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Abstract

For a normal covering over a closed oriented topological manifold we
give a proof of the L2-signature theorem with twisted coefficients, using
Lipschitz structures and the Lipschitz signature operator introduced by
Teleman. We also prove that the L-theory isomorphism conjecture as
well as the C∗max-version of the Baum-Connes conjecture imply the L2-
signature theorem for a normal covering over a Poincaré space, provided
that the group of deck transformations is torsion-free.

We discuss the various possible definitions of L2-signatures (using the
signature operator, using the cap product of differential forms, using a
cap product in cellular L2-cohomology, . . . ) in this situation, and prove
that they all coincide.
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0 Introduction

Atiyah’s celebrated L2-index theorem [2] implies that the index of the signa-
ture operator of a closed oriented smooth manifold M with Riemannian metric
coincides with the L2-index of the signature operator on any normal covering
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space of M . In particular, the signature and the L2-signature for closed ori-
ented smooth manifolds coincide. The (various) definitions of L2-signatures are
explained in Section 3.

The signature is of course also defined for closed oriented topological man-
ifolds and, as long as there is a Lipschitz structure, there is even a signature
operator whose index is the signature. In the first part of this paper, we ad-
dress the question how to generalize the L2-signature theorem to closed oriented
topological manifolds.

Such an L2-signature theorem for closed oriented topological manifolds does
not seem to be in the literature. We give a proof along the lines of Atiyah’s
proof [2] of the smooth L2-index theorem.

0.1 Theorem. Let M be a closed connected oriented 4n-dimensional Lipschitz
manifold with normal covering M → M . Let DV be the Lipschitz signature
operator twisted with a Lipschitz bundle V and DV its lift to M . Then

ind(DV ) = indNΓ(DV ).

An immediate consequence is (using Sullivan’s theorem that a Lipschitz
structure exists on every topological manifold of dimension 6= 4)

0.2 Theorem. Let M be a closed connected oriented topological manifold of
dimension 4n with normal covering M →M . Then

sign(2)(M) = sign(M).

Theorem 0.2 also follows from the L2-signature theorem for closed oriented
smooth manifolds and the fact that the forgetful map Ω∗(BΓ) → Ωtop

∗ (BΓ)
from the smooth bordism group over BΓ to the topological one is rationally
an isomorphism (compare Remark 1.7 and the discussion after [41, Theorem
1.6]), as was pointed out to us by Shmuel Weinberger. Note that the L2-
signature theorem implies in particular that the signature is multiplicative under
finite coverings. This multiplicativity was proved for closed oriented topological
manifolds in [35, Theorem 8].

For more general Poincaré duality spaces, which are not manifolds, such a
multiplicativity result does not hold [29, Example 22.28], [45, Corollary 5.4.1]).
It fails also if M is a compact oriented smooth manifold with nonempty bound-
ary (compare [4, Proposition 2.12] together with the Atiyah-Patodi-Singer index
theorem [3, Theorem 4.14]).

This implies in particular that the L2-index theorem can not hold in the
stated form in the greatest imaginable generality. In Section 2, we discuss to
which extent the L2-signature theorem does extend to Poincaré spaces X =
(X, ∅), and show that it is implied by the L-theory isomorphism conjecture
or by the C∗max-version of the Baum-Connes conjecture, provided the covering
group Γ is torsion-free. More precisely, we prove the following theorem in 2.3:

0.3 Theorem. Let X be a 4n-dimensional Poincaré space over Q (see Defini-
tion 2.2). Let X → X be a normal covering with torsion-free covering group Γ.
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Assume that the (Baum-Connes) index map for the maximal group C∗-algebra

ind: K0(BΓ)→ K0(C∗maxΓ)

or the L-theory assembly map

A : H4n(BΓ;L〈−∞〉• )→ L
〈−∞〉
0 (ZΓ)

is rationally surjective.Then

sign(2)(X) = sign(X).

In a companion paper [20] we show that, without any further assumption,
multiplicativity of L2-signatures under coverings holds “approximately” in the
following sense:

0.4 Theorem. [20, Theorem 0.1] Let (X,Y ) be a 4n-dimensional Poincaré pair
over Q. Suppose that there is a nested sequence of normal subgroups of finite
index Γ ⊇ Γ1 ⊇ Γ2 ⊇ . . . such that the intersection of the Γk-s is trivial. Let
(Xk, Yk) → (X,Y ) be the finite covering of X associated to ΓK ⊆ Γ. Then the
sequence (sign(Xk, Yk)/[Γ : Γk])k≥1 converges and

lim
k→∞

sign(Xk, Yk)
[Γ : Γk]

= sign(2)(X,Y ).

(In [20], we also prove a similar approximation result for amenable exhaus-
tions).

