class, four-feature problem. The three classes are:
1) iris-setosa; 2) iris-versicolor; and 3) iris-virginica. Of these,
setosa is linearly separable from the other two. Since we are
considering only two-class problems here, setosa was ignored
and the problem was reduced to that of classifying versicolor
and virginica. The data used was 50 samples of each class with
the correct classification.

The network consisted of nine first-layer units and three
second-layer units. Each first-layer unit has five automata
(since this is a four-feature problem). Each automaton had
nine actions which were 4 3 2 1 0 1 2 3 4 .
Uniform initial conditions were used. The learning parameters
were 0.005 in the first layer and 0.002 in the second layer.

For a comparison of the performance achieved by the
automata network, a standard feedforward neural network
trained using backpropagation with momentum term (BPM)
is considered. The network has four input nodes and one
output node. The different network architectures tried were:
two hidden layers with nine and three nodes, and three hidden
layers with eight nodes each. Initial weights for the network
were generated randomly. The step size for the momentum
term was set at 0.9 and the results reported are for the best
choice of step size for gradient term.

Simulations were conducted for perfect data (0% noise) and
noisy cases. Noise was introduced by changing the known clas-
sification of the feature vector at each instant by a fixed proba-
bility. Noise levels of 20% and 40% were considered.

Fig. 3. Learning curves for classification of iris data using modules of LA in
a three-layer network.

The results obtained are summarized in Table I. These are
averages over ten runs. The error reported in the table for the
backpropagation algorithm is the rms error, while that for the
automata network is the probability of misclassification on a test
set. While they cannot be directly compared, the performance
was about the same at the values reported.

The results show that in the noise-free case, the BPM con-
verges about 20% faster. However, this algorithm fails to con-
verge even when only 20% noise is added. The LA network con-
tinues to converge even with 40% noise and there is only slight
degradation of performance with noise [26].

To illustrate the improvement in speed of convergence
through the use of module of automata, we consider the iris
data problem with same three-layer network structure, but
with each automaton replaced by a module. The results (which
are averages over ten runs) are shown in Fig. 3. This figure
clearly establishes the faster speed of convergence for the larger
module sizes [40].

VIII. A PPLICATIONS

In this section, we present a brief overview of applications
of LA models in a variety of areas. As explained in Section I,
most learning problems can be thought of as optimization of the
expectation of a random function where the underlying proba-
bility distributions are unknown. LA models prove to be quite
useful for handling many such stochastic optimization prob-
lems [43]. One example of such optimization is the problem
of learning discriminant functions for pattern recognition, as
was discussed in Section VII. Another generic problem where
LA models would be useful is one that involves adaptive deci-
sion making where one needs to choose an action (among sev-
eral alternatives) on-line to optimize system performance, but
without complete knowledge of how actions affect performance.
An early example of such an application is that of using LA for
making routing decisions in a telephone network. A good survey

720 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 32, NO. 6, DECEMBER 2002

of many of the earlier applications in areas such as routing and
process control are available in [12] and [13]. A detailed review
of recent applications of LA models is not feasible here due to
limitations of space. However, we provide pointers to some of
the recent applications. We would like to emphasize that this list
is only indicative and is, by no means, exhaustive.

As illustrated briefly in Section VII, automata algorithms
have been used for learning rich classes of pattern classifiers
[42]. Due to the fact that the action-sets of automata need
not have any algebraic structure on them, similar algorithms
are seen to be useful for concept learning [38], [39]. LA
models have also been used successfully for many problems
involving adaptive decision making in communication systems.
Examples include bus arbitration schemes for ATM switches
[44], conflict avoidance in star networks [45], and dynamic
channel allocation [46]. Another large application area where
LA models are found to be useful is adaptive control and
signal processing [47]–[51]. Even in problems with no random
components, automata algorithms can prove to be useful as
stochastic search techniques; an example being the problem
of graph partitioning [52]. Some of the other areas in which
LA are useful include image processing [53]–[55], intelligent
vehicle control [56], pruning decision trees [28], object parti-
tioning [57], string taxonomy [58], and learning rule bases of
fuzzy systems [59]. LA models provide a fairly general purpose
technique for adaptive decision making, optimization, and
control. Many of the recent developments in LA models (some
of which are outlined in this paper), along with some recent
techniques for implementing these algorithms in an efficient
manner [60], should provide further impetus for employing LA
in many different applications.

