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VARIETIES WITH DEFINABLE FACTOR CONGRUENCES

PEDRO SÁNCHEZ TERRAF AND DIEGO J. VAGGIONE

Abstract. We study direct product representations of algebras in varieties.
We collect several conditions expressing that these representations are defin-
able in a first-order-logic sense, among them the concept of Definable Factor
Congruences (DFC). The main results are that DFC is a Mal’cev property and
that it is equivalent to all other conditions formulated; in particular we prove
that V has DFC if and only if V has �0 & �1 and Boolean Factor Congruences.
We also obtain an explicit first-order definition Φ of the kernel of the canoni-
cal projections via the terms associated to the Mal’cev condition for DFC, in
such a manner that it is preserved by taking direct products and direct factors.

The main tool is the use of central elements, which are a generalization of both
central idempotent elements in rings with identity and neutral complemented
elements in a bounded lattice.

1. Introduction

An algebra is a nonempty set together with an arbitrary but fixed collection of
finitary operations. A variety is an equationally-definable class of algebras over the
same language. A congruence of an algebra A is the kernel {(a, b) ∈ A : f(a) =
f(b)} of a homomorphism f with domain A; it is a factor congruence of A if f
is a projection onto a direct factor of A. Thus, a direct product representation is
determined by the pair of complementary factor congruences given by the canonical
projections.

In this universal-algebraic setting, one key concept for the deeper study of direct
product representations is that of central element. This tool can be developed
fruitfully in varieties with �0 & �1, which we now define.

A variety with �0 & �1 is a variety V in which there exist unary terms 01(w), . . . ,
0l(w), 11(w), . . . , 1l(w) such that

V |= �0(w) = �1(w) → x = y,

where w, x and y are distinct variables, �0 = (01, . . . , 0l) and �1 = (11, . . . , 1l).
The terms �0 and �1 are analogous, in a rather general manner, to identity (top)

and null (bottom) elements in rings (lattices), and its existence in a variety is equiv-
alent to the fact that no nontrivial algebra in the variety has a trivial subalgebra.
Throughout this paper we will assume that V is a variety with �0 & �1 such that the
terms �0 and �1 are closed. Of course, this can be achieved when the language has a
constant symbol, and we will make this assumption in order to simplify and clarify
our treatment. The proofs remain valid in the general case.
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If �a ∈ Al and �b ∈ Bl, we will write [�a,�b] in place of ((a1, b1), . . . , (al, bl)) ∈
(A × B)l. If A ∈ V , we say that �e ∈ Al is a central element of A if there exists an
isomorphism A → A1 × A2 such that

�e �→ [�0,�1].

Two central elements �e, �f will be called complementary if there exists an isomor-
phism A → A1 × A2 such that �e �→ [�0,�1] and �f �→ [�1,�0].

Central elements are a generalization of both central idempotent elements in
rings with identity and neutral complemented elements in a bounded lattice. It is
well known that in the classical cases, central elements are powerful tools since they
translate the concepts of factor congruence and of direct product representation into
first-order logic. In the general framework of an arbitrary variety V with �0 & �1, we
may write this definability property in the following fashion:

there exists a first-order formula Φ(x, y, �z, �w) in the language of V
such that for all A, B ∈ V , and a, c ∈ A, b, d ∈ B,

A × B |= Φ
(
(a, b), (c, d), [�0,�1], [�1,�0]

)
if and only if a = c.

It was shown in [12] that in varieties with �0 & �1 that have the Fraser-Horn-Hu
property, central elements have this property, and the formula Φ may be chosen of
the form ∃

∧
p = q. Moreover, when the variety is congruence modular, Φ can be

chosen to be a conjunction of equations. One last family of varieties with �0 & �1
(which generalize the above-mentioned examples) is that of varieties in which factor
congruences are compact [13].

Which is the most general context in which central elements concentrate the
information concerning the direct product representations? One answer is given by
the following condition: each pair of complementary central elements determines
uniquely a pair of complementary factor congruences associated to them. This
property may be written as:

for A ∈ V , the map
(θ, θ∗) �→ unique (�e, �f) ∈ Al × Al satisfying �0 θ �e θ∗�1 and
�1 θ �f θ∗�0

is a bijection between the set of pairs of complementary factor con-
gruences of A and the set of pairs of complementary central ele-
ments of A.

Another important concept involved in this paper is that of an algebra with
Boolean Factor Congruences (BFC), that is, an algebra in which the set of factor
congruences is a distributive sublattice of its congruence lattice. Though it is not
apparent, this concept is intimately connected to the direct product construction.
In the classical work of Chang, Jónsson and Tarski [3] it is proved that BFC is
equivalent to the strict refinement property (a strengthening of the property that
states that every two direct product representations have a common refinement).
It is also noteworthy that in several works on sheaf representations [2, 4, 5, 9]
BFC has played an important role. For example, in Bigelow and Burris [1] it is
shown that in a variety with BFC the Boolean product representations with directly
indecomposable factors are unique and coincide with the Pierce sheaf [10]. We refer
the reader to the work of Willard [14] as a key reference on BFC.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



VARIETIES WITH DEFINABLE FACTOR CONGRUENCES 5063

In the present work, we will prove that all the conditions mentioned in this
introduction are indeed equivalent for the class of varieties with �0 & �1.

Theorem 1.1. Let V be a variety with �0 & �1. The following are equivalent:

(1) V has the Weak Determining Property: for A ∈ V, the map
(θ, θ∗) �→ unique (�e, �f) ∈ Al×Al satisfying �0 θ �e θ∗�1 and �1 θ �f θ∗�0

is a bijection between the set of pairs of complementary factor congruences
of A and the set of pairs of complementary central elements of A.

(2) V has the Determining Property: For A ∈ V, the map
(θ, θ∗) �→ unique �e ∈ Al satisfying �0 θ �e θ∗�1

is a bijection between the set of pairs of complementary factor congruences
of A and the set of central elements of A.

(3) V has Definable Factor Congruences (DFC): There exists a first-order for-
mula Φ(x, y, �z) in the language of V such that for all A, B ∈ V, and a, c ∈ A,
b, d ∈ B,

A × B |= Φ
(
(a, b), (c, d), [�0,�1]

)
if and only if a = c.

(4) There exists a first-order formula Φ(x, y, �z, �w) in the language of V such
that for all A, B ∈ V, and a, c ∈ A, b, d ∈ B,

A × B |= Φ
(
(a, b), (c, d), [�0,�1], [�1,�0]

)
if and only if a = c.

(5) V has BFC.

Moreover, when the above equivalent conditions hold, the formula Φ in (3) can be
chosen to be preserved by direct products and direct factors and for every A ∈ V,
the map

�e �→ ΦA(·, ·, �e)
is a bijection between the set of central elements and the Boolean algebra of factor
congruences of A.

We now briefly sketch the contents of each section. In Section 2 we give a Mal’cev
condition for a Left Determining Property to be defined there; this condition is
entirely analogous to a Mal’cev condition for BFC. The terms obtained in this
section are the building blocks for our definability constructions. Section 3 provides
an explicit formula Φ satisfying (3) of Theorem 1.1. This formula is constructed
in such a way that it is preserved by direct products and direct factors; this last
assertion is proved in the Appendix. In Section 4, we characterize in first-order
logic the (pairs of complementary) central elements in a variety with DFC and
show that the coordinates (in a direct product representation) of a central element
are central elements. Several results obtained in the previous sections are compiled
in Section 5 to finish the proof of the Main Theorem. Two examples are treated
in Section 6. In §6.1 we present a variety with �0 & �1 that does not have DFC; this
shows that our definitions do not trivialize. In §6.2 we give an optimal formula for
the case of semilattices.

Throughout this paper the following notation will be used. For A ∈ V and
�a,�b ∈ An, CgA(�a,�b) will denote the congruence generated by the set {(ak, bk) : 1 ≤
k ≤ n}. The symbols ∇ and ∆ will stand for the universal and trivial congruences,
respectively. We will use θ×θ∗ = ∆ in place of “θ and θ∗ are complementary factor
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congruences”. The term algebra (in the language of V) and the V-free algebra on
X will be denoted by T (X) and F (X), respectively. The i-th component of an
element a in a direct product ΠiAi will be called ai = πi(a); hence, if a ∈ A0 ×A1,
a = (a0, a1). If elements a, b of an algebra A are related by a congruence θ ∈ Con A,

we will write interchangeably (a, b) ∈ θ, a θ b or a
θ≡ b. This notation generalizes to

tuples, viz., �a θ�b means (ai, bi) ∈ θ for all i.

2. The Left Determining Property: A Mal’cev condition

We will use the following Left Determining Property:

For every A ∈ V , �e ∈ Al and ϕ, ϕ∗, θ, θ∗ ∈ ConA, if ϕ × ϕ∗ = ∆,
θ × θ∗ = ∆, �0 θ �e θ∗�1 and �0 ϕ�eϕ∗�1, then θ = ϕ.

It is not difficult to see the implications: Determining Property ⇒ Left Deter-
mining Property ⇒ Weak Determining Property.

The following theorem gives a Mal’cev condition for the Left Determining Prop-
erty. Let si, ti be (2i+ l)-ary terms (in the language of V) for each i = 1, . . . , n and
let A be an algebra in the language of V (not necessarily in V). For (c, d,�e, a1, b1, . . . ,
an, bn) ∈ A2+l+2n, we define σ(c, d,�e, a1, b1, . . . , an, bn) to be the tuple (x, y, �z, x1,
y1, . . . , xn, yn) given by the following recursion:

x := c xj := sj(x, y, �z, x1, y1, . . . , xj−1, yj−1),
y := c yj := bj ,

�z := �0.