In the last part of the present paper, we check that the various versions of L2-
signatures, e.g. given in terms of intersection pairings, the index of the signature
operator, or as trace of an index element in the K-theory of certain C∗-algebras,
all coincide whenever the definitions make sense. In the rest of the paper, and
also in [20], we already freely jump between the different interpretations.

This comparison is even interesting for smooth manifolds, in particular for
smooth manifolds with boundary. In this case, the L2-signature is defined in
terms of the intersection pairing on L2-homology. In Theorem 3.10 we give a
proof that this coincides with the answer predicted by the L2-index theorem
[25, Theorem 1.1]. Note that we deliberately write “answer predicted by the
L2-index theorem” and not “index of the signature operator”, because before
adding a certain well defined correction term (compare [5]) one can not expect
to obtain the signature. The paper [25] only deals with the L2-index of certain
operators. The homological interpretation does not seem to have been checked
in the literature.

Organization of the paper: In Section 1 we prove the L2-signature the-
orem for closed topological manifolds.

In Section 2 we address the question, for which Poincaré spaces an L2-
signature theorem holds.

In Section 3, we compare the different definitions of L2-signatures, and show
that they all coincide.
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1 L2-signature theorem for topological manifolds

We prove the L2-signature theorem for closed oriented Lipschitz manifolds. This
does prove the theorem for arbitrary oriented topological manifolds because
Sullivan constructs in dimensions ≥ 5 a (unique) Lipschitz structure on every
topological manifold [39], and taking the product with CP 8 if necessary (which
does change neither the signature nor the L2-signature (compare Proposition
3.36)), we may assume that the dimension of our manifold is sufficiently high.
Note that we need only the existence, but not the uniqueness of this Lipschitz
structure.

Now suppose that M is a closed connected oriented Lipschitz manifold of
dimension 4n with a Lipschitz metric g and with fundamental group Γ. Let V
be a finite dimensional Lipschitz Hermitian vector bundle over M with a (not
necessarily flat) Lipschitz connection. Teleman [40] constructs then a twisted
signature operator DV (whose index is the topological signature of M if V is a
trivial flat line bundle). For basics about Lipschitz manifolds, Lipschitz bundles
and Lipschitz operators compare [40, Section 1–6], [14, Section 2], [15, Section
1]. The Lipschitz structure, the metric, the bundle, and the signature operator
all can be lifted to M and then in particular indNΓ(D) = sign(2)(M) (if again V
is a trivial line bundle). The task is now to compare ind(DV ) and indNΓ(DV ),
which in the smooth case is done in Atiyah’s L2-index theorem [2, (1.1)].

The subscript NΓ refers to the group von Neumann algebra. Basics about
NΓ, Hilbert N (Γ)-modules, the standard trace trNΓ and the von Neumann
dimension dimNΓ as used in this paper can be found e.g. in [17, Section 1 and
2], [18, Section 1.1].

On Lipschitz manifolds, no pseudo-differential calculus in the usual sense ex-
ists. However, one has the following properties of the twisted signature operator
which are essential for Atiyah’s proof:

1.1 Theorem. (1) (The closure of) DV is an unbounded selfadjoint operator.
The same is true for DV .

(2) DV and DV have unit propagation speed, i.e.

supp(eitDV ) ⊆ {(x, y); (x, y) ∈M ×M and d(x, y) ≤ t}

and correspondingly for DV .

(3) (i+D)−1 is (dim(M) + 1)-summable.

Proof. These results are established by Hilsum for the untwisted Lipschitz-
signature operator on a complete oriented Lipschitz manifold. Hilsum uses
specific properties of the untwisted operator so that his proofs can not directly
be applied. We reduce the twisted case to the untwisted case in the following
way: we embed V as Hermitian vector bundle in an N -dimensional trivial bun-
dle N with complement W . Choose a connection on W . We then have on N
the trivial connection and the direct sum of these two connections. Correspond-
ingly, we get two twisted signature operators DN (which of course is the N -fold
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direct sum of the untwisted signature operator) and DV ⊕DW . A calculation
in local coordinates shows that

DV ⊕DW = DN +A

where A is a bundle homomorphism with bounded measurable and selfadjoint
coefficients, therefore is a bounded selfadjoint operator on L2(Ω∗(M,N)) (for all
this compare [40, Section 6 and 7]. In fact, in [40] this is used as the definition
of the twisted signature operator). Lifting this gives the corresponding splitting

DV ⊕DW = DN +A.

By [15, Corollaire 1.8] the untwisted operators DN and DN and then also
DN + A and DN + A are selfadjoint, therefore the same is true for the direct
summands DV and DV .

For summability we have to find a relation between (DN + i)−1 (which is
(dim(M) + 1)-summable by [14, Proposition 5.6]) and (DN + A + i)−1 (these
are bounded operators because of self-adjointness). We compute

(DN +A+ i)−1 = (DN + i)−1(1 +A(DN + i)−1)−1.