IX. CONCLUSIONS

A variety of LA models have been discussed in this paper. We
have indicated how collectives of such LA can be configured
into structures such as teams and networks in order to handle
different applications.

The general objective of a learning system built out of LA is
to maximize the reinforcement received from the environment.
As we have indicated, almost all problems of learning from ex-
amples involve such optimization. A common theme in all LA
models is that updating is done over probability distributions
defined over the action space. Even in situations where the ac-
tion space directly corresponds to the parameter space (e.g., a
CALA team), it is not necessary to resort to direct updating in
the parameter space. Such an approach, though it may appear
indirect, has the following advantages.

When the action-set is finite, as in FALA, PLA, and GLA,
there is a great deal of freedom in choosing the actions. This
provides a lot of flexibility in designing an appropriate learning
system in different applications. For example, in a three-layer
network of FALA, actions of some automata correspond to real-
valued parameters that represent hyperplanes, while actions of
some other automata represent logical decisions of which hy-
perplanes to pick for making appropriate convex regions. How-
ever, the learning algorithm itself is completely independent of

what the actions represent. Similarly, using a team containing
both CALA and FALA, we can optimize a function defined over
some discrete and some continuous parameters.

Even when the action-set is the real line (as in CALA), the
randomness in choosing the parameter values enables explo-
ration of better search directions, as demonstrated empirically
(e.g., [35]).

Working in the probability space rather than the parameter
space appears to give these learning models better noise toler-
ance. LA models have converged in situations where classical
schemes have failed (e.g., the results presented on the iris data
with noisy samples).

The models and algorithms described in this paper provide
a unifying view of LA techniques as a general approach for
on-line stochastic optimization. While a variety of models
are described here, choice of the type of LA is dictated by
the application. These models are not mutually exclusive in
the sense that, in many cases, there would be more than one
model that could be used. In general, as with any other suite
of learning techniques, the choice is largely governed by ease
of representing the solutions needed or of the configuration
of the system. Further research is needed in clarifying the
strengths and weaknesses of different varieties of LA and
their connection with related ideas such as soft computing and
evolutionary algorithms.

REFERENCES

[1] K. S. Narendra and M. A. L. Thathachar, “Learning automata: A survey,”
IEEE Trans. Syst., Man, Cybern., vol. SMC-14, pp. 323–334, 1974.

[2] M. L. Tsetlin, “On the behavior of finite automata in random media,”
Autom. Remote Control, vol. 22, pp. 1210–1219, 1962.

[3] M. L. Tsetlin, Automata Theory and Modeling of Biological Sys-
tems. New York: Academic, 1973.

[4] K. S. Fu and G. J. McMurtry, “A study of stochastic automata as a model
for learning and adaptive controllers,”IEEE Trans. Automat. Contr., vol.
AC-11, pp. 379–387, 1966.

[5] B. Chandrasekaran and D. W. C. Shen, “On expediency and convergence
in variable-structure automata,”IEEE Trans. Syst., Sci., Cybern., vol.
SSC-4, pp. 52–60, 1968.

[6] K. S. Fu, “Learning control systems—Review and outlook,”IEEE
Trans. Automat. Contr., vol. AC-15, pp. 210–221, 1970.

[7] V. I. Varshavskii and I. P. Vorontsova, “On the behavior of stochastic
automata with a variable structure,”Autom. Remote Contr., vol. 24, pp.
327–333, 1963.

[8] R. Viswanathan, “Learning automaton: Models and applications,” Ph.D.
dissertation, Yale Univ., New Haven, CT, 1972.

[9] Ya. Z. Tsypkin and A. S. Poznyak, “Finite learning automata,”Eng. Cy-
bern., vol. 10, pp. 478–490, 1972.

[10] K. S. Narendra and S. Lakshmivarahan, “Learning automata: A
critique,” J. Cybern. Inf. Sci., vol. 1, pp. 53–71, 1977.

[11] S. Lakshmivarahan,Learning Algorithms: Theory and Applica-
tions. New York: Springer-Verlag, 1981.