We define σ∗, ρ, ρ∗ analogously.

• σ∗(c, d,�e, a1, b1, . . . , an, bn) := (x, y, �z, x1, y1, . . . , xn, yn) where:

x := c xj := tj(x, y, �z, x1, y1, . . . , xj−1, yj−1),
y := d yj := bj ,

�z := �1.

• ρ(c, d,�e, a1, b1, . . . , an, bn) := (x, y, �z, x1, y1, . . . , xn, yn) where:

x := c xj := aj ,

y := d yj := sj(x, y, �z, x1, y1, . . . , xj−1, yj−1),

�z := �0.

• ρ∗(c, d,�e, a1, b1, . . . , an, bn) := (x, y, �z, x1, y1, . . . , xn, yn) where:

x := c xj := aj ,

y := d yj := tj(x, y, �z, x1, y1, . . . , xj−1, yj−1),

�z := �1.

We first state without proof a lemma concerning these functions.
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Lemma 2.1. For every c, d,�e, a1, b1, . . . , an, bn ∈ A, we have the following identi-
ties:

Cg(c, d) ∨ Cg(�e,�0) ∨
∨
i

Cg(ai, si(c, d,�e, a1, b1, . . . , ai−1, bi−1))(2.1)

= Cg((c, d,�e, a1, b1, . . . , an, bn), σ(c, d,�e, a1, b1, . . . , an, bn)),

Cg(�e,�1) ∨
∨
i

Cg(ai, ti(c, d,�e, . . . , ai−1, bi−1))

= Cg((c, d,�e, . . . , an, bn), σ∗(c, d,�e, . . . , an, bn)),

Cg(�e,�0) ∨
∨
i

Cg(bi, si(c, d,�e, . . . , ai−1, bi−1))

= Cg((c, d,�e, . . . , an, bn), ρ(c, d,�e, . . . , an, bn)),

Cg(�e,�1) ∨
∨
i

Cg(bi, ti(c, d,�e, . . . , ai−1, bi−1))

= Cg((c, d,�e, . . . , an, bn), ρ∗(c, d,�e, . . . , an, bn)).

In the proofs that follow, we will repeatedly find elements in an algebra that
solve congruential “equations” of the form

a
θ≡ x

θ∗

≡ b

when θ × θ∗ = ∆. Using the functions σ, σ∗, ρ and ρ∗ just defined, we can assert
conclusions from the way elements such as x are constructed. This is the content
of the following immediate consequences of Lemma 2.1:

Corollary 2.2. Given c, d,�e ∈ A and θ, θ∗ ∈ Con A such that �0 θ �e θ∗�1 and c θ d,
for every ai and bi with i = 1, . . . , n such that

s1(c, d,�e)
θ≡ a1

θ∗

≡ t1(c, d,�e),

s2(c, d,�e, a1, b1)
θ≡ a2

θ∗

≡ t2(c, d,�e, a1, b1),
. . .

si+1(c, d,�e, a1, b1, . . . , ai, bi)
θ≡ ai+1

θ∗

≡ ti+1(c, d,�e, a1, b1, . . . , ai, bi),

we have

t(c, d,�e, a1, b1, . . . , an, bn)
θ≡ t(σ(c, d,�e, a1, b1, . . . , an, bn)),

t(c, d,�e, a1, b1, . . . , an, bn)
θ∗

≡ t(σ∗(c, d,�e, a1, b1, . . . , an, bn)),
(2.2)

for every (2n + l + 2)-ary term t in the language of V.

The next result is entirely analogous.

Corollary 2.3. Suppose c, d,�e ∈ A and ϕ, ϕ∗ ∈ ConA such that �0 ϕ�eϕ∗�1. If ai

and bi satisfy

s1(c, d,�e)
ϕ
≡ b1

ϕ∗

≡ t1(c, d,�e),
. . .

si+1(c, d,�e, a1, b1, . . . , ai, bi)
ϕ≡ bi+1

ϕ∗

≡ ti+1(c, d,�e, a1, b1, . . . , ai, bi),
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we obtain

t(c, d,�e, a1, b1, . . . , an, bn)
ϕ≡ t(ρ(c, d,�e, a1, b1, . . . , an, bn)),

t(c, d,�e, a1, b1, . . . , an, bn)
ϕ∗

≡ t(ρ∗(c, d,�e, a1, b1, . . . , an, bn))
(2.3)

for every (2n + l + 2)-ary term t in the language of V.

We will also need the following (Grätzer’s) version of Mal’cev’s key observation
on principal congruences.

Lemma 2.4. Let A be any algebra and let a, b ∈ A, �a,�b ∈ An. Then (a, b) ∈
CgA(�a,�b) if and only if there exist (n + m)-ary terms p1(�x, �u), . . . , pk(�x, �u), with k
odd, and �u ∈ Am such that:

a = p1(�a, �u),

pi(�b, �u) = pi+1(�b, �u), i odd,

pi(�a, �u) = pi+1(�a, �u), i even,

pk(�b, �u) = b.

We will use |α| to denote the length of a word α and ε will denote the empty
word.

Theorem 2.5. Let V be a variety with �0 & �1. V has Left Determining Property if
and only if there exist integers N = 2k and n, (2i + l)-ary terms si and ti for each
i = 1, . . . , n, and for every word α in the alphabet {1, . . . , N} of length no greater
than N there are terms Lα, Rα such that

|α| = N

Lα(ρ( �X)) ≈ Rα(ρ( �X)),

Lα(ρ∗( �X)) ≈ Rα(ρ∗( �X)),
(2.4)

|α| = 0

x ≈ Lε(x, y, �z, x1, y1, . . . , xn, yn),

Rε(x, y, �z, x1, y1, . . . , xn, yn) ≈ y,
(2.5)

Lε(ρ( �X)) ≈ L1(ρ( �X)),(2.6)

Rj(ρ( �X)) ≈ Lj+1(ρ( �X)) if 1 ≤ j ≤ N − 1,(2.7)

RN (ρ( �X)) ≈ Rε(ρ( �X)).(2.8)
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0 < |α| < N

If |α| is even, then

Lα(ρ( �X)) ≈ Lα1(ρ( �X)),(2.9)

Rαj(ρ( �X)) ≈ Lα(j+1)(ρ( �X)) if 1 ≤ j ≤ k − 1,(2.10)

Rαk(ρ( �X)) ≈ Rα(ρ( �X)),(2.11)

Lα(ρ∗( �X)) ≈ Lα(k+1)(ρ∗( �X)),

Rαj(ρ∗( �X)) ≈ Lα(j+1)(ρ∗( �X)) if k + 1 ≤ j ≤ N − 1,

RαN (ρ∗( �X)) ≈ Rα(ρ∗( �X)).

(2.12)

If |α| is odd, then

Lα(σ( �X)) ≈ Lα1(σ( �X)),

Rαj(σ( �X)) ≈ Lα(j+1)(σ( �X)) if 1 ≤ j ≤ k − 1,

Rαk(σ( �X)) ≈ Rα(σ( �X)),

(2.13)

Lα(σ∗( �X)) ≈ Lα(k+1)(σ∗( �X)),

Rαj(σ∗( �X)) ≈ Lα(j+1)(σ∗( �X)) if k + 1 ≤ j ≤ N − 1,

RαN (σ∗( �X)) ≈ Rα(σ∗( �X)),

(2.14)

where �X = (x, y, �z, x1, y1, . . . , xn, yn) and σ, σ∗, ρ and ρ∗ are defined relative to si,

ti, on T ( �X).

Proof. (⇐) Assume the existence of the terms, and suppose ϕ×ϕ∗ = ∆, θ×θ∗ = ∆,
�0 θ e θ∗�1, �0 ϕ e ϕ∗�1, and c θ d. We want to see c ϕ d. There exist unique ai, bi

satisfying the following relations:

s1(c, d,�e)
θ≡ a1

θ∗

≡ t1(c, d,�e),

s1(c, d,�e)
ϕ≡ b1

ϕ∗

≡ t1(c, d,�e),
. . .

sj+1(c, d,�e, a1, b1, . . . , aj , bj)
θ≡ aj+1

θ∗

≡ tj+1(c, d,�e, a1, b1, . . . , aj , bj),

sj+1(c, d,�e, a1, b1, . . . , aj , bj)
ϕ≡ bj+1

ϕ∗

≡ tj+1(c, d,�e, a1, b1, . . . , aj , bj).

Note that their definition combines the schemes in Corollaries 2.2 and 2.3. So, by
equations (2.2) and (2.3) we have, taking t := Lα, Rα:

Lα(σ(c, d,�e, a1, b1, . . . ))
θ≡ Lα(c, d,�e, a1, b1, . . . , an, bn)

θ∗

≡ Lα(σ∗(c, d,�e, a1, b1, . . . )),

Lα(ρ(c, d,�e, a1, b1, . . . ))
ϕ≡ Lα(c, d,�e, a1, b1, . . . , an, bn)

ϕ∗

≡ Lα(ρ∗(c, d,�e, a1, b1, . . . )),

(2.15)

Rα(σ(c, d,�e, a1, b1, . . . ))
θ≡ Rα(c, d,�e, a1, b1, . . . , an, bn)

θ∗

≡ Rα(σ∗(c, d,�e, a1, b1, . . . )),

Rα(ρ(c, d,�e, a1, b1, . . . ))
ϕ≡ Rα(c, d,�e, a1, b1, . . . , an, bn)

ϕ∗

≡ Rα(ρ∗(c, d,�e, a1, b1, . . . ))

(2.16)
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for every α. We’ll prove inductively that

(2.17) Lα(c, d,�e, a1, b1, . . . , an, bn) = Rα(c, d,�e, a1, b1, . . . , an, bn)

for all α �= ε. Take α such that |α| = N . Then

Lα(c, d,�e, a1, b1, . . . , an, bn)
ϕ≡ Lα(ρ(c, d,�e, a1, b1, . . . , an, bn)) by (2.15)

= Rα(ρ(c, d,�e, a1, b1, . . . , an, bn)) using (2.4)
ϕ≡ Rα(c, d,�e, a1, b1, . . . , an, bn) by (2.16)

and

Lα(c, d,�e, a1, b1, . . . , an, bn)
ϕ∗

≡ Lα(ρ∗(c, d,�e, a1, b1, . . . , an, bn)) by (2.15)

= Rα(ρ∗(c, d,�e, a1, b1, . . . , an, bn)) using (2.4)
ϕ∗

≡ Rα(c, d,�e, a1, b1, . . . , an, bn) by (2.16).