Since the space of (dim(M) + 1)-summable operators is an ideal in the space of
bounded operators, we have to show that (1 +A(DN + i)−1)−1 is bounded. We
know in particular that (DN + i)−1 and therefore also A(DN + i)−1 is compact.
Therefore 1+A(DN + i)−1 is Fredholm of index 0. Consequently, it is invertible
if and only if its kernel is trivial. Now

(1 +A(DN + i)−1)f = 0 ⇐⇒ A(DN + i)−1f = −(DN + i)(DN + i)−1f

g:=(DN+i)−1f⇐⇒ (A+DN )g = −ig.

Since DN +A is selfadjoint, its spectrum does not contain −i so that g = 0 and
therefore ker(1 +A(DN + i)−1) = {0}. Hence (i+DN +A)−1 and its summand
(i+DV )−1 are (2m+ 1)-summable, too.

For finite propagation speed we use the proof of [15, Corollaire 1.11]. There,
certain properties of the commutator [D,h] with a Lipschitz function h on M
are used. Observe that the bundle homomorphism A commutes with the mul-
tiplication operator h, therefore [DN , h] = [DN + A, h] so that the proof for
DN also applies to DN + A. Since DV is a direct summand in DN + A, finite
propagation speed follows also for DV . Exactly the same argument applies to
DV .

1.2 Lemma. Let R be a bounded trace class operator on L2(M,E) for some
Lipschitz bundle E. Suppose

suppR(s) ⊆ Uε(supp s) := {x ∈M | d(x, supp(s)) < ε}

for every section s ∈ L2(M,E), and suppose the covering M → M and the
bundle E are trivial over balls of radius 3ε. Then R can be canonically lifted to
a bounded operator R on L2(M,E) and R is of Γ-trace class with

trNΓ(R) = tr(R).
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Proof. Decompose M := qni=1Vi with measurable subset Vi each of which has
diameter less than ε. Choose a lift Vi for each Vi. Then M =

⋃n
i=1

⋃
γ∈Γ γ(Vi)

and the union is disjoint up to sets of measure zero. Let φγi be the characteristic
function of γ(Vi). Every s ∈ L2(M,E) is a sum

∑
φγi s. By linearity we only

have to define R(φγi s) ∀i, γ. We can identify the 2ε-neighborhood of γ(Vi) with a
corresponding neighborhood of Vi in M , and since R has only propagation ε, in
this way R(φγi s) := R(φγi s) is well defined. Since |s|L2(M,E) =

∑
|φγi s|L2(M,E)

and R is bounded, this makes sense also for the infinite sum
∑
φγi s. In addition

this show ‖R‖ ≤ ‖R‖.
Let φi be the characteristic function of Vi. Multiplication with φi is a

bounded operator on L2(M,E), therefore Rφi is of trace class for each i. For
fixed i, choose a fundamental domain of the covering which contains the 2ε-
neighborhood of Vi. This induces an obvious identification

L2(M,E) ∼= L2(M,E)⊗ l2(Γ).

Moreover, under this identification the operator Ri =
∑
γ∈ΓRφ

γ
i becomes

Rφ⊗ idl2(Γ). By standard properties of the Γ-trace (compare e.g. [38, Theorem
2.3(6)]) Ri is of Γ-trace class and trNΓ(Ri) = tr(Rφi) (note that id : l2(Γ) →
l2(Γ) is of Γ-trace class with trNΓ(id) = 1). But R =

∑n
i=1Ri and R =∑n

i=1Rφi. By linearity, R is of Γ-trace class with

trNΓ(R) = tr(R).

Using the properties established in Theorem 1.1 we can essentially use Atiyah’s
proof to show:

1.3 Theorem. In the situation described above

indNΓ(DV ) = ind(DV ).

In particular, sign(M) = sign(2)(M).

We proceed with an outline of the proof. For details, we refer to Atiyah’s
article [2]. Assume throughout that dimM = 4n is divisible by four.

DV is an unbounded operator on L2Ω∗(M,V ), DV is its lift to L2Ω∗(M,V ).
The Hodge-∗ operator induces a Z/2-grading on L2Ω∗, and DV is an odd oper-
ator with respect to this grading. What we are really interested in is the graded
index of DV , i.e. the index of D+

V which maps the +1-eigenspace of the grading
operator

τ := ip(p−1)+2n ∗ (on p-forms) (1.4)

to the −1-eigenspace. Note that (using a fundamental domain) L2Ω∗(M,V ) ∼=
L2(Ω∗(M,V ))⊗ l2(Γ). The problem is that kernel and cokernel of DV and DV

can not be related to each other using this product decomposition, because the
corresponding projection operators are highly nonlocal.