[12] K. S. Narendra and M. A. L. Thathachar,Learning Automata: An Intro-
duction. Englewood Cliffs, NJ: Prentice-Hall, 1989.

[13] K. Najim and A. S. Poznyak,Learning Automata: Theory and Applica-
tions. New York: Pergamon, 1994.

[14] R. S. Sutton and A. G. Barto,Reinforcement Learning: An Introduc-
tion. Cambridge, MA: MIT Press, 1998.

[15] Ya. Z. Tsypkin,Adaptation and Learning in Automatic Systems. New
York: Academic, 1971.

[16] M. A. L. Thathachar and P. S. Sastry, “A new approach to designing
reinforcement schemes for learning automata,”IEEE Trans. Syst., Man,
Cybern., vol. SMC-15, pp. 168–175, 1985.

[17] , “Estimator algorithms for learning automata,” inProc. Platinum
Jubilee Conference Systems and Signal Processing. Bangalore, India:
Dept. Elect. Eng., Indian Inst. Science, Dec. 1986.

THATHACHAR AND SASTRY: VARIETIES OF LEARNING AUTOMATA: AN OVERVIEW 721

[18] B. J. Oommen, “Absorbing and ergodic discretized two-action learning
automata,”IEEE Trans. Syst., Man, Cybern., vol. SMC-16, pp. 282–296,
1986.

[19] J. K. Lanctot and B. J. Oommen, “Discretized estimator learning
automata,”IEEE Trans. Syst., Man, Cybern., vol. 22, pp. 1473–1483,
1992.

[20] G. I. Papadimitriou, “A new approach to the design of reinforce-
ment schemes for learning automata: Stochastic estimator learning
algorithms,” IEEE Trans. Knowl. Data Eng., vol. 6, pp. 649–654,
1994.

[21] B. J. Oommen and M. Agache, “Continuous and discretized pursuit
learning schemes: Various algorithms and their comparison,”IEEE
Trans. Syst., Man, Cybern. B, vol. 31, pp. 277–287, June 2001.

[22] P. S. Sastry, V. V. Phansalkar, and M. A. L. Thathachar, “Decentralised
learning of Nash equilibria in multiperson stochastic games with in-
complete information,”IEEE Trans. Syst., Man, Cybern., vol. 24, pp.
769–777, May 1994.

[23] M. A. L. Thathachar and P. S. Sastry, “Learning optimal discriminant
functions through a cooperative game of automata,”IEEE Trans. Syst.,
Man, Cybern., vol. SMC-17, pp. 73–85, Jan. 1987.

[24] A. G. Barto and P. Anandan, “Pattern-recognizing stochastic learning au-
tomata,”IEEE Trans. Syst., Man, Cybern., vol. SMC–15, pp. 360–374,
May 1985.

[25] V. V. Phansalkar, “Learning automata algorithms for connectionist sys-
tems—Local and global convergence,” Ph.D. dissertation, Dept. Electr.
Eng., Indian Inst. Sci., Bangalore, India, 1991.

[26] M. A. L. Thathachar and V. V. Phansalkar, “Convergence of teams and
hierarchies of learning automata in connectionist systems,”IEEE Trans.
Syst., Man, Cybern., vol. 25, pp. 1459–1469, Nov. 1995.

[27] R. P. Lippman, “An introduction to computing with neural nets,”IEEE
Acoust., Speech, Signal Processing Mag., pp. 4–22, 1987.

[28] S. Shah and P. S. Sastry, “New algorithms for learning and pruning
oblique decision trees,”IEEE Trans. Syst., Man, Cybern. C, vol. 29, pp.
494–505, Nov. 1999.

[29] T. Chiang, C. Hwang, and S. Sheu, “Diffusion for global optimization
in < ,” SIAM J. Control Optim., vol. 25, no. 3, pp. 737–753, 1987.

[30] M. A. L. Thathachar and V. V. Phansalkar, “Learning the global max-
imum with parameterised learning automata,”IEEE Trans. Neural Net-
works, vol. 6, pp. 398–406, Mar. 1995.

[31] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton, “Adaptive
mixture of local experts,”Neural Comput., vol. 3, pp. 79–87, 1991.