Hence
(
Lα(c, d,�e, a1, b1, . . . , an, bn), Rα(c, d,�e, a1, b1, . . . , an, bn)

)
∈ ϕ∩ϕ∗ = ∆ and

then Lα(c, d,�e, a1, b1, . . . , an, bn) = Rα(c, d,�e, a1, b1, . . . , an, bn).
Take α �= ε of odd length and assume

Lαj(c, d,�e, a1, b1, . . . , an, bn) = Rαj(c, d,�e, a1, b1, . . . , an, bn)

for every j = 1, . . . , N . We check that

Lα(c, d,�e, a1, b1, . . . , an, bn)
θ≡ Rα(c, d,�e, a1, b1, . . . , an, bn),

Lα(c, d,�e, a1, b1, . . . , an, bn)
θ≡ Lα(σ(c, d,�e, a1, b1, . . . , an, bn)) by (2.15)

= Lα1(σ(c, d,�e, a1, b1, . . . , an, bn)) by (2.13)
θ≡ Lα1(c, d,�e, a1, b1, . . . , an, bn) by (2.15)

= Rα1(c, d,�e, a1, b1, . . . , an, bn) by ind. hypothesis
θ≡ Rα1(σ(c, d,�e, a1, b1, . . . , an, bn)) by (2.16)
θ≡ · · · using (2.13). . .

= Rαk(σ(c, d,�e, a1, b1, . . . , an, bn))

= Rα(σ(c, d,�e, a1, b1, . . . , an, bn)) using (2.13)
θ≡ Rα(c, d,�e, a1, b1, . . . , an, bn).
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In the same way for θ∗, we have

Lα(c, d,�e, a1, b1, . . . , an, bn)
θ∗

≡ Lα(σ∗(c, d,�e, a1, b1, . . . , an, bn)) by (2.15)

= Lα(k+1)(σ∗(c, d,�e, a1, b1, . . . , an, bn)) by (2.14)
θ∗

≡ Lα(k+1)(c, d,�e, a1, b1, . . . , an, bn) by (2.15)

= Rα(k+1)(c, d,�e, a1, b1, . . . , an, bn) by ind. hyp.
θ∗

≡ Rα(k+1)(σ∗(c, d,�e, a1, b1, . . . , an, bn)) by (2.16)
θ∗

≡ · · · using (2.14). . .

= RαN (σ∗(c, d,�e, a1, b1, . . . , an, bn))

= Rα(σ∗(c, d,�e, a1, b1, . . . , an, bn)) using (2.14)
θ∗

≡ Rα(c, d,�e, a1, b1, . . . , an, bn) by (2.16).

Hence
(
Lα(c, d,�e, a1, b1, . . . , an, bn), Rα(c, d,�e, a1, b1, . . . , an, bn)

)
∈ θ∩ θ∗ = ∆, and

therefore they are equal.
If α �= ε has even length, then

Lα(c, d,�e, a1, b1, . . . , an, bn)
ϕ
≡ Lα(ρ(c, d,�e, a1, b1, . . . , an, bn)) by (2.15)

= Lα1(ρ(c, d,�e, a1, b1, . . . , an, bn)) by (2.9)
ϕ≡ Lα1(c, d,�e, a1, b1, . . . , an, bn) by (2.15)

= Rα1(c, d,�e, a1, b1, . . . , an, bn) by ind. hypothesis
ϕ≡ Rα1(ρ(c, d,�e, a1, b1, . . . , an, bn)) by (2.16)
ϕ≡ · · · using (2.10). . .

= Rαk(ρ(c, d,�e, a1, b1, . . . , an, bn))

= Rα(ρ(c, d,�e, a1, b1, . . . , an, bn)) using (2.11)
ϕ≡ Rα(c, d,�e, a1, b1, . . . , an, bn) by (2.16)

proves
(
Lα(c, d,�e, a1, b1, . . . , an, bn), Rα(c, d,�e, a1, b1, . . . , an, bn)

)
∈ ϕ, and

Lα(c, d,�e, a1, b1, . . . , an, bn)
ϕ∗

≡ Lα(ρ∗(c, d,�e, a1, b1, . . . , an, bn)) by (2.15)

= Lα(k+1)(ρ∗(c, d,�e, a1, b1, . . . , an, bn)) by (2.12)
ϕ∗

≡ Lα(k+1)(c, d,�e, a1, b1, . . . , an, bn) by (2.15)

= Rα(k+1)(c, d,�e, a1, b1, . . . , an, bn) by ind. hyp.
ϕ∗

≡ Rα(k+1)(ρ∗(c, d,�e, a1, b1, . . . , an, bn)) by (2.16)
ϕ∗

≡ · · · using (2.12). . .

= RαN (ρ∗(c, d,�e, a1, b1, . . . , an, bn))

= Rα(ρ∗(c, d,�e, a1, b1, . . . , an, bn)) using (2.12)
ϕ∗

≡ Rα(c, d,�e, a1, b1, . . . , an, bn) by (2.16)
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completes this case. Finally, we have:

c = Lε(ρ(c, d,�e, a1, b1, . . . , an, bn)) using (2.5)

= L1(ρ(c, d,�e, a1, b1, . . . , an, bn)) by (2.6)
ϕ≡ L1(c, d,�e, a1, b1, . . . , an, bn) by (2.15)

= R1(c, d,�e, a1, b1, . . . , an, bn) by (2.17)
ϕ≡ R1(ρ(c, d,�e, a1, b1, . . . , an, bn)) by (2.16)
ϕ≡ · · · using (2.7). . .

= RN (ρ(c, d,�e, a1, b1, . . . , an, bn))

= Rε(ρ(c, d,�e, a1, b1, . . . , an, bn)) using (2.8)

= d using (2.5).

This proves (c, d) ∈ ϕ.
(⇒) For each set of variables Y , define

Y ∗ := Y ∪ {xp,q : p, q ∈ T (Y )} ∪ {yp,q : p, q ∈ T (Y )},
Y 0∗ := Y,

Y (n+1)∗ := (Y n∗)∗,

Y ∞ :=
⋃
n≥1

Y n∗,

where xp,q and yp,q are new variables. Take Z := {x, y, z1, . . . , zl} and F := F (Z∞).
Define the index of p ∈ T (Z∞) as ind(p) = min{j : p ∈ T (Zj∗)}; it is evident that
if ind(xp,q) ≤ ind(xr,s), neither p nor q can be terms depending on xr,s. The same
holds for ind(xp,q) ≤ ind(yr,s) and symmetrically, and for ind(yp,q) ≤ ind(yr,s).

Take the following congruences on F :

θ := Cg(�0, �z) ∨ Cg(x, y) ∨
∨

{Cg(p, xp,q) : p, q ∈ F}, δ0 = ε0 := ∆F ,

θ∗ := Cg(�1, �z) ∨
∨

{Cg(xp,q, q) : p, q ∈ F}, δn+1 := (θ ∨ εn) ∩ (θ∗ ∨ εn),

ϕ := Cg(�0, �z) ∨
∨

{Cg(p, yp,q) : p, q ∈ F}, εn+1 := (ϕ ∨ δn) ∩ (ϕ∗ ∨ δn),

ϕ∗ := Cg(�1, �z) ∨
∨

{Cg(yp,q, q) : p, q ∈ F}, δ∞ :=
∨
n≥0

δn =
∨
n≥0

εn.

