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Abstract: Blockchain Governance Game (BGG) is the stochastic model for describing the innovative
security enhancement of decentralized network architectures. This hybrid model provides the best
strategies to prepare for preventing network failures by attackers. Strategic alliance for the Blockchain
Governance Game, a successor to BGG, adds the strategic alliance to prevent attacks by adapting the
concept from business domains. The multi-layered Blockchain Governance Game was developed by
combining these two basic models to defend complex networks. This paper not only provides a brief
summary of each game model, but also identifies two key network security applications based on
BGGs that could serve as a guide for actual implementation. This review is intended to encourage
people to be inspired for their future research. The author hopes to encourage readers working in
related research areas who might integrate BGG models into their research.
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1. Introduction

The blockchain is a distributed public digital ledger that is maintained by consensus
among a network of peer-to-peer nodes and blockchain networks, which has been widely
used in a wide range of services and applications other than cryptocurrencies [1–3]. A
conventional decentralized network has benefits that eliminate most of the security risks
from centralized networks. The basic blockchain data structure is designed to store genuine
transacted information in a logical chain which grows in an add-only fashion with all new
confirmed blocks [4,5]. The federated consensus of miners ensures a blockchain security
and this consensus is only reliable if no miner owns more than 50 percent of the comput-
ing power in the network and more than half of the nodes are not controlled by a single
entity [6–9]. If this assumption is violated, the distributed consensus is rendered
invalid [1,4,5]. As a result, decentralized networks (i.e., blockchain networks) require
a certain level of security to defend against attackers. Verifying transactions, distributing
blocks, and adding blocks to the blockchain are all part of blockchain security. Although
blockchain records are not immutable, they are considered a secure network [10,11]. Some
researchers have improved the protocol security levels, whilst other studies have proposed
a new protocol to prevent the 51 percent attack [2,5]. Although these conventional protocol
enhancements aim to prevent the 51 percent attack, their implementations are limited
because the critical values and boundaries of solutions are arbitrarily chosen [12,13]. Hence,
three theoretical models of Blockchain Governance Games (BGGs) have been developed by
Kim [14–16].

• Blockchain Governance Game (BGG) [14] is a theoretical model that provides a
stochastic game framework for determining the best strategies to prevent network
failures. The combination of a mixed strategy game and fluctuation theories yields
analytically tractable results for enhancing decentralized network securities.
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• Strategic Alliance for Blockchain Governance Game (SABGG) provides an alter-
native method for reserving real nodes [15]. A novel secure blockchain network
framework has been suggested for preventing damages. From a strategic management
standpoint, the alliance concept is applied on top of a general BGG. This hybrid math-
ematical model aims to determine the strategies for protecting a network via strategic
alliances with other nodes. This model is a combination of a strategic management
framework on top of a conventional BGG.

• Multi-Layered Blockchain Governance Game (MLBGG) [16] is a complex model
which is an analytical stochastic model for performing a security operation in order to
protect entire multi-layered networks from attackers. This study thoroughly analyzes
the set of networks using explicit mathematical forms for predicting when a security
operation should be performed.

The BGG and its variants are widely referenced for related studies on blockchain
securities [17–21] and game theory applications [22]. Although game theories are very
classical mathematical modeling techniques, game theories have been widely applied,
even for conventional artificial intelligence decision-making systems [23,24]. Additionally,
various applications are have been developed by adapting BGGs since the first model was
invented in the last couple of years [25,26]. Architectural approaches such as BGG, SABGG,
and MLBGG could be used as a defense mechanism on the securities of machine learning
training [27]. Data poisoning (DP) attacks are designed to undermine the integrity of a
target model by modifying the required dataset used by the model during the training
phase [28]. A thorough examination of the most recent advances in defense schemes against
poisoning attacks is expected to serve as a guideline for developing a novel approach that
achieves a certain level of immunization against DP on smart devices feeding data to smart
city systems [29]. Although data poisoning defense mechanisms in the testing phase are
very rare [27], a trusted execution environment (TEE) has been alternatively suggested
for a secure execution environment to protect that which is targets confidentiality and
integrity [30,31]. The mechanisms for constructing secured environments are broader than
just AI-dedicated ones [32–37]. BGG-based defense mechanisms could be an alternative to
TEEs by ensuring the integrity within connected nodes [14–16]. Any security mechanisms
that improve integrity and confidentiality could be regarded as AI training system TEEs.
The main contribution is that this paper offers a comprehensive review of BGGs and their
flagship applications, which have been actively studied recently. This review paper is targeted
to encourage other researchers to develop new applications based on BGG models. The BGGs
are the first analytical and mathematically proven stochastic models for the blockchain-based
network architecture that combine the game and fluctuation theory. The analytical functionals of
the BGG models are the explicit formula forms for determining the decision-making parameters
to avoid major attacks by executing preliminary operations beforehand.

The paper is organized as follows: Section 2 summarizes the stochastic models of
BGG and SABGG. This section also explains how MLBGG is linked to two fundamental
models. All mathematical models are also fully listed along with the condensed proofs in
this section. In Section 3, two major BGG applications which were adapted into connected
cars and a smart drone swarm are included. The BGG optimizations for these application
are also demonstrated in this section. Finally, Section 4 contains the conclusion which
indicates the direction of future research based on Blockchain Governance Games.

2. Stochastic Models of Blockchain Governance Game Variants

All BGGs are mathematically designed to ensure the feasibility of the model. This
section briefly explains the theories of BGG models, which are essentially stochastic models
that provide analytically tractable results using fluctuation theory and mixed-strategy game
theory. The results allow us to predict the uptime and determine the optimal number of
backup nodes to protect the blockchain network. The governance in a blockchain network
follows decision parameters such as the time that elapses before an attacker has captured
more than half of all nodes. Any action must not be taken until one step before the first pass
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time expires. Even if an attacker captures less than half the nodes, there is still a possibility
that all nodes will be dominated by an attacker.