[32] R. J. Williams, “Simple statistical gradient following algorithms for con-
nectionist reinforcement learning,”Mach. Learn., vol. 8, pp. 229–256,
1992.

[33] V. V. Phansalkar and M. A. L. Thathachar, “Local and global algo-
rithms for generalized learning automata,”Neural Comput., vol. 7, pp.
950–973, 1995.

[34] H. Y. Kushner and G. G. Yin,Stochastic Approximation Algorithms and
Applications. New York: Springer-Verlag, 1997.

[35] G. Santharam, “Distributed learning with connectionist models for opti-
mization and control,” Ph.D. dissertation, Dept. Electr. Eng., Indian Inst.
Sci., Bangalore, India, May 1994.

[36] G. Santharam, P. S. Sastry, and M. A. L. Thathachar, “Continuous ac-
tion-set learning automata for stochastic optimization,”J. Franklin Inst.,
vol. 331, pp. 607–628, 1994.

[37] P. S. Sastry and M. A. L. Thathachar, “Learning automata algorithms for
pattern classification,”Sadhana, vol. 24, pp. 261–292, 1999.

[38] K. Rajaraman and P. S. Sastry, “Stochastic optimization over continuous
and discrete variables with applications to concept learning under noise,”
IEEE Trans. Syst., Man, Cybern. A, vol. 29, pp. 542–553, 1999.

[39] , “A parallel stochastic algorithm for learning logic expressions
under noise,”J. Ind. Inst. Sci., vol. 77, pp. 15–45, 1997.

[40] M. A. L. Thathachar and M. T. Arvind, “Parallel algorithms for modules
of learning automata,”IEEE Trans. Syst., Man, Cybern. B, vol. 28, pp.
24–33, Feb. 1998.

[41] M. T. Arvind, “Stochastic learning algorithms with improved speed per-
formance,” Ph.D. dissertation, Dept. Electr. Eng., Indian Inst. Sci., Ban-
galore, India, 1996.

[42] M. A. L. Thathachar and P. S. Sastry, “Adaptive stochastic algorithms
for pattern classification,” inPattern Recognition: From Classical to
Modern Approaches, S. K. Pal and A. Pal, Eds. Singapore: World Sci-
entific, 2001, pp. 67–113.

[43] A. S. Poznyak and K. Najim,Learning Automata and Stochastic Opti-
mization. New York: Springer-Verlag, 1997.

[44] M. S. Obaidat, G. I. Papadimitriou, and A. S. Pomportsis, “An effi-
cient bus arbitration scheme for scalable shared-medium ATM switch,”
Comput. Commun., vol. 24, pp. 790–797, 2001.

[45] G. I. Papadimitriou and D. G. Maritas, “‘Learning automata-based
receiver conflict avoidance algorithms for WDM broadcast-and-select
star networks,”IEEE/ACM Trans Networking, vol. 4, pp. 407–412,
June 1996.

[46] G. I. Papadimitriou and A. M. Pomportsis, “On the use of stochastic
estimator learning automata for dynamic channel allocation in broadcast
networks,” inProc. IEEE/CEC, San Diego, CA, July 2000.

[47] C. K. K. Tang and P. Mars, “Games of stochastic learning automata and
adaptive signal processing,”IEEE Trans. Syst., Man, Cybern., vol. 23,
pp. 851–856, 1993.

[48] Q. H. Wu, “Learning coordinated control of power systems using inter-
connected learning automata,”Int. J. Electr. Power Energy Syst., vol. 17,
pp. 91–99, 1995.

[49] A. S. Poznyak, K. Najim, and E. Ikone, “Adaptive selection of the op-
timal order of linear regression models using learning automata,”Int. J.
Syst. Sci., vol. 27, pp. 151–159, 1996.

[50] X. Zeng, J. Zhou, and C. Vasseur, “A strategy for controlling non-
linear systems using a learning automaton,”Automatica, vol. 36, pp.
1517–1524, 2000.

[51] T. P. Imthias Ahamed, P. S. Nagendra Rao, and P. S. Sastry, “A reinforce-
ment learning approach to automatic generation control,”Int. J. Electr.
Power Syst. Res., vol. 63, pp. 9–26, 2002.