First step: construct a specific almost local parametrix for DV (the same
one is already used in [24, Lemma 5]). To do this fix ε such that the locally
trivial covering M → M is trivial over balls of radius 3ε (this is possible since
M is compact). Choose a function u ∈ C∞(R) such that
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(1) u is odd: u(−x) = −u(x) ∀x ∈ R,

(2) the function v(x) = 1− xu(x) is rapidly decreasing,

(3) the Fourier transforms of u and v are compactly supported with supports
contained inside the interval (−ε, ε).

By Theorem 1.1 (1) DV is selfadjoint. Using functional calculus, we can con-
struct Q = u(DV ) and R = v(DV ) and conclude

DVQ = 1−R = QDV .

Moreover, unit propagation speed (see Theorem 1.1 (2)) implies that Q and R
are supported in an ε-neighborhood of the diagonal, i.e. supp(Qf) ⊆ Uε(supp(f))
for any f ∈ L2Ω∗(M). By Lemma 1.2 we can lift Q and R to operators Q and
R. Hence we lift the whole equation to

DVQ = 1−R = QDV

(to check the that the domains coincide use that DV is a closed operator).
Second step: the parametrix property. We required that v is rapidly de-

creasing. This implies that (i + x)Nv(x) is bounded for every N ∈ N and
therefore that v(DV ) = (i+DV )−2m−1

(
(i+DV )2m+1v(DV )

)
is of trace class,

since by Theorem 1.1 (3) (i + DV )−1 is (dim(M) + 1)-summable, therefore its
(dim(M) + 1)st power is 1-summable, i.e. of trace class.

Now remember that DV was anti-commuting with the grading operator τ
(i.e. τDV = −DV τ). Since u(x) is odd the same is true for Q = u(DV ) by
Lemma 1.6 below. Since v(x) = 1− xu(x) is even, R = v(DV ) commutes with
τ . We therefore get a splitting

D−VQ
+ = 1−R+ = Q−D+

V ; D+
VQ
− = 1−R− = Q+D−V (1.5)

where R± is the restriction of R to the ±1-eigenspace of τ . Since τ is a local
operator, the operators R± are ε-local and their lifts are R

±
. By Lemma 1.2

R
±

are of Γ-trace class and

trNΓ(R
±

) = tr(R±).

Step 3: Computing the index. The main point now is that all the conditions
are fulfilled to apply Atiyah’s principle of computing the index in terms of an
arbitrary parametrix. This is formalized in [38, Proposition 2.6]: Let H0 be
the projection onto the kernel of D+

V and H1 the projection onto the cokernel
of D+

V (which is the kernel of D−V since D−V is the adjoint of D+
V ). Define

T0 = (1−H0)R+(1−H0) and T1 = (1−H1)R−(1−H1). Multiplication of (1.5)
with H0 or H1, respectively, yields H0 = R+H0 and H1 = H1R

−. This implies

tr(T0) = tr(R+)− tr(H0);

tr(T1) = tr(R−)− tr(H1).
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We want to show that ind(D+
V ) = tr(H0) − tr(H1) coincides with tr(R+) −

tr(R−). To do this, it therefore suffices to show that tr(T0) = tr(T1). If H is
the projection onto ker(DV ) then D(1 − H)R(1 − H) = (1 − H)R(1 − H)D
since all of these are functions of D. Restriction to the positive subspace yields
T1D

+
V = D+

V T0. Since ker(D+
V ) ⊂ ker(T0) and ker(D−V ) = ker((D+

V )∗) ⊆ ker(T1),
tr(T0) = tr(T1) is the conclusion of [38, Proposition 2.6] for the ordinary trace
(where the group Γ is trivial).

Exactly the same reasoning applies on the universal covering M when com-
puting the Γ-trace, to the effect that

indNΓ(DV
+

) = trNΓ(R
+

)− trNΓ(R
−

) = tr(R+)− tr(R−) = ind(D+
V ).

In the above proof we used:

1.6 Lemma. Let H be a Z/2-graded Hilbert space with grading operator τ .
Let D be a selfadjoint (not necessarily bounded) odd operator on H (i.e. τD =
−Dτ). Let f : R→ R be a measurable function. If f is odd or even then f(D)
is an odd or even operator, respectively.

Proof. The grading operator is a unitary idempotent, i.e. τ = τ∗ = τ−1. There-
fore τ−1Dτ = −D. Uniqueness of the spectral calculus implies τ−1f(D)τ =
f(τ−1Dτ) for every function f . But f even implies f(−D) = f(D), and f odd
implies f(−D) = −f(D) which concludes the proof.

1.7 Remark. Shmuel Weinberger pointed out to us that one can also use
a bordism argument to reduce the L2-signature theorem for closed oriented