By construction, ϕ ◦ ϕ∗ = θ ◦ θ∗ = ∇F , �0 θ �z θ∗�1, �0 ϕ�z ϕ∗�1, and x θ y. Observe
that if (a, b) ∈ (ϕ ∨ δ∞) ∩ (ϕ∗ ∨ δ∞), then there exists an n ≥ 0 such that (a, b) ∈
(ϕ∨ δn)∩ (ϕ∗ ∨ δn). But this congruence is exactly εn+1; hence (a, b) ∈ εn+1 ⊆ δ∞.
We may conclude (ϕ ∨ δ∞) ∩ (ϕ∗ ∨ δ∞) = δ∞. The same happens with θ and θ∗;
hence

(ϕ ∨ δ∞)/δ∞ × (ϕ∗ ∨ δ∞)/δ∞ = ∆, (θ ∨ δ∞)/δ∞ × (θ∗ ∨ δ∞)/δ∞ = ∆

in F/δ∞. Then, by the Left Determining Property we have (x/δ∞, y/δ∞) ∈
(ϕ ∨ δ∞)/δ∞ and hence (x, y) ∈ ϕ ∨ δ∞. We may find an even integer N = 2k
such that (x, y) ∈ ϕ ◦2N δN

N , where δN
N is the result of replacing each occurrence of

“∨” in the definition of δN by ◦N , the n-fold relational product.
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We will inductively define terms Lα and Rα, for α a word of length at most N
in the alphabet {1, . . . , N} such that:

x = Lε, y = Rε,(2.18)

(Lε, L1) ∈ ϕ, (RN , Rε) ∈ ϕ,(2.19)

(Li, Ri) ∈ δN
N if 1 ≤ i ≤ N,(2.20)

(Ri, L(i+1)) ∈ ϕ if 1 ≤ i ≤ N − 1.(2.21)

For α �= ε with |α| < N an odd integer,

(Lα, Lα1) ∈ θ, (Rαk, Rα) ∈ θ,(2.22)

(Lα, Lα(k+1)) ∈ θ∗, (RαN , Rα) ∈ θ∗,(2.23)

(Lαi, Rαi) ∈ εN
N−|α| if 1 ≤ i ≤ N,(2.24)

(Rαi, Lα(i+1)) ∈ θ if 1 ≤ i ≤ k − 1,(2.25)

(Rαi, Lα(i+1)) ∈ θ∗ if k + 1 ≤ i ≤ N − 1(2.26)

and for α �= ε with |α| < N an even integer:

(Lα, Lα1) ∈ ϕ, (Rαk, Rα) ∈ ϕ,(2.27)

(Lα, Lα(k+1)) ∈ ϕ∗, (RαN , Rα) ∈ ϕ∗,(2.28)

(Lαi, Rαi) ∈ δN
N−|α| if 1 ≤ i ≤ N,(2.29)

(Rαi, Lα(i+1)) ∈ ϕ if 1 ≤ i ≤ k − 1,(2.30)

(Rαi, Lα(i+1)) ∈ ϕ∗ if k + 1 ≤ i ≤ N − 1.(2.31)

We take Lε := x and Rε := y. Since we know (x, y) ∈ ϕ ◦2N δN
N , we define Li,

Ri for i = 1, . . . , N to be terms satisfying

x ϕ L1 δN
N R1 ϕ L2 δN

N · · ·ϕ LN δN
N RN ϕ y.

Note that these terms satisfy (2.18)–(2.31) whenever they can be checked.
Suppose we have defined the terms corresponding to words with length less than

or equal to j and that they satisfy equations among (2.18)–(2.31) that involve
words of length j or shorter. Then we shall define terms corresponding to words
with length equal to j + 1 such that the totality of terms defined satisfy equations
among (2.18)–(2.31) which involve words of length j + 1 or shorter. We have two
cases:
Case 1: j odd. Take α, with |α| = j. We have Lα and Rα and by (2.29), they
satisfy (Lα, Rα) ∈ δN

N−j+1 = (θ ◦N εN
N−j) ∩ (θ∗ ◦N εN

N−j). We define Lαi and Rαi

for i = 1, . . . , N such that:

Lα θ Lα1 εN
N−j Rα1 θ Lα2 · · ·Rα(k−1) θ Lαk εN

N−j Rαk θ Rα,

Lα θ∗ Lα(k+1) εN
N−j Rα(k+1) θ∗ Lα(k+2) · · ·LαN εN

N−j RαN θ∗ Rα.
(2.32)

The equations among (2.18)–(2.31) which involve terms Lµ and Rµ with |µ| = j +1
are (2.22)–(2.26). All of them can be inferred from (2.32).
Case 2: j even. Take α, with |α| = j. We define Lαi and Rαi for i = 1, . . . , N .
By (2.24) and by the definition of εN

N−j+1 we may define our terms satisfying:

Lα ϕ Lα1 δN
N−j Rα1 ϕ Lα2 · · ·Rα(k−1) ϕ Lαk δN

N−j Rαk ϕ Rα,

Lα ϕ Lα(k+1) δN
N−j Rα(k+1) ϕ∗ Lα(k+2) · · ·RαN ϕ∗Rα.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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From this we immediately conclude (2.27)–(2.31).
Let V ⊆ Z∞ be a finite set of variables such that if we replace θ, θ∗, ϕ and ϕ∗,

respectively, by the following compact congruences:

θ0 := Cg(�0, �z) ∨ Cg(x, y) ∨
∨

{Cg(p, xp,q) : xp,q ∈ V },

θ∗0 := Cg(�1, �z) ∨
∨

{Cg(xp,q, q) : xp,q ∈ V },

ϕ0 := Cg(�0, �z) ∨
∨

{Cg(p, yp,q) : yp,q ∈ V },

ϕ∗
0 := Cg(�1, �z) ∨

∨
{Cg(yp,q, q) : yp,q ∈ V },

then we still obtain congruential relations (2.18)–(2.31) (excepting (2.20), (2.29)
and (2.24)). It is clear that if we enlarge the set V to a new set X, the properties
enumerated will still hold.

Let V0 be the union of V and the (finite) set of variables occurring in terms
Lα, Rα with α a word. Define:

Vn+1 := Vn ∪
⋃

{V ar(p), V ar(q) : xp,q ∈ Vn or yp,q ∈ Vn}.

Hence, for some M we have VM = VM+1; set

X :=
(
VM ∪ {xp,q : yp,q ∈ VM} ∪ {yp,q : xp,q ∈ VM}

)
\{x, y, z1, . . . , zl}.

Order X totally so that ind : X → ω is nondecreasing and xp,q is the immediate
predecessor of yp,q , and add x, y, z1, . . . , zl at the beginning; we have

�X = (x, y, �z, xs1,t1 , ys1,t1 , . . . , xsn,tn
, ysn,tn

) = (x, y, �z, x1, y1, . . . , xn, yn).

We may consider then Lα = Lα( �X) and the same for Rα, and by the remarks after
the definition of Z∞, we may assume si = si(x, y, �z, x1, y1, . . . , xi−1, yi−1) and the
same for ti. Finally, define σ, ρ, σ∗, ρ∗ on the term algebra T ( �X) with respect to
si, ti.

We claim that these L’s, R’s, s’s and t’s satisfy the Mal’cev condition. Let’s check
it for identity (2.9). Take α with 0 < |α| < N an even integer. By Lemma 2.1 we
have

ϕ = Cg( �X, ρ( �X)).

Since we have Lα ϕ Lα1 by equation (2.27), Lemma 2.4 gives us terms pi such that
for some tuple �u, F satisfies:

Lα = p1

(
�X, �u

)
,

p1

(
ρ( �X), �u

)
= p2

(
ρ( �X), �u

)
,

p2

(
�X, �u

)
= p3

(
�X, �u

)
,

· · ·
pm

(
ρ( �X), �u

)
= Lα1.
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Since �u = �u( �X, �Y ) can be construed as members of T (Z∞), we obtain the following
laws for V :

Lα( �X) ≈ p1( �X, �u( �X, �Y )),

p1(ρ( �X), �u( �X, �Y )) ≈ p2(ρ( �X), �u( �X, �Y )),

p2( �X, �u( �X, �Y )) ≈ p3( �X, �u( �X, �Y )),
· · ·

pm(ρ( �X), �u( �X, �Y )) ≈ Lα1( �X).

Replacing �X by ρ( �X) everywhere and noting that ρ(ρ( �X)) = ρ( �X), we have

Lα(ρ( �X)) ≈ p1(ρ( �X), �u(ρ( �X), �Y )),

p1(ρ( �X), �u(ρ( �X), �Y )) ≈ p2(ρ( �X), �u(ρ( �X), �Y )),

p2(ρ( �X), �u(ρ( �X), �Y )) ≈ p3(ρ( �X), �u(ρ( �X), �Y )),
· · ·

pm(ρ( �X), �u(ρ( �X), �Y )) ≈ Lα1(ρ( �X)),

and by transitivity,

V |= Lα(ρ( �X)) ≈ Lα1(ρ( �X)),

which is what we were looking for. The other identities are obtained similarly. �

The proof of the previous theorem follows the line of a proof for a Mal’cev
condition for BFC. One such condition that closely parallels ours was personally
communicated to us by R. Willard.

3. A canonical form of DFC

We will assume in this section that V has the Determining Property. Since the
Determining Property implies the Left Determining Property, we may define the
following formulas in the language of V :

Ψm :=
∧

|α|=m

⎛
⎝( ∧

γ �=ε

Lαγ( �X) = Rαγ( �X)
)

→ Lα( �X) = Rα( �X)

⎞
⎠ ,

where every subindex varies over words of length less than or equal to N ; so an
expression of the form “

∧
γ �=ε Lαγ = Rαγ” should be read as “

∧
{Lαγ = Rαγ :

γ �= ε and |αγ| ≤ N}”. Hence ΨN =
(∧

|β|=N Lβ( �X) = Rβ( �X)
)
. (The antecedent

“vanishes”.)

Lemma 3.1. Let A ∈ V and let ϕ, ϕ∗ ∈ Con A such that ϕ×ϕ∗ = ∆ and �0 ϕ�eϕ∗�1.
Then for all c, d ∈ A, A satisfies Φ1(c, d,�e), where

(3.1) Φ1(x, y, �z) := ∃y1∀x1 . . .∃yn∀xn

k∧
m=1

Ψ2m

with n, k as in Theorem 2.5.
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5074 PEDRO SÁNCHEZ TERRAF AND DIEGO J. VAGGIONE

Proof. Take b1 such that

s1(c, d,�e)
ϕ≡ b1

ϕ∗

≡ t1(c, d,�e).