[52] B. J. Oommen and T. De St. Croix, “Graph partitioning using learning
automata,”IEEE Trans. Comput., vol. 45, pp. 195–208, 1995.

[53] S. Sarkar and S. Chavali, “Modeling parameter space behavior of vision
systems using Bayesian networks,”Comput. Vis. Image Understand.,
vol. 79, pp. 185–223, 2000.

[54] S. Sarkar and P. Soundararajan, “Supervised learning of large perceptual
organization: Graph spectral partitioning and learning automata,”IEEE
Trans. Pattern Anal. Machine Intell., vol. 22, pp. 504–525, 2000.

[55] M. A. L. Thathachar and P. S. Sastry, “Relaxation labeling with learning
automata,”IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-8, pp.
256–268, 1986.

[56] C. Unsal, P. Kachroo, and J. S. Bay, “Multiple stochastic learning au-
tomata for vehicle path control in an automated highway system,”IEEE
Trans. Syst., Man, Cybern. A, vol. 29, pp. 120–128, Jan. 1999.

[57] B. J. Oommen and D. C. Y. Ma, “Stochastic automata solutions to the
object partitioning problem,”Comput. J., vol. 35, pp. A105–A120,
1992.

[58] B. J. Oommen and T. De St. Croix, “String taxonomy using learning
automata,”IEEE Trans. Syst., Man, Cybern. B, vol. 27, pp. 354–365,
Apr. 1997.

[59] P. Viswanath, “Stability and rule generation in fuzzy systems,” Masters
thesis, Dept. Comput. Sci. Autom., Indian Inst. Sci., Bangalore, India,
Jan. 1995.

[60] M. S. Obaidat, G. I. Papadimitriou, and A. S. Pomportsis, “Fast learning
automata for high-speed real-time applications,” inProc. 7th IEEE Conf.
Electronics, Circuits, and Systems, Kaslik, Lebanon, Dec. 2000.

M. A. L. Thathachar (SM’79–F’91) received
the B.E. degree in electrical engineering from the
University of Mysore, Mysore, India, in 1959, and
the M.E. degree in power engineering and the Ph.D.
degree in control systems from the Indian Institute of
Science, Bangalore, in 1961 and 1968, respectively.

He was a Member of the Faculty of the Indian In-
stitute of Technology, Madras, from 1961 to 1964.
Since 1964, he has been with Indian Institute of Sci-
ence, Bangalore, where currently he is an Emeritus
Fellow (AICTE) in the Department of Electrical En-

gineering. He has been a Visiting Professor at Yale University, New Haven, CT,
Michigan State University, East Lansing, Concordia University, Montreal, PQ,
Canada, and the National University of Singapore. His current research interests
are in learning automata, neural networks, and fuzzy systems. He is coauthor of
the book,Learning Automata(Englewood Cliffs, NJ: Prentice-Hall, 1989).

Dr. Thathachar is the recipient of the Alumni Award for Excellence in Re-
search from the Indian Institute of Science and the Jawaharlal Nehru National
Award in Engineering and Technology. He is a Fellow of the Indian National
Science Academy, the Indian Academy of Sciences, and the Indian National
Academy of Engineering.

722 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 32, NO. 6, DECEMBER 2002

P. S. Sastry (S’82–M’85–SM’97) received the
B.Sc.(Hons.) degree in physics from the Indian Insti-
tute of Technology, Kharagpur, in 1978, and the B.E.
degree in electrical communications engineering and
the Ph.D. degree in electrical engineering from the
Indian Institute of Science, Bangalore, in 1981 and
1985, respectively.

Since 1986, he has been on the Faculty of the De-
partment of Electrical Engineering, Indian Institute
of Science, Bangalore, where he is currently a Pro-
fessor. He has held visiting positions at the University

of Massachusetts, Amherst, the University of Michigan, Ann Arbor, and General
Motors Research Labs, Warren, NJ. His research interests include learning sys-
tems, pattern recognition, image processing, and computational neuroscience.

Dr. Sastry is a recipient of the Alumni Medal for Best Thesis from the Divi-
sion of Electrical Sciences, the Indian Institute of Science (1985), the Indo-U.S.
Science and Technology Fellowship (1992), and the Sir C. V. Raman Award in
Computer Science (1999).