2.1. Blockchain Governance Game

The BGG is an antagonistic game model with the fluctuation model to analyze the
network to enable decision making for preliminary security measures before attacks. The
model aims to prevent blockchain-based attacks and keep the network decentralized. In the
BGG, an attacker is trying to build an alternative blockchain faster than regular miners [1]
and a defender only keeps a small percentage of the nodes that are released before the
attack (see Figure 1).

Figure 1. Blockchain Governance Game [14].

The two-player antagonistic stochastic game describes the blockchain network be-
tween a defender (player H) and an attacker (player A). The BGG aims to prevent the
51 percent attack and keep the network decentralized. Both players compete to build the
blocks either for honest or false ones. Let us assign that

A := ∑
k≥0

Xkεsk , s0(= 0) < s1 < s2 < · · · , a.s. (1)

H := ∑
j≥0

Yjεtj , t0(= 0) < t1 < t2 < · · · , a.s. (2)

are measurable marked Poisson processes (εa is a point mass at a) with respective intensities
λa and λh. The computing performances for generating blocks by corrupted and honest
nodes in the network are related with these two random variables. Although the traffic
data processing and transmission delay could be modeled with the general input process,
the Markovian input process, which is basically the Poisson process, is also widely applied
into stochastic modeling for network analysis [38,39]. Player A builds the blocks with false
transactions (e.g., double spend) at times s1, s2, . . . and sustains the respective building
blocks of magnitudes X1, X2,... formalized by the process A. The building blocks to player
H who generates the honest blocks are similarly described by the processH. The processes
A andH could be specified by their transforms

E
[

gA(s)
]
= eλa(s)(g−1),E

[
zH(t)

]
= eλh(t)(z−1). (3)

The BGG is randomly observed in accordance with the point process which is equiva-
lent with the duration of the proof-of-work (PoW) completion (approximately 10 min in
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the Bitcoin) in the blockchain network [14]. The observation process is assumed to be a
delayed renewal process:

T := ∑
i≥0

ετi , τ0(> 0)), τ1, . . . , (4)

and let us consider the combined process as follows:

(A(t), H(t)) := A⊗H([0, τk]), k = 0, 1, . . . . (5)

with respective increments upon A⊗H. Therefore, this process embedded over T could
be defined as follows:

(Xk, Yk) := A⊗H([τk−1, τk]), k = 1, 2, . . . , X0 = A0, Y0 = H0, (6)

then the observation process is formalized as

Aτ ⊗Hτ := ∑
k≥0

(Xk, Yk)ετk , (7)

where
Aτ = ∑

i≥0
Xiετi ,Hτ = ∑

i≥0
Yiετi , (8)

where Xk and Yk are dependent on the notation ∆k := τk − τk−1, k = 0, 1, . . . , τ−1 = 0, and
the magical transforms of increments are as follows:

γ(g, z) = E
[

gXk · zYk
]
= δ(λa(1− g) + λh(1− z)), (9)

γ0(g, z) = E
[

gA0 zH0
]
= δ0(λa(1− g) + λh(1− z)), (10)

where
|g| < 1, |z| < 1, δ(θ) = E

[
e−θ∆1

]
, δ0(θ) = E

[
e−θτ0

]
. (11)

The stochastic process Aτ ⊗Hτ describes the evolution of a conflict between players
with an observation process T ={τ0, τ1, . . .}. The game is over when, on the k-th observation
epoch τk, the collateral building blocks to player A exceeds more than the half of the total
nodes M. To further formalize the game, the exit index is introduced:

ν := in f
{

k : Ak = A0 + X1 + · · ·+ Xk ≥
(

M
2

)}
, (12)

µ := in f
{

j : Hj = H0 + Y1 + · · ·+ Yj ≥
(

M
2

)}
. (13)

The first passage time τν is the associated exit time from the confined game and the
Formula (7) is modified as follows:

Aτ ⊗Hτ :=
ν

∑
k≥0

(Xk, Yk)ετk , (14)

which the path of the game from F (Ω) ∩ {ν < µ}, which gives an exact definition of
the model observed until τν. We shall be targeting the confined game in the view point
of player A (an attacker) because an attacker beats a defender at time τν, otherwise, an
honest node generates correct blocks. The joint functional of the blockchain network model
is as follows:

ΦdM
2 e = ΦdM

2 e(ξ, g0, g1, z0, z1) = E
[
ξν · gAν−1

0 · gAν
1 · z

Hν−1
0 · zHν

1 1{ν<µ}

]
, (15)
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The above functional represents the status of genuine and corrupted nodes upon the
exit moment τν. The latter is of particular interest as we are interested in not only the
prediction of catching up the blocks by attackers but also one observation prior to this. The
Theorem BGG-1 establishes an explicit formula Φ M

2
from (14) and (15) which is based on

the first exceed model by Dshahalow [40,41]. The operators of the first exceed model are
defined as follows:

D(x,y) [ f (x, y)](u, v) := (1− u)(1− v) ∑
x≥0

∑
y≥0

f (x, y)uxvy, (16)

then
f (x, y) = D

(x,y)
(u,v)

[
D(x,y) { f (x, y)}

]
, (17)

where { f (x, y)} is a sequence, with the inverse

D
(m,n)
(u,v) (•) =

{(
1

m!·n!