Assuming bi is already chosen and ai is given, define bi+1 such that

si+1(c, d,�e, a1, b1, . . . , ai, bi)
ϕ≡ bi+1

ϕ∗

≡ ti+1(c, d,�e, a1, b1, . . . , ai, bi).

The construction of the bi’s then corresponds to the equations in Corollary 2.3.
Hence, (2.3) implies that A satisfies

Lα(c, d,�e, a1, b1, . . . , an, bn)
ϕ≡ Lα(ρ(c, d,�e, a1, b1, . . . , an, bn)),

Rα(c, d,�e, a1, b1, . . . , an, bn)
ϕ≡ Rα(ρ(c, d,�e, a1, b1, . . . , an, bn)),

Lα(c, d,�e, a1, b1, . . . , an, bn)
ϕ∗

≡ Lα(ρ∗(c, d,�e, a1, b1, . . . , an, bn)),

Rα(c, d,�e, a1, b1, . . . , an, bn)
ϕ∗

≡ Rα(ρ∗(c, d,�e, a1, b1, . . . , an, bn))

for all α. These together with equations (2.4) imply that for each β with |β| = N ,

Lβ(c, d,�e, a1, b1, . . . , an, bn)
ϕ≡ Rβ(c, d,�e, a1, b1, . . . , an, bn),

Lβ(c, d,�e, a1, b1, . . . , an, bn)
ϕ∗

≡ Rβ(c, d,�e, a1, b1, . . . , an, bn).
(3.2)

Since ϕ ∩ ϕ∗ = ∆, this yields A |= ΨN (c, d,�e, a1, b1, . . . , an, bn).
Take nonempty α with |α| < N even and suppose

A |=
∧
γ �=ε

Lαγ(c, d,�e, a1, b1, . . . , an, bn) = Rαγ(c, d,�e, a1, b1, . . . , an, bn).

We can see that Lα(c, d,�e, a1, b1, . . . , an, bn)
ϕ≡ Rα(c, d,�e, a1, b1, . . . , an, bn), by using

equations (2.9), (2.10) and (2.11) as follows:

Lα(c, d,�e, a1, b1, . . . , an, bn)
ϕ≡ Lα(ρ(c, d,�e, a1, b1, . . . , an, bn)) by (2.3)

= Lα1(ρ(c, d,�e, a1, b1, . . . , an, bn)) by (2.9)
ϕ≡ Lα1(c, d,�e, a1, b1, . . . , an, bn) by (2.3)

= Rα1(c, d,�e, a1, b1, . . . , an, bn) by hypothesis
ϕ≡ Rα1(ρ(c, d,�e, a1, b1, . . . , an, bn)) by (2.3)

= · · · using (2.10), (3.2)
= · · · and iterating. . .

= Rαk(ρ(c, d,�e, a1, b1, . . . , an, bn))

= Rα(ρ(c, d,�e, a1, b1, . . . , an, bn)) using (2.11)
ϕ≡ Rα(c, d,�e, a1, b1, . . . , an, bn) by (2.3).

It can be proved in an entirely analogous fashion (by using equations (2.12))

that Lα(c, d,�e, a1, b1, . . . , an, bn)
ϕ∗

≡ Rα(c, d,�e, a1, b1, . . . , an, bn), which yields

A |= Lα(c, d,�e, a1, b1, . . . , an, bn) = Rα(c, d,�e, a1, b1, . . . , an, bn),

and we have proved the lemma. �
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Theorem 3.2. Let V be a variety with the Determining Property, let A ∈ V and

let θ, θ∗ ∈ Con A such that θ × θ∗ = ∆, and �0 θ �e θ∗�1. Then c
θ≡ d if and only if

A |= Φ1(c, d,�e) ∧ Φ2(c, d,�e), where Φ1 and Φ2 are defined as follows:

Φ1(x, y, �z) := ∃y1∀x1 . . .∃yn∀xn

k∧
m=1

Ψ2m,

Φ2(x, y, �z) := ∃x1∀y1 . . .∃xn∀yn

k∧
m=1

Ψ2m−1.

Proof. Since the definition of Φ1 is the same as the one given by formula (3.1) in
Lemma 3.1, we only have to worry about Φ2(c, d,�e).

(⇒) Assume c
θ≡ d. Much in the same way as in the proof of Lemma 3.1, define

a1 such that

s1(c, d,�e)
θ≡ a1

θ∗

≡ t1(c, d,�e);

and assuming ai is already chosen and bi is given, let

si+1(c, d,�e, a1, b1, . . . , ai, bi)
θ≡ ai+1

θ∗

≡ ti+1(c, d,�e, a1, b1, . . . , ai, bi).

This choice conforms to the pattern of Corollary 2.2, so we obtain

Lα(c, d,�e, a1, b1, . . . , an, bn)
θ≡ Lα(σ(c, d,�e, a1, b1, . . . , an, bn)),

Rα(c, d,�e, a1, b1, . . . , an, bn)
θ≡ Rα(σ(c, d,�e, a1, b1, . . . , an, bn)),

(3.3)

Lα(c, d,�e, a1, b1, . . . , an, bn)
θ∗

≡ Lα(σ∗(c, d,�e, a1, b1, . . . , an, bn)),

Rα(c, d,�e, a1, b1, . . . , an, bn)
θ∗

≡ Rα(σ∗(c, d,�e, a1, b1, . . . , an, bn))
(3.4)

by equations (2.2).
If we suppose now that

A |=
∧
γ �=ε

Lαγ(c, d,�e, a1, b1, . . . , an, bn) = Rαγ(c, d,�e, a1, b1, . . . , an, bn)

for some α with |α| < N odd, we’ll be able to prove Lα(c, d,�e, a1, b1, . . . , an, bn) =
Rα(c, d,�e, a1, b1, . . . , an, bn) by showing (in the same way as in Lemma 3.1) that:

• Lα(c, d,�e, a1, b1, . . . , an, bn)
θ≡ Rα(c, d,�e, a1, b1, . . . , an, bn) (this can be ac-

complished using (2.13) and (3.3)), and

• Lα(c, d,�e, a1, b1, . . . , an, bn)
θ∗

≡ Rα(c, d,�e, a1, b1, . . . , an, bn) (by (2.14) and
(3.4)).

(⇐) Assume A |= Φ2(c, d,�e). Take b1 such that

s1(c, d,�e)
θ≡ b1

θ∗

≡ t1(c, d,�e).

Let a1 be given by the outermost existential quantifier of Φ2.
Assuming bi is already chosen and ai is the corresponding witness for Φ2, let

si+1(c, d,�e, a1, b1, . . . , ai, bi)
θ≡ bi+1

θ∗

≡ ti+1(c, d,�e, a1, b1, . . . , ai, bi).
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This selection conforms to the scheme of Corollary 2.3 (with ϕ := θ and ϕ∗ := θ∗)
and satisfies the matrix of Φ1, as was seen in the proof of Lemma 3.1. Hence we
have, respectively,

Lα(c, d,�e, a1, b1, . . . , an, bn)
θ≡ Lα(ρ(c, d,�e, a1, b1, . . . , an, bn)),

Rα(c, d,�e, a1, b1, . . . , an, bn)
θ∗

≡ Rα(ρ(c, d,�e, a1, b1, . . . , an, bn))
(3.5)

and

A |=
( N∧

m=1

Ψm

)
(c, d,�e, a1, b1, . . . , an, bn).

From an easy inspection of the form of Ψm, it can be deduced that

(3.6) A |=
N∧

j=1

Lj(c, d,�e, a1, b1, . . . , an, bn) = Rj(c, d,�e, a1, b1, . . . , an, bn).

Therefore,

c = Lε(c, d,�e, a1, b1, . . . , an, bn) by (2.5)
θ≡ Lε(ρ(c, d,�e, a1, b1, . . . , an, bn)) by (3.5)

= L1(ρ(c, d,�e, a1, b1, . . . , an, bn)) by (2.9), with α = ε

θ≡ L1(c, d,�e, a1, b1, . . . , an, bn) by (3.5)

= R1(c, d,�e, a1, b1, . . . , an, bn) by (3.6)
θ≡ R1(ρ(c, d,�e, a1, b1, . . . , an, bn)) by (3.5)

= L2(ρ(c, d,�e, a1, b1, . . . , an, bn)) by (2.10)
θ≡ · · · using (2.10), (3.6)
θ≡ · · · and iterating. . .

= RN (ρ(c, d,�e, a1, b1, . . . , an, bn)) and using (2.11):

= Rε(ρ(c, d,�e, a1, b1, . . . , an, bn))
θ≡ Rε(c, d,�e, a1, b1, . . . , an, bn) by (3.5)

= d by (2.5).

Hence c
θ≡ d. �

4. Central elements in a variety with DFC

In the Appendix, we will prove a preservation result (Theorem A.4) that implies
that formula Φ1∧Φ2 of Theorem 3.2 is preserved by taking direct factors and direct
products (taking τα to be “Lα( �X) = Rα( �X)”). Call Φ the conjunction Φ1 ∧ Φ2.

Lemma 4.1. Assume V has the Determining Property. Then there is a set Σ of
first-order formulas such that for every A ∈ V, �e, �f ∈ Al we have that �e and �f

are complementary central elements if and only if A |= ζ(�e, �f) for every ζ ∈ Σ.
Moreover, each formula in Σ is preserved by taking direct factors.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



VARIETIES WITH DEFINABLE FACTOR CONGRUENCES 5077

Proof. The following formulas in the language of V will assert the properties needed
to force Φ(·, ·, �e) and Φ(·, ·, �f) to define the pair of complementary factor congruences
associated with �e and �f .