)
lim(u,v)→0

∂m∂n

∂um∂vn
1

(1−u)(1−v) (•), m ≥ 0, n ≥ 0,

0, otherwise.
(18)

Theorem BGG-1. The functional Φ M
2

of the process of (15) satisfies following expression:

ΦdM
2 e = D

(dM
2 e,dM

2 e)
(u,v)

{
Γ1

0 − Γ0 +
ξ · γ0

1− ξγ

(
Γ1 − Γ

)}
. (19)

where

γ := γ(g0g1u, z0z1v), (20)

γ0 := γ0(g0g1u, z0z1v), (21)

Γ := γ(g1u, z1v), (22)

Γ0 := γ0(g1u, z1v), (23)

Γ1 := γ(g1, z1v), (24)

Γ1
0 := γ0(g1, z1v). (25)

The probability generating functions (PGFs) of Aν−1, Aν and the exit index could be
found as follows:

E[ξν] = ΦdM
2 e(ξ, 1, 1, 1, 1), (26)

E
[

gAν−1
0

]
= ΦdM

2 e(1, g0, 1, 1, 1), (27)

E
[

gAν
1

]
= ΦdM

2 e(1, 1, g1, 1, 1), (28)

and the marginal mean of the first exceed index is as follows from (26):

E[ν] = ∂

∂ξ
ΦdM

2 e(ξ, 1, 1, 1, 1)
∣∣∣
ξ=1

. (29)

The special case of the observation process which has the memoryless characteristic
is adapted for demonstrating an analytical solution of the BGG model on Appendix A.1.
Memoryless observation processes are useful for describing BGG networks because it
implicates that there is no additional cost for remembering past information.

2.2. Strategic Alliance for Blockchain Governance Game

SABGG, which is one of BGG variants, provides an alternative way to reserve genuine
nodes for defending the network from attackers. The concept of alliance from the strategic
management perspectives is applied on the top of a typical stochastic game framework [15].
The strategic alliance in the business is an agreement within multiple parties to pursue a
set of agreed upon objectives [42]. This enhanced hybrid theoretical model finds the best



Mathematics 2023, 11, 2273 6 of 21

strategies towards the preparation for preventing a network failure through allied genuine
nodes (see Figure 2).

Figure 2. Strategic Alliance For Blockchain Governance Game [15].

The security operations are determined by the cost of adding genuine nodes, the
number of nodes actively added to a blockchain network, and the total mining power of
an attacker. The setup of the basic stochastic model is the same as the BGG model [14]
except for managing backup nodes. The competitive non-cooperative game is considered.
Two players (called “corrupted” and “genuine”) compete with each other to complete
their blocks first. From (1) and (2), measurable marked Poisson processes with respective
intensities λc (an attacker) and λg (a defender) are as follows:

C := ∑
j≥0

Jjεuj , u0(= 0) < u1 < u2 < · · · , a.s. (30)

G := ∑
k≥0

Kkεvk , v0(= 0) < v1 < v2 < · · · , a.s. (31)

and a third-party observation point process [14,16] is also defined as follows:

U := ∑
i≥0

εti , t0(> 0), t1, t2, . . . . (32)

Player C (i.e., an attacker) build the blocks which contain false transactions, including
double spending at the times u1, u2, . . .. These blocks are built with the magnitudes
J1, J2, . . ., formalized by the process C. Similarly, player G generates the blocks which
contain the correct transactions with the block of magnitudes K1, K2, . . .. Both players are
competing with each other to build their blocks. The processes C and G are specified by
their transforms:

E
[
yC(u)

]
= eλc(u)(y−1),E

[
zG(v)

]
= eλg(v)(z−1), (33)

and
(Ci, Gi) := C ⊗ G([0, ti]), i = 0, 1, . . . , (34)

as the forms of an observation process upon C ⊗ G embedded over t, with respective
increments

(Ji, Ki) := C ⊗ G([ti−1, ti]), i = 1, 2, . . . , J0 = C0, K0 = G0. (35)
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The observation process is formalized as

Ct ⊗ Gt := ∑
i≥0

(Ji, Ki)εti , (36)

where

Ct = ∑
i≥0

Jiεti ,Gt = ∑
i≥0

Kiεti , (37)

with position-dependent marking. The functional could be found as follows:

α(y, z) = E
[
yJi · zKi

]
, |y| ≤ 1, |z| ≤ 1, (38)

with the notation Ui := ti − ti−1, i = 0, 1, . . . , t−1 = 0. By using the double expectation [3],
we have

α(y, z) = α
(
λc(1− y) + λg(1− z)

)
, (39)

and
α0(y, z) = E

[
yC0 zG0

]
= α0

(
λc(1− y) + λg(1− z)

)
, (40)

where
α(θ) = E

[
e−θU1

]
, α0(θ) = E

[
e−θt0

]
, |x| < 1, |z| < 1, (41)

The game is ended when the total number of corrupted nodes Ci in the network
becomes more than half of the total nodes by player C (an attacker) or Gl to player G
(a defender) exceeds more than half of the total nodes, respectively. To further formalize
the game, the exit indexes are defined as follows:

ν := in f
{

j : Cj (= C0 + J1 + · · ·+ Jj) ≥
(

M
2

)}
, (42)

ν2 := in f
{

j : Cj (= C0 + J1 + · · ·+ Jj)− Bη ≥
(

M
2

)}
, (43)

µ1 := in f
{

i : Gi(= G0 + K1 + · · ·+ Ki) + Bη ≥
(

M
2

)}
, (44)

µ := in f
{

l : Gl(= G0 + K1 + · · ·+ Kl) ≥
(

M
2

)}
, (45)

where Bη is the number of available nodes and η is the maximum fixed number of allied
nodes in the network system (i.e., Bη ≤ η). If player G (a defender) has the allies, player
C (an attacker) could only win the game at moment tν2 , instead of moment tν. The game
is over at min{ν, ν2, (µ1), µ}. The first passage time tν is the associated exit time from the
confined game and the Formula (36) is modified as

C t ⊗ G t :=
ν

∑
n≥0

(Jn, Kn)εtn , (46)

which gives an exact definition of the model observed until tν without the strategic alliance
action. The joint functional of the blockchain network model with the strategic alliance is
as follows:

Θ M
2
= E

[
ζν · yCν−1

0 · yCν
1 · b

Cν−Bη · zGµ−1
0 · zGµ

1 1{ν<ν2<µ}

]
, (47)

where M indicates the total number of nodes in a blockchain network and this functional
represents the status of attackers and defenders upon the exit time tν. It is noted that we
are interested in not only the prediction of catching up the blocks by attackers but also
one observation prior to this. The Theorem BGG-2 establishes an explicit formula for Θ M

2
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with (46) and (47). Additionally, D- and D-operators from (16) and (18) are extended as
follows:

D(q,r,s)
(a,b,c) [g(a, b, c)] := (1− q)(1− r)(1− s)

{
∑
a≥0

∑
b≥0

∑
c≥0

g(a, b, c)qarbsc

}
, (48)

where |q| < 1, |r| < 1, |s| < 1, then we have

g(a, b, c) = D
(a,b,c)
(q,r,s)

[
D(a,b,c) {g(a, b, c)}(q, r, s)

]
, (49)

where {g(a, b, c)} is a sequence, with the inverse

D
(a,b,c)
(q,r,s) (•) =


(

1
a!·b!·c!

)
lim(q,r,s)→0

∂a∂b∂c

∂qa∂rb∂sc
1

(1−q)(1−r)(1−s) (•), a, b, c ≥ 0

0, otherwise.
(50)

Theorem BGG-2. The functional Θ M
2

from (47), satisfies the following expression:

ΘdM
2 e = D

(dM
2 e,dM

2 e,dM
2 e)

(q,r,s)

{
ση · β

[
1− β1

1− β

][
α1

0 − α0 +
ζα0

1− ζα

(
α1 − α

)]}
, (51)

where

Φ := α(y0y1bqr, z0z1s), (52)

Φ0 := α0(y0y1bqr, z0z1s), (53)

α := α(y1bq, z1), (54)

α0 := α0(y1bq, z1), (55)

α1 := α(y1b, z1), (56)

α1
0 := α0(y1b, z1), (57)

β := α(br, s), (58)

β1 := α(r, 1), (59)

ση := E
[
b−Bη

]
. (60)

From (51), the probability generating functions of Cν−1, Cν, and the exit index ζ could
be found as follows:

E[ζν] = ΘdM
2 e(ζ, 1, 1, 1, 1, 1), (61)

E
[
yCν−1

0

]
= ΘdM

2 e(1, y0, 1, 1, 1, 1), (62)

E
[
yCν

1

]
= ΘdM

2 e(1, 1, y1, 1, 1, 1), (63)

E
[
bCν−Bη

]
= ΘdM

2 e(1, 1, 1, b, 1, 1). (64)

The marginal mean of the first exceed index E[ν] and the moment of security opera-
tion E[τν−1] are found from (51) and (61):

E[ν] = ∂

∂ζ
ΘdM

2 e(ζ, 1, 1, 1, 1, 1)
∣∣∣
ζ=1

, (65)

E[tν−1] = E[t0] +E[U1](E[ν]− 1). (66)

Although the original BGG in Section 2.1 is an innovative idea in itself for the decen-
tralized network security enhancement, certain numbers of real nodes must be reserved in
advance. This is one of the reasons why the strategic alliance concept is being adapted for a
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BGG successor. Additionally, it is noted that the memoryless observation process has been
applied for SABGG networks on Appendix A.2.

2.3. Multi-Layered Blockchain Governance Game

The MLBGG is a combined stochastic game model based on the two-layered BGG
network [16]. Layer-0 is a single SABGG-based network and Layer-1 is a set of multiple
BGG-based networks (see Figure 3). This innovative multi-layer networking framework
makes it easy for BGGs to apply various hierarchical system architectures, including IoT
server networks [16], edge fog computing [43,44] and hierarchical network systems [45,46].

Figure 3. Multi-Layered Blockchain Governance Game [16].

This functional represents the status of an attacker and honest nodes upon the exit time
τl

ν, l = {0, 1, . . . , η}. Let us consider the matrix of a function f (x,y) and G(u,v) as follows:

f (x,y) :=



f0(x, y)
f1(x, y)

...

...
fn(x, y)

, G(u,v) :=



G0(u, v)
...

Gl(u, v)
...

Gη(u, v)

, (67)

and the matrix operators based on the first exceed model from Theorem BGG-1 are adapted
as follows:

D� f (x,y) := D(x,y){ f} =



(1− u)(1− v)∑ ∑ f0(x, y)uxvy

(1− u)(1− v)∑ ∑ f1(x, y)uxvy

...
(1− u)(1− v)∑ ∑ fl(x, y)uxvy

...
(1− u)(1− v)∑ ∑ fn(x, y)uxvy


, (68)

and

D−1
Mr
�G(u,v) :=



D
(m0,n0)
(u,v) {G0(u, v)}

D
(m1,n0)
(u,v) {G1(u, v)}

...
D

(ml ,nl)
(u,v) {Gl(u, v)}

...
D

(mn ,nn)
(u,v) {Gr(u, v)}


, Mr =



m0 n0
m1 n1
...

...
...

...
mr nr

. (69)
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The new matrix operators for matrix calculations were additionally introduced in this
research [16] and the functional matrix for all blockchain networks in Layer-1 is as follows:

Φ1
Mη

=



Φ0⌈
M0
2

⌉
...

Φl⌈Ml
2

⌉
...

Φ
η⌈Mη

2

⌉


= D−1

Mη
�G(u,v), Mη =



⌈
M0
2

⌉ ⌈
M0
2

⌉
...

...⌈
Ml
2

⌉ ⌈
Ml
2

⌉
...