• CAN(�e, �f) =
∧l

i=1 Φ(0i, ei, �e) ∧
∧l

i=1 Φ(1i, fi, �e)
This formula says that �e is related to �0 and �f to �1 via Φ(·, ·, �e).

• PROD(�e, �f) = ∀x, y∃z
(
Φ(x, z,�e) ∧ Φ(z, y, �f)

)
The relational product of Φ(·, ·, �e) and Φ(·, ·, �f) is the universal congru-

ence.
• INT (�e, �f) = ∀x, y

(
Φ(x, y,�e) ∧ Φ(x, y, �f) → x = y

)
Their intersection is ∆.

• REF (�e, �f) = ∀x Φ(x, x,�e)
Φ(·, ·, �e) is reflexive.

• SY M(�e, �f) = ∀x, y, z
(
Φ(x, y,�e) ∧ Φ(y, z,�e) ∧ Φ(z, x, �f) → z = x

)
• TRANS(�e, �f) = ∀x, y, z, u

(
Φ(x, y,�e)∧Φ(y, z,�e)∧Φ(x, u,�e)∧Φ(u, z, �f) →

u = z
)

The reader may verify that these two formulas (in conjunction with the
previous ones) say that Φ(·, ·, �e) is symmetric and transitive.

• For each m-ary function symbol F, define:

PRESF (�e, �f) = ∀u1, v1, . . . , um, vm(∧
j

Φ(uj , vj , �e)
)

∧ Φ(F (u1, . . . , um), z, �e) ∧ Φ(z, F (v1, . . . , vm), �f) →

→ z = F (v1, . . . , vm).

These formulas ensure Φ(·, ·, �e) is preserved by the basic operations of V .
Finally, define CAN ′, REF ′, SY M ′, TRANS′ and PRES′

F to be the result of
interchanging �e with �f in CAN, REF, SY M, TRANS and PRESF , respectively,
and let Σ be the union of the following two sets:

{CAN, PROD, INT, REF, SY M, TRANS, CAN ′, REF ′, SY M ′, TRANS′},
{PRESF , PRES′

F : F a function symbol}.

Now it is immediate to check that �e and �f are complementary central elements
if they satisfy all formulas in Σ. To see the converse, note that if �e and �f are
complementary central elements, there is an isomorphism A → A0 × A1 such that
�e, �f correspond to [�0,�1], [�1,�0], respectively, and Theorem 3.2 guarantees that Σ will
hold.

To see that Σ is preserved by direct factors, we first note that each one of
CAN , CAN ′ PROD, PROD′, REF and REF ′ is obtained by quantification of a
formula preserved by taking direct factors by Theorem A.4. In the second place,
the remainder of axioms in Σ are of the form ∀�x (τ (�e, �f, �x) → xi = xj) with
REF (�e, �f)∧REF ′(�e, �f) → ∃�x τ(�e, �f, �x) universally valid, and since ∀�x (τ (�e, �f, �x) →
xi = xj) ∧ ∃�x τ(�e, �f, �x) is preserved by taking direct factors (whenever τ (�e, �f, �x) is
preserved by taking direct factors and direct products), we have the result. �
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5078 PEDRO SÁNCHEZ TERRAF AND DIEGO J. VAGGIONE

Corollary 4.2. Assume V has the Determining Property. Then if [�e0, �e1] is a
central element of A0 × A1, then �ei is a central element of Ai, i = 0, 1.

Proof. Immediate by the previous lemma. �
We use VDI to denote the class of directly indecomposable members of V .

Corollary 4.3. If V is a variety over a finite language and if it has the Determining
Property, then VDI is axiomatizable by a set of first-order sentences.

Proof. The set Σ = Σ(�e, �f) in Lemma 4.1 is finite if the language is finite. Hence

�0 �= �1 ∧ ∀�e, �f
∧

Σ(�e, �f) →
(
(�e = �0 ∧ �f = �1) ∨ (�e = �1 ∧ �f = �0)

)
together with axioms for V defines VDI . �
Lemma 4.4. The Determining Property implies BFC.

Proof. By Bigelow and Burris [1], we only need to check that if A = A0 × A1, and
θ is a factor congruence on A, then

{((a, b), (c, b)) : b ∈ A1 and ∃a′, c′(a, a′) θ (c, c′)} ⊆ θ.

Let �e = [�e0, �e1] be the central element associated to θ, so “x θ y” is defined by
Φ(x, y,�e). We have

(a, a′) θ (c, c′) iff A0 × A1 |= Φ((a, a′), (c, c′), [�e0, �e1]).

By Theorem A.4, this implies

A0 |= Φ(a, c,�e0).

Now Corollary 4.2 ensures �e1 is central in A1, and hence A1 |= Φ(b, b, �e1). Since Φ
is preserved by direct products, we obtain

A0 × A1 |= Φ((a, b), (c, b), [�e0, �e1]),

and then (a, b) θ (c, b). �

5. The main theorem

Proof of Theorem 1.1. (5)⇒(2) Suppose we have a pair of complementary factor
congruences ϕ and ϕ∗ such that �0 ϕ�eϕ∗�1. Suppose now that also θ × θ∗ = ∆ and
�0 θ �e θ∗�1. Then �0

ϕ◦θ∗

≡ �1 and hence ϕ ∨ θ∗ = ∇. So we have

(ϕ ∨ θ∗) ∩ θ = θ.

By BFC, we obtain ϕ ∩ θ = θ and then ϕ ⊆ θ. By symmetry, we obtain ϕ = θ and
ϕ∗ = θ∗.

(2)⇒(3) Theorem 3.2.
(3)⇒(4) Obvious.
(4)⇒(1) Immediate.
(2)⇒(5) Lemma 4.4.
(1)⇒(5) Define 0̃i and 1̃i with i = 1, . . . , 2l in the following way:

(0̃1, . . . , 0̃2l) := (01, . . . 0l, 11, . . . 1l),

(1̃1, . . . , 1̃2l) := (11, . . . 1l, 01, . . . , 0l).

It can be easily checked (using the Weak Determining Property) that with these
0̃’s and 1̃’s we have the Determining Property. Since (2)⇒(5), we have our result.

�

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



VARIETIES WITH DEFINABLE FACTOR CONGRUENCES 5079

6. Examples

6.1. �0 & �1 does not imply BFC. The variety VL with language {+, ∗, 0, 1} given
by the following set of equations Σ:

x + 0 = x,

x + 1 = x ∗ 1,

x ∗ 0 = 0

has �0 & �1. Next we will define various algebras in VL. In the first place take
Lω := 〈ω, +, ∗, 0, 1〉, where

0 + 1 := 0, 0 ∗ 1 := 0,

1 + 1 := 1, 1 ∗ 1 := 1,

x + 0 := x, x ∗ 0 := 0

for all x ∈ ω and
z + y := 2, z ∗ y := 2

for all z, y ∈ ω not previously considered. For each n ≥ 2, Ln will denote the
subalgebra of Lω with universe n = {0, 1, . . . , n − 1}. Now define Dn to be the
subalgebra of L2 × Lω with universe (2 × n) ∪ {(1, n)}.

Define the following subsets of 2 × ω:
P0 := {(0, j) | 3 ≤ j},
P1 := {(1, j) | 3 ≤ j}.

Then 2 × ω = (2 × 3) ∪ P0 ∪ P1. Note that for all z ∈ (2 × ω) \ {(0, 0), (1, 0)} and
for all x, y ∈ P1 we have:

x + z = y + z,

z + x = z + y,

x ∗ z = y ∗ z,

z ∗ x = z ∗ y.

(6.1)

Lemma 6.1. Every injective partial function f : Dn → (L2 × Ln) which fixes
(2 × 3) ∪ P0 is a partial isomorphism between Dn and L2 × Ln.

Proof. It’s straightforward to see (using equations (6.1)) that if B ⊆ P1 and σ is
any permutation of P1, then (2×3)∪P0∪B and (2×3)∪P0∪σ(B) are subalgebras
of L2 × Lω and

σ̄(x) :=

{
x x ∈ (2 × 3) ∪ P0,

σ(x) x ∈ B

is an isomorphism between them.
Since f is a restriction of such an isomorphism σ̄, it is a partial isomorphism. �

Recall that (VL)DI is the class of directly indecomposable members of VL.

Lemma 6.2. Let V be a variety. If VDI is axiomatizable by a set of first-order
sentences, then it is finitely axiomatizable relative to V.

Proof. First note that an ultraproduct of directly decomposable algebras is again
decomposable. Let Σ be a set of first-order sentences axiomatizing VDI . By way of
contradiction, suppose that VDI is not finitely axiomatizable relative to V . Hence,
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for each finite Σ0 ⊆ Σ there exists AΣ0 ∈ V \ VDI satisfying Σ0. Now it is easy to
construct an ultraproduct U of these decomposable algebras in such a way that U
satisfies Σ, an absurdity. �
Theorem 6.3. (VL)DI is not axiomatizable by a set of first-order sentences.

Proof. We will first prove that player “∃” has a winning strategy for the back-and-
forth (or “Ehrenfeucht”) game of length n − 3 played on Dn and L2 × Ln. The
strategy is as follows:

• If ∀ chooses an element in (2×3)∪P0 (in either algebra), ∃ will choose the
same element in the other algebra.

• If ∀ chooses an element in P1, ∃ will choose an element in the P1-part of
the other algebra, which has not been chosen up to this point.

There are n− 3 elements in P1 ∩ (L2 ×Ln), so these instructions work up to n− 3
moves. Let’s call g the partial function defined by this game. By Lemma 6.1, g is
a partial isomorphism and we have proved our first claim.