...⌈
Mη

2

⌉ ⌈
Mη

2

⌉


, (70)

and

Φl⌈Ml
2

⌉ = D

(⌈Ml
2

⌉
,
⌈Ml

2

⌉)
(u,v)

{
Γ1

0 − Γ0 +
ξ · γ0

1− ξγ

(
Γ1 − Γ

)}
, l = {0, . . . , η}, (71)

where

γ := γl(g0g1u, z0z1v), (72)

γ0 := γl
0(g0g1u, z0z1v), (73)

Γ := γl(g1u, z1v), (74)

Γ0 := γl
0(g1u, z1v), (75)

Γ1 := γl(g1, z1v), (76)

Γ1
0 := γl

0(g1, z1v). (77)

From (71), the probability-generating functions (PGFs) for Al
νl−1, Al

νl , and the exit

index νl of the l-th BGG network in the Layer-1 are determined as follows:

E
[
ξνl
]
= Φl⌈Ml

2

⌉(ξ, 1, 1, 1, 1), (78)

E
[

g
Al

νl−1
0

]
= Φl⌈Ml

2

⌉(1, g0, 1, 1, 1), (79)

E
[

g
Al

νl
1

]
= Φl⌈Ml

2

⌉(1, 1, g1, 1, 1), l = {0, . . . , η}. (80)

From (71) and (78), the marginal mean of the decision-making moment for the l-th
network in the Layer-1 (i.e., τνl−1) could be found as follows:

E
[
τνl−1

]
= E[τ0] +E[∆1]

(
E
[
νl
]
− 1
)

, l = {1, . . . , η}. (81)

where
E
[
νl
]
=

∂

∂ξ
Φl
dM

2 e
(ξ, 1, 1, 1, 1)

∣∣∣
ξ=1

. (82)

Alternatively, Layer-0 is mapped with the SABGG and the exit indices are formalized
as follows:

ν := in f
{

j : Cj (= C0 + J1 + · · ·+ Jj) ≥
(η

2

)}
, (83)

ν2 := in f
{

j : Cj (= C0 + J1 + · · ·+ Jj)− B0 ≥
(η

2

)}
, (84)

µ := in f
{

l : Gl(= G0 + K1 + · · ·+ Kl) ≥
(η

2

)}
, (85)



Mathematics 2023, 11, 2273 11 of 21

where B0 (≤ η) is the number of available nodes within the ally. The game in Layer-0 is
over at min{ν, ν2, µ}. The first passage time tν is the associated exit time from the confined
game from (51) which gives an exact definition of the model observed until tν without the
strategic alliance action. The explicit formula of the SABGG [15] is as follows:

Θ η
2
= E

[
ζν · yCν−1

0 · yCν
1 · b

Cν−Bη · zGµ−1
0 · zGµ

1 1{ν<ν2<µ}

]
, (86)

from the Theorem BGG-2 on Section 2.2,

Θd η
2 e = D

(d η
2 e,d η

2 e,d η
2 e)

(q,r,s)

{
ση · β

(
1− β1

1− β

)
·
(

α1
0 − α0 +

ζΦ0

1− ζΦ

(
α1 − α

))}
, (87)

where

Φ := α(y0y1bqr, z0z1s), (88)

Φ0 := α0(y0y1bqr, z0z1s), (89)

α := α(y1bq, z1), (90)

α0 := α0(y1bq, z1), (91)

α1 := α(y1b, z1), (92)

α1
0 := α0(y1b, z1), (93)

β := α(br, s), (94)

β1 := α(r, 1), (95)

ση := E
[
b−Bη

]
. (96)

The moment of making a decision (i.e., tν−1) of the Layer-0 could be found from (66).
Additionally, the probability of bursting the Layer-0 of the blockchain network q0(sh) is
determined as follows:

q0(sg
)
=


E
[
1{Cν≥ η

2}
]
, sg = {DoNothing},

E
[

1{
Cν≥ η(1+α)

2

}], sg = {Action}.
(97)

where α is an overhead portion for protecting Layer-0 (i.e., B0 = α·η
2 ). The probability of

bursting a SABGG network by an attacker could be as follows:

q
(
sg
)
=

∑k> η
2
E
[
1{Cν=k}

]
, sg = {DoNothing},

E
[
∑k> η

2 +B0 E
[
1{Cν=k}

]]
, sg = {Action},

(98)

where

E
[
1{Cν=k}

]
= E

[
E
[
(λctν)

k

k!
· e−λctν

∣∣∣tν

]]
. (99)

3. Blockchain Governance Game Applications

This section focuses on two important applications for BGGs. The first application
is to implement the BGG into a connected car to track the spare parts of connected cars
back through the supply chain to their original manufacturers and preventing counterfeits.
A connected car transfers data to others based on an automotive vehicle network (AVN)
and cars are equipped for the in-vehicle networks. These car are usually unmanned aerial
vehicles (UAVs) which drive artificial intelligence [47,48]. The IoV security is intended
to improve fleet management and accident avoidance [25]. The second application is
the application of the SABGG to intelligent drone swarms [26]. An intelligent drone is a
drone equipped with artificial intelligence (AI) that operates autonomously and without a
command center. The SABGG is used to improve the safety of an intelligent drone swarm by
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estimating the timing of interim actions by ensuring optimal drone accountability. It is noted
that verifiable random functions (VRFs) are incorporated into blockchain-based security
applications to eliminate the need for heavy computational power for mining [49,50].
The VRF can choose a miner at random, and each node has the same chance of being
a miner [51,52]. This method has been modified to select a miner who will map inputs
to verifiable pseudo-random outputs. The VRF is assumed to be fully supported for
implementing the BGG on real systems.

3.1. Automotive Vehicle Network Security for Connected Cars

Automotive vehicle network (AVN) is a network that connects a number of vehicles
and sensors by wireless communication which enables inter-vehicle information sharing
as well as network-to-vehicle communications [53]. Blockchain technology might apply
to safety monitoring including the replacement of smart car parts. The blockchain-based
Internet-of-Vehicles (BIoV) network structure has been designed [25] to handle such situ-
ations. This application adapts the BGG into data sharing security and tractability using
consensus schemes. The components in a connected car, the equipment of a service center,
and a headquarter database are hooked up as one blockchain network (see Figure 4). Each
smart component could mechanically or electronically generate random values and share
these values with other smart components. Tires, brakes, an engine, a transmitter in a
car could be the smart components which shall be capable to communicate with other
components and to construct ledgers. A service center could also generate unique values
based on registered car databases.

Figure 4. BGG Application for the EBIoV architecture [25].

The IoT-enabled components in a connected car generate values based on their me-
chanical actions and these generated values are shared with all other components including
assigned service centers and company headquarters. It is noted that the values from con-
nected car nodes are unique and randomly generated. The enhanced BIoV network (also
known as EBIoV) does not have a reward system that requires a high computing power
to create ledgers. All nodes in the EBIoV network, including those in service centers and
headquarters, have an equal chance of becoming a miner that generates ledgers without
requiring a large amount of computing power using the VRF [51,52]. The mechanism for
the EBIoV network protection is identical to that of the BGG and the EBIoV network and
is secured by adding nodes to reduce the possibility of an attacker intercepting blocks
with false control requests. The optimal number of EBIoV nodes and the estimated car
value could be analytically solvable and the corresponding total cost function S(n, ρ)Total
is formulated as follows [25]:

S(n, ρ)Total =
{

c(n, ρ)
(

1− q1
(n,ρ)

)
+
(

c(n, ρ) + V
)

q1
(n,ρ)

}
pA−1 + Vq0 ·

(
1− pA−1

)
, (100)
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where

pA−1 =
{M

2 −λa δ̃}
∑
k=0


{

λa

(
δ̃0 +E[ν− 1]δ̃

)}k

k!
· e−λa(δ̃0+E[ν−1]δ̃)

, (101)

q0 ' 1−
M
2

∑
k=0


{

λa

(
δ̃0 +E[ν− 1]δ̃

)}k

k!
· e−λa(δ̃0+E[ν−1]δ̃)

, (102)

Pj =

(
n
j

)
ρj(1− ρ)n−j. (103)

The total cost could be minimized by finding a proper parameter set (n, ρ), consti-
tuting a combination of an acceptance rate and the number of total backup nodes from
headquarters. The optimal parameter set (n∗, ρ∗) minimizes the cost function from (100).
The demonstration for optimizing the cost function is shown in Figure 5.

Figure 5. Optimization Example for the EBIoV [25].

The time for requesting the additional nodes shall be the moment τν−1, which is one
step prior to the moment in which an attacker catches more than half of the whole nodes.
This application has established the enhanced blockchain-based IoV network architecture
by bringing a theoretical stochastic model. The EBIoV aims to design an advanced secure
IoT network architecture for protecting a connected car by adapting the BGG.

3.2. Security Architecture of Smart Drone Swarm

The advanced secured drone swarm network structure is introduced when the drones
in a swarm are connected to one another and the swarm is hooked up as a single blockchain
network [26]. Such a drone swarm (i.e., of smart drones) could operate their tasks artificially
and independently despite their disconnection with the command center. It is noted that each
drone randomly generates unique data and broadcasts these data to others. These random
generations are equivalent to transactions in a typical blockchain network (see Figure 6).
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Figure 6. SABGG application for the drone swarm network architecture [26].

All drones in the swarm network shall have nearly equal chances of generating the
blocks without or only with minimal computational power by applying the VRF on the
Ethereum virtual machine (EVM). Although the VRF could be implemented on other
blockchain network environments, the EVM has more flexibility in terms of implementing
a new consensus mechanism including VRF and WMSR (the weighted-mean-subsequence-
reduced) algorithms. Instead of VRF, the WMSR algorithm might be an alternative choice
for achieving resilient consensus in decentralized sensor networks and smart robots [43–46].
The mechanism for protecting a smart drone swarm network is identical to the SABGG.
The governance in a swarm network is driven by the decision-making parameters which
include a prior time before catching more than half of the total drones by an attacker and
the cost function could be defined as follows:

S($) =
(

c($)
(

1− q1
η

)
+ (c($) + V)q1($)

)
pA−1 + V · q0(1− pA−1

)
, (104)

where

pA−1 ' 1−
M
2

∑
k=0

(
{λa(γ̃0 +E[ν− 1]γ̃)}k

k!
· e−λa(γ̃0+E[ν−1]γ̃)

)
, (105)

q1($) =

M
2 −1

∑
j=0

∑
{k≥M

2 +j}

λa

(
δ̃0 +E[ν− 1]δ̃

)
k!

· e−λa(δ̃0+E[ν−1]δ̃)

Pj, (106)

Pj =

(M
2 − 1

j

)
$j(1− $)

M
2 −1−j. (107)

The total cost S($) shall be minimized by the given $, which is the optimal value of alliance
accountability (i.e., the acceptance rate) from (104). After the demonstration from previous
research [26], the minimum cost of performing an operation of the intelligent drone swarm
with a certain proportion of the acceptance rate for the alliance request to other drones could
be analytically calculated. The moment of alliance request τν−1 shall be one step prior to the
time when an attacker catches more than half of the total drones. This practice aims to simulate
smart drone management and its visualization of the results (see Figure 7).



Mathematics 2023, 11, 2273 15 of 21

Figure 7. Optimization practices for the drone swarm security [26].

An advanced secure drone swarm network architecture protects a drone swarm from
an attacker by adapting a Blockchain Governance Game variant. The SABGG, which has
been analytically proven [15], was adapted for a decentralized network to improve the
drone swarm security [26].