Now suppose ϕ is a sentence such that (VL)DI |= ϕ. By the above strategy
we have that for every sufficiently large n, Dn |= ϕ if and only if L2 × Ln |= ϕ.
By taking n such that 2n + 1 = cardinal of Dn is a prime number, we obtain
Dn ∈ (VL)DI . We conclude that there are decomposable algebras satisfying ϕ, and
hence (VL)DI cannot be defined by a single first-order sentence. Using Lemma 6.2
we have our result. �
Corollary 6.4. VL does not have DFC.

Proof. Since DFC is equivalent to the Determining Property, we can use Corol-
lary 4.3 and Theorem 6.3. �

An indication that (VL)DI might not be definable was discovered by using
the “Universal Algebra Calculator” program, designed by Ralph Freese and Emil
Kiss [6].

6.2. Semilattice expansions. Throughout this section, we will suppose that V
is a variety with �0 & �1 for which there exists a binary term ∨ such that for every
A ∈ V , ∨A is a semilattice operation on A. We will keep the assumption that the
language of V has at least one constant.

First, we observe that by Lemma 2.4 together with the observation that (x, y) ∈
∇F = CgF (�0,�1) (where F ∈ V is the free algebra freely generated by {x, y}), we
obtain (2 + l)-ary terms ui(x, y, �z), i = 1, . . . , k, such that the following identities
hold in V :

x ≈ u1(x, y,�0),

ui(x, y,�1) ≈ ui+1(x, y,�1) with i odd,

ui(x, y,�0) ≈ ui+1(x, y,�0) with i even,

uk(x, y,�1) ≈ y.

(6.2)

Proposition 6.5. The formula

Φ(x, y, �z) := ∀u

(
k∧

i=1

(
ui(x, y,�0) ∨ u = ui(x, y, �z) ∨ u

)
−→

(
x ∨ u = y ∨ u

))

satisfies (3) of Theorem 1.1 for V.
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Proof. Let A, B ∈ V , and a ∈ A, b, d ∈ B. First we prove that

A × B |= Φ
(
(a, b), (a, d), [�0,�1]

)
.

Suppose that for some (u, v) we have

A × B |=
k∧

i=1

ui((a, b), (a, d), [�0,�0]) ∨ (u, v) = ui((a, b), (a, d), [�0,�1]) ∨ (u, v).

Then

B |=
k∧

i=1

ui(b, d,�0) ∨ v = ui(b, d,�1) ∨ v.

But the above equations in combination with (6.2) produce

b ∨ v = d ∨ v

and hence
(a, b) ∨ (u, v) = (a, d) ∨ (u, v).

Now suppose
A × B |= Φ

(
(a, b), (c, d), [�0,�1]

)
.

The reader can check that considering u = (a,
∨k

i=1 ui(b, d,�0) ∨ ui(b, d,�1)), it can
be proved that a∨ c = a, and similarly with u = (c,

∨k
i=1 ui(b, d,�0)∨ui(b, d,�1)) and

a ∨ c = c; hence a = c. �

The following example will show that the complexity of formula Φ in the above
proposition cannot be improved for the general case.

Proposition 6.6. Let V∨ be the variety with language {+, ∗, 0, 1,∨} defined by
the axioms of VL plus identities saying that ∨ is a semilattice operation for which
0∨ 1 = 0. Then there exists neither a positive nor an existential formula satisfying
(4) of Theorem 1.1 for V∨.

Proof. Define join-semilattice operations on L2, L4 and L5 such that they are totally
ordered with the order given by 0 > 1 > 2 > 3 > 4. Suppose that Φ satisfies (4) of
Theorem 1.1, and consider L5 × L2.

• (0,0)

��
��

�
(1,0) ��

��
�

•
(0,1)

��
��

�
•

��
��

�
(2,0) ��

��
�

•
(1,1)

��
��

�
•

��
��

�
(3,0) ��

��
�

•
(2,1)

��
��

�
•

��
��

�
(4,0) ��

��
�

◦
(3,1)

(4,1)
��

��
�

◦
��

��
�

•

Figure 1. The semilattice structure of L5 × L2.
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The shaded dots in Figure 1 form a subalgebra of L5 ×L2; call it L. The reader
may check that F : L4 × L2 → L, where

F (x) :=

{
x x �= (3, 1),
(4, 1) x = (3, 1)

is an isomorphism. Since Φ witnesses (4) of Theorem 1.1 for V∨, we have

L4 × L2 |= Φ((3, 0), (3, 1), (0, 1), (1, 0)).

Applying F everywhere,

L |= Φ((3, 0), (4, 1), (0, 1), (1, 0)).

If we had Φ an existential formula, we would obtain

L5 × L2 |= Φ((3, 0), (4, 1), (0, 1), (1, 0)),

since L is a subalgebra of L5 × L2. We would then conclude 3 = 4, an absurdity.
The fact that there is no positive formula Φ is an immediate consequence of the

next two claims. We say that V has compact factor congruences if every factor
congruence of every algebra in V is compact.

Claim 1. V∨ does not have compact factor congruences.

Proof. If V∨ had compact factor congruences, there would exist 01(w), . . . ,0N (w),
11(w), . . . ,1N (w) such that for every algebra A = A1 × A2 ∈ V , (λ1, λ2) ∈ A,

ker π1 = CgA
(
[�0(λ1), �0(λ2)], [�0(λ1), �1(λ2)]

)
,

ker π2 = CgA
(
[�1(λ1), �1(λ2)], [�0(λ1), �1(λ2)]

)
,

by Lemma 4 in [13]. Since the language contains constants, we can replace these
new 0’s and 1’s by closed terms, and hence

ker π1 = CgA
(
[�0, �0], [�0, �1]

)
,

ker π2 = CgA
(
[�1, �1], [�0, �1]

)
.

Now, checking the axioms of V∨, we conclude that for every closed term t in the
language of V∨, t is equivalent to 0 or t is equivalent to 1 over V∨; hence we should
have

kerπ1 = CgA
(
(0, 0), (0, 1)

)
∨CgA

(
(1, 0), (1, 1)

)
.

But the reader may check that if we take A = L5 × L2, the equivalence relation
depicted in Figure 2 is a congruence that contains the right hand side of the last
equality and is clearly different from kerπ1. �

Claim 2. Let V be a variety with �0 & �1. Suppose that Φ is a positive formula that
satisfies (4) of Theorem 1.1. Then V has compact factor congruences.

Proof. Let A ∈ V . We will prove that if ϕ × ϕ∗ = ∆, �0 ϕ�eϕ∗�1 and �1 ϕ �f ϕ∗�0,
then ϕ = Cg(�0, �e) ∨ Cg(�1, �f), and hence is compact. Call θ := Cg(�0, �e) ∨ Cg(�1, �f).
Trivially, θ ⊆ ϕ. Assume x ϕ y; by (4) of Theorem 1.1, we obtain A |= Φ(x, y,�e, �f).
Since Φ is positive, it is preserved by homomorphic images and then

A/θ |= Φ(x/θ, y/θ,�e/θ, �f/θ).

Equivalently,
A/θ |= Φ(x/θ, y/θ,�0/θ,�1/θ),
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Figure 2. One congruence in L5 × L2.

and we obtain x/θ = y/θ. This implies (x, y) ∈ θ, hence ϕ ⊆ θ, and we have the
result. �

7. Final considerations

We wish to mention that Theorem 1.1 is in some sense a consequence of Beth’s
definability theorem of first-order logic. This is because the first evidence that
the Determining Property implies Definable Factor Congruences was obtained by a
simple application of this theorem. Once we are sure about the concrete existence
of a certain first-order formula1 we know that all efforts dedicated to finding it
are not sterile. Due to the expressive power of terms in algebra, it is common that
first-order definitions obtained in this area are more manageable than in the general
case of model theory, and this fact makes the task of searching for them a little
easier.

Another tool that was important for our research for this paper, but was not
included in the final presentation, is the Pierce sheaf. Working on this construction,
we realized that there was some sense in developing a structural study of central
elements when factor congruences are not compact.

Finally, we are indebted to Ross Willard for the terms si(. . . ) and ti(. . . ), which
appear in his (unpublished) version of a Mal’cev condition for Boolean Factor Con-
gruences.

Appendix A. A preservation result

For the rest of the section, N will be an even natural number.

Lemma A.1. For every word α in the alphabet {1, . . . , N} of length no greater than
N , let τα = τα(x, y, �z, x1, y1, . . . , xn, yn) be a formula preserved by direct products
and by taking direct factors. Define:

Em :=
∧

m≤|α|≤N
|α| even

(∧
γ �=ε

ταγ → τα

)
, Om :=

∧
m≤|α|≤N
|α| odd

( ∧
γ �=ε

ταγ → τα

)
.

1As is well known, the formulas given by Beth’s theorem can be effectively found.
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Then,
(1) For 2 ≤ m ≤ N , m even, if(

∃y1∀x1 . . .∃yn∀xn Em

)
∧

(
∃x1∀y1 . . .∃xn∀yn Om+1

)
is preserved by direct factors, so is(

∃y1∀x1 . . .∃yn∀xn Em

)
∧

(
∃x1∀y1 . . .∃xn∀yn Om−1

)
.

(2) For 4 ≤ m ≤ N , m even, if(
∃y1∀x1 . . .∃yn∀xn Em

)
∧

(
∃x1∀y1 . . .∃xn∀yn Om−1

)
is preserved by direct factors, so is(

∃y1∀x1 . . .∃yn∀xn Em−2

)
∧

(
∃x1∀y1 . . .∃xn∀yn Om−1

)
.