4. Conclusions and Future Research

This paper offers a comprehensive review on the BGGs and their flagship applica-
tions which have been actively studied recently. All BGG models are mathematically fully
proven without any numerical approach. The great strength of the BGG models is that
they provide analytically tractable solutions as explicit formula forms for determining the
decision-making parameters to avoid major attacks by executing preliminary operations
beforehand. The BGG models shall be extended to various blockchain-based cybersecurity
areas including IoT security and a secured decentralized service network design. Their
network architecture design could be widely applied in various application domains in-
cluding cybersecurity, network architecture, service design and IT business models as
long as a blockchain network is considered as their security enhancement. The innovative
mathematical models are targeted to improve the security based on the network’s archi-
tectural perspectives. Although all theoretically BGG models and major applications are
mathematically proven, some challenges are as follows:

• AI-enabled BGG model: predicting the moment of attacks is always challenging and
adapting machine learning techniques for forecasting could be considered to improve
the BGG models.

• Developing the applications for MLBGG: the direct applications for MLBGG (multi-
layered BGG) have not been found to date.

• Actual implementations of BGG models: implementing BGG models with the VRF
on real blockchain networks is a challenging task. It is noted that the VRF shall be
implemented on the Ethereum virtual machine before implementing the BGGs to see
how these theorical models actually work.

All the above challenges shall be considered future research topics and anyone can
freely invest in the above challenges as their research topics. This review is expected to be
helpful in launching a new blockchain-based service with the improvement of network
security based on BGG. It is predicted that more and more complex security threats will
emerge, which will in turn require the development of more advanced defense techniques
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to detect and combat such threats. Therefore, it is foreseeable that ensuring the robustness
of defenses against network attacks will become a priority and an industry standard.
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Appendix A. The Marginal Mean of the First Exceed Index under Memoryless
Observation Process

Let us consider that the observation process has the memoryless property. This
observation process is really practical for the actual implementations of BGG and SABGG
models because it indicates that a defender (or a service provider) does not spend the
additional cost of storing past information.

Appendix A.1. Memoryless BGG Model

To build the cost function of the BGG, we need to find the marginal mean of the first
exceed index from (29) to determine the decision-making moment τν−1, which could be
found as follows:

E[τν−1] = E[τ0] +E[∆1](E[ν]− 1). (A1)

Recalling from (18), the operator Dq
a is determined as follows:

G(u) = (1− u) ∑
x≥0

f (x)ux, (A2)

and
D(x,y) [ f1(x) f2(y)](u, v) = Dx[ f1(x)]Dy [ f2(y)], (A3)

then

f (x, y) = D
(x,y)
(u,v)

[
D(x,y) [ f (x, y)}

]
, (A4)

f1(x) f2(y) = Dx
u[Dx{ f1(x)}]Dy

v
[
Dy{ f2(y)}

]
, (A5)

where { f (x), ( f1(x) f2(y))} are a sequence, with the inverse (18) and

Dm
u (•) =

{
1

m! limu→0
∂m

∂um
1

(1−u) (•), m ≥ 0,

0, otherwise,
(A6)

and
D

(m,n)
(u,v) [G1(u)G2(v)] = Dm

u [G1(u)]Dn
v [G2(v)]. (A7)

The functional D is defined on the space of all analytic functions at 0 and it has the
following properties:

• Dm
u is a linear functional with fixed points at constant functions;

• Dm
u ∑∞

k=0 akuk = ∑m
k=0 ak.

It is also noted that Formulas (20)–(25) could be rewritten as follows:
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γ = γa · γh := γa(g0g1u)γh(z0z1v), (A8)

γ0 = γ0
a · γ0

h := γ0
a(g0g1u)γ0

h(z0z1v), (A9)

Γ := γa(g1u)γh(z1v), (A10)

Γ0 := γ0
a(g1u)γ0

h(z1v), (A11)

Γ1 := γa(g1)γh(z1v), (A12)

Γ1
0 := γ0

a(g1)γ
0
h(z1v). (A13)

Recalling from (26), the formula is assigned as follows:

E[ξν] = ΦdM
2 e(ξ, 1, 1, 1, 1) = L1 + L2 − L3, (A14)

where

L1 = D
(M

2 , M
2 )

(u,v)

[
γ0

h(v)− γ0
a(u)γ

0
h(v)

]
, (A15)

L2 = D
(M

2 , M
2 )

(u,v)

[
ξ · γ0

a(u)γ0
h(v)γh(v)

1− ξγa(u)γh(v)

]
, (A16)

L3 = D
(M

2 , M
2 )

(u,v)

[
ξ · γ0

a(u)γ0
h(v)γa(u)γh(v)

1− ξγa(u)γh(v)

]
. (A17)

Since the observation process has memoryless properties, the process is exponentially
distributed and the functionals from (9)–(11) are as follows:

γ0
a(u) =

1(
1 + δ̃0 · λa

)
− δ̃0 · λau

=
β0

a

1− α0
a · u

, (A18)

γa(u) =
1(

1 + δ̃ · λa

)
− δ̃ · λau

=
βa

1− αa · u
, (A19)

γ0
h(v) =

1(
1 + δ̃0 · λh

)
− δ̃0 · λhv

=
β0

h
1− α0

h · v
, (A20)

γh(v) =
1(

1 + δ̃ · λh

)
− δ̃ · λhv

=
βh

1− αh · v
, (A21)

β0
a =

1(
1 + δ̃0 · λa

) , α0
a =

δ̃0 · λa(
1 + δ̃0 · λa

) , (A22)

βa =
1(

1 + δ̃ · λa

) , αa =
δ̃0 · λa(

1 + δ̃ · λa

) , (A23)

β0
h =

1(
1 + δ̃0 · λh

) , α0
h =

δ̃0 · λh(
1 + δ̃0 · λh

) , (A24)

βh =
1(

1 + δ̃ · λh

) , αh =
δ̃0 · λh(

1 + δ̃ · λh

) , (A25)

where δ̃0 = E[τ0] and δ̃ = E[∆k]. From (A15), we have

L1 = β0
h

1−
(
α0

h
)M

2 +1

1−
(
α0

h
)
1− β0

a

1−
(
α0

a
)M

2 +1

1−
(
α0

a
)
,



Mathematics 2023, 11, 2273 18 of 21

and from (A16),

L2 = ∑
n≥0

ξn+1

(β0
a · (βa)

n
)
·

M
2

∑
j=0

{
(−1)j

(
αaα0

a

)j
ψa

n−1(j)
}

·

(β0
h · (βh)

n+1
)
·

M
2

∑
k=0

{
(−1)k

(
αhα0

H

)k
ψh

n(k)
},

and from (A17),

L3 = ∑
n≥0

ξn+1

(β0
a · (βa)

n+1
)
·

M
2

∑
j=0

{
(−1)j

(
αaα0

a

)j
ψa

n(j)
}

·

(β0
h · (βh)

n+1
)
·

M
2

∑
k=0

{
(−1)k

(
αhα0

h

)k
ψh

n(k)
},

where

ψa
n(j) =

(
j

∑
i=0

(
n + i

i

)
(−1)i

(
αa

α0
a

)i
)

, (A26)

ψh
n(k) =

 k

∑
i=0

(
n + i

i

)
(−1)i

(
αh

α0
h

)i
. (A27)

From (29) and (A14)–(A17), the mean of the first exceed index is determined as follows:

E[ν] =
(

β0
aβ0

hβh

)
∑
n≥0

(n)
[
(βaβh)

nΞh
n−1

(
M
2

){
Ξa

n−2

(
M
2

)
− Ξa

n−1

(
M
2

)
βa

}]
, (A28)

where

Ξa
n(m) =

m

∑
j=0

{
(−1)j

(
αaα0

a

)j
ψa

n(j)
}

, (A29)

Ξh
n(m) =

m

∑
k=0

{
(−1)k

(
αhα0

h

)k
ψh

n(k)
}

. (A30)

Appendix A.2. Memoryless SABGG Model

To build the cost function of the SABGG, we need to find the marginal mean of the
first exceed index from (65) to determine the marginal mean of tν−1, which could be found
as follows:

E[tν−1] = E[t0] +E[U1](E[ν]− 1). (A31)

From (A2), the D- and D-operators could be operated as follows:

D(x,y,z) [ f1(x) f2(y) f3(z)](u, v) = Dx[ f1(x)]Dy [ f2(y)]Dz [ f3(z)], (A32)

and
D

(m,n,r)
(u,v,w)

[G1(u)G2(v)G3(w)] = Dm
u [G1(u)]Dn

v [G2(v)]Dr
w[G3(w)]. (A33)
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then we have

f (x, y, z) = D
(x,y,z)
(u,v,w)

[
D(x,y,z) [ f (x, y, z)}

]
, (A34)

f1(x) f2(y) f3(z) = Dx
u[Dx{ f1(x)}]Dy

v
[
Dy{ f2(y)}

]
Dz

w[Dz{ f3(z)}], (A35)

where { f (x), ( f1(x) f2(y) f3(z))} are a sequence, with the inverse (18). Recalling from (65),
the formula is assigned as follows:

E[ζν] = ΘdM
2 e(ζ, 1, 1, 1, 1, 1) = R1 + R2 − R3, (A36)

where

R1 =

{
agbcbg

1− bcbg

}{
Ξ M

2
(0)
}1− bc + bc

 M
2

∑
l≥0

(
a0

c

)l


−
{

Ξ M
2
(0)
}( b0

c
ag

)
M
2

∑
k≥0

(
1 +

(
agbcbg

1− bcbg

))k+1

 M

2

∑
l≥0

(
a0

c

)l
,

R2 =

(
ζb0

c bcb0
g

a0
c
{

1− bcbg − ac
}
− ag(ac + 1)

)

·∑
l≥0

[(
a0

g

)l{
Ξ

M
2 −l(ζ)−

(
ag
)
Ξ

M
2 −l−1(ζ)

}∑
j=l

(
j
l

)(
1
a0

g

)j+1

]

,

R3 =

{
ζbc
(
b0

c
)2{

1− bcbg − ac
}
− ag(ac + 1)

}

· ∑
h≥0

(
k
h

)(
a0

g

)h−1

∑
k=h

(
a0

c

a0
g

)k

[

Ξ
M
2 −h(ζ)−

(
ag
)
Ξ

M
2 −h−1(ζ)

]

+

(
ζb0

c b0
g(bc)

2

a0
c (1− ac)

)(
1(

1− bcbg
)
− ac − ag(1− ac)

)

· ∑
h≥0

(
k
h

)(
a0

g

)h
∑
k≥h

(
a0

c

a0
g

)k+1[
Ξ

M
2 −h(ζ)−

(
ag
)kΞ

M
2 −h−1(ζ)

]
,

and

Ξ M
2
(0) :=

 m

∑
u=0


(

M
2

)
!((

M
2

)
− u

)
!

 (M
2 )

∏
h=1

 h!

1−
(

ac
1−bcbg

)
, (A37)

Ξm(ζ) =


m

∑
u=0

(
m!

(m− u)!

) m

∏
l=1

 l!

1−
(

a0
g

1−ζb0
c b0

g

)

, (A38)
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and

b0
c =

1
(1 + α̃0 · λc)

, a0
c =

α̃0 · λc

(1 + α̃0 · λc)
, (A39)

bc =
1

(1 + α̃ · λc)
, ac =

α̃ · λc

(1 + α̃ · λc)
, (A40)

b0
g =

1(
1 + α̃0 · λg

) , a0
g =

α̃0 · λg(
1 + α̃0 · λg

) , (A41)

bg =
1(

1 + α̃ · λg
) , ag =

α̃ · λg(
1 + α̃ · λg

) , (A42)

where α̃0 = E[t0] and α̃ = E[Uk] from (41). The marginal mean of the first exceed index
E[ν] could be followed from (65) and (A36)–(A38).
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