Note that every subindex varies over words of length less than or equal to N , so
an expression of the form “

∧
γ �=ε ταγ” should be read as “

∧
{ταγ : γ �= ε and |αγ| ≤

N}”. Therefore, if m ≥ N , Om = true (empty conjunction) and EN =
∧

|β|=N τβ.
Also, recall that the i-th component of an element a in a direct product ΠiAi is
called ai.

We will now state and prove two lemmas that will be helpful in order to prove
Lemma A.1. In the following we will assume that the tuple �z has length equal to
1, since proofs are exactly the same and this simplification makes them easier to
read.

Lemma A.2. Let m be an even integer, A0, A1 ∈ V and c, d, e, a1, . . . , a2n ∈
A0 × A1 such that 2 ≤ m ≤ N , A0 × A1 |= Em(c, d, e, a1, . . . , a2n) and A1 |=
Om+1(c1, d1, e1, a1

1, . . . , a
1
2n). Then A0 |= Em(c0, d0, e0, a0

1, . . . , a
0
2n) and if α has

length m, then
(A.1)
A0 |=

( ∧
γ �=ε

ταγ

)
(c0, d0, e0, a0

1, . . . , a
0
2n) ⇒ A0×A1 |=

(∧
µ

ταµ

)
(c, d, e, a1, . . . , a2n).

Proof. By induction on m. If m = N , the first part is immediate since EN is a
conjunction of formulas preserved by taking direct factors and hence preserved by
taking direct factors. The second part is contained in the hypothesis.

To make the proof more readable, we will omit the string of parameters. Take an
even m such that 2 ≤ m < N and suppose the lemma is proved for m + 2. Assume

A0 × A1 |= Em, noting that Em = Em+2 ∧
∧

|α|=m

( ∧
γ �=ε

ταγ → τα

)
;

(A.2)

A1 |= Om+1, noting that Om+1 = Om+3 ∧
∧

|α|=m+1

( ∧
γ �=ε

ταγ → τα

)
.

(A.3)

By the first part of the inductive hypothesis we thus have A0 |= Em+2. We have to
see that A0 |=

∧
|α|=m

( ∧
γ �=ε

ταγ → τα

)
. Suppose now that for some α of length

m,

(A.4) A0 |=
∧

γ �=ε
ταγ .
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In particular, for each i, j ≤ N we have

A0 |=
∧

γ �=ε
ταijγ .

We will prove that A0 |= τα, and the second part of the lemma will be proved along
the way.

By the second part of the inductive hypothesis (i.e., (A.1)) we obtain, for all j,

A0 × A1 |=
∧

µ
ταijµ or, in other symbols, A0 × A1 |=

∧
γ �=ε

ταiγ .

Since this last formula is preserved by taking direct factors, we have

(A.5) A1 |=
∧

γ �=ε
ταiγ .

Using (A.3) (note |αi| = m + 1), we have A1 |= ταi for all i. This, together
with (A.5) yields A1 |=

∧
γ �=ε ταγ . Now we apply (A.4), thus obtaining

A0 × A1 |=
∧

γ �=ε
ταγ .

Applying (A.2),
A0 × A1 |= τα.

The last two formulas jointly say

(A.6) A0 × A1 |=
(∧

µ

ταµ

)
.

We have proved (A.4)⇒(A.6), which is the second conclusion. Since τα is preserved
by taking direct factors, we obtain A0 |= τα, which is the first conclusion. �

Lemma A.3. Let m be an even integer, A0, A1 ∈ V and c, d, e, a1, . . . , a2n ∈
A0 × A1 such that 2 ≤ m ≤ N , A0 × A1 |= Om−1(c, d, e, a1, . . . , a2n) and A1 |=
Em(c1, c1, e1, a1

1, . . . , a
1
2n). Then A0 |= Om−1(c0, d0, e0, a0

1, . . . , a
0
2n) and if α has

length m − 1, then

A0 |=
( ∧

γ �=ε

ταγ

)
(c0, d0, e0, a0

1, . . . , a
0
2n) ⇒ A0×A1 |=

(∧
µ

ταµ

)
(c, d, e, a1, . . . , a2n).

Proof. By induction on m. If m = N , the hypotheses are:

A0 × A1 |= ON−1 =
∧

|α|=N−1

(∧
γ �=ε

ταγ → τα

)
,(A.7)

A1 |= EN =
∧

|β|=N

τβ.(A.8)

Assume that for some α of length N − 1,

A0 |=
∧

γ �=ε
ταγ =

∧
i

ταi.

By using (A.8) and preservation by direct products, we have

A0 × A1 |=
∧

ταi.

By (A.7) we have A0 × A1 |= τα, thus obtaining

A0 × A1 |=
∧
µ

ταµ.
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We have proved the second part of the lemma. Passing to A0 we obtain the first
part.

Now take an even m such that 2 ≤ m < N and suppose the lemma is proved for
m + 2. Assume

A0 × A1 |= Om−1 = Om+1 ∧
∧

|α|=m−1

( ∧
γ �=ε

ταγ → τα

)
,

A1 |= Em = Em+2 ∧
∧

|α|=m

( ∧
γ �=ε

ταγ → τα

)
.

By the inductive hypothesis we thus have A0 |= Om+1. The rest of the argument
closely parallels the proof of Lemma A.2. �

Proof of Lemma A.1. To see (1), suppose

A0 × A1 |=
((

∃y1∀x1 . . .∃yn∀xn Em

)
∧

(
∃x1∀y1 . . .∃xn∀yn Om−1

))
(c, d, e).

Thus we have (Skolem) functions G1, . . . , Gn such that Gi is (i − 1)-ary and

A0 × A1 |= ∀�yOm−1(c, d, e, G1, y1, . . . , Gn(y1, . . . , yn−1), yn).

Since Om−1 implies Om+1, we have

A0 × A1 |=
((

∃y1∀x1 . . .∃yn∀xn Em

)
∧

(
∃x1∀y1 . . .∃xn∀yn Om+1

))
(c, d, e).

Then, since this formula is preserved by taking direct factors, by hypothesis,

A0 |=
(
∃y1∀x1 . . . ∃yn∀xn Em

)
(c0, d0, e0),(A.9)

A1 |=
(
∃y1∀x1 . . . ∃yn∀xn Em

)
(c1, d1, e1).(A.10)

Thus we have functions F1, . . . , Fn such that

A1 |= ∀�xEm(c1, d1, e1, x1, F1, . . . , xn, Fn(x1, . . . , xn−1)).

Now, for j = 1, . . . , n, define j-ary functions pj from A0 to A0 × A1, pj =
pj(a1, . . . , aj):

p1 := (a1, F1),

p2 := (a2, F2(G1
1)),

pj := (aj , Fj

(
G1

1, G2(p1)1, . . . , Gj−1(p1, . . . , pj−2)1
)
).

The reader may check that this selection ensures, for each �a ∈ An
0 :

A0 × A1 |= Om−1

(
c, d, e, G1, p1, . . . , Gn(p1, . . . , pn−1), pn

)
,

A1 |= Em

(
c1, d1, e1, G1

1, p
1
1, . . . , Gn(p1, . . . , pn−1)1, p1

n

)
.

We may apply Lemma A.3 and obtain

A0 |= Om−1

(
c0, d0, e0, G0

1, p
0
1, . . . , Gn(p1, . . . , pn−1)0, p0

n

)
.

Equivalently,

A0 |= Om−1

(
c0, d0, e0, G0

1, a1, G2(p1)0, a2, . . . , Gn(p1, . . . , pn−1)0, an

)
.
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Now, defining Hj : Aj−1
0 → A0 as follows:

H1 := G0
1,

H2(y1) := G2(p1(y1))0,

Hj(y1, . . . , yj−1) := Gj(p1(y1), . . . , pj−1(y1, . . . , yj−1))0,

we see at once that

A0 |= ∀�yOm−1

(
c0, d0, e0, H1, y1, . . . , Hn(y1, . . . , yn−1), yn

)
,

and then
A0 |=

(
∃x1∀y1 . . . ∃xn∀yn Om−1

)
(c0, d0, e0).

This, together with (A.9), proves this case.
Part (2) is entirely analogous to the former, and it’s proved by using Lemma A.2.

�

The hypotheses of the next theorem are the same as in Lemma A.1, and we
repeat them for ease of reference.

Theorem A.4. For every word α in the alphabet {1, . . . , N} of length no greater
than N , let τα = τα(x, y, �z, x1, y1, . . . , xn, yn) be a formula preserved by taking direct
products and direct factors. Define:

Em :=
∧

m≤|α|≤N
|α| even

(∧
γ �=ε

ταγ → τα

)
, Om :=

∧
m≤|α|≤N
|α| odd

( ∧
γ �=ε

ταγ → τα

)
.

Then the formula

(A.11)
(
∃y1∀x1 . . . ∃yn∀xn E2

)
∧

(
∃x1∀y1 . . .∃xn∀yn O1

)
is preserved by taking direct factors and direct products.

Proof. First observe that(
∃y1∀x1 . . .∃yn∀xn EN

)
∧

(
∃x1∀y1 . . .∃xn∀yn ON+1

)
= ∃y1∀x1 . . .∃yn∀xn

∧
|β|=N

τβ

is preserved by direct factors. This is immediate since the conjunction and quan-
tification of formulas preserved by taking direct factors is again preserved by taking
direct factors. Successive application of Lemma A.1 yields that (A.11) is preserved
by taking direct factors.

The proof that (A.11) is preserved by direct products is a straightforward cal-
culation. �
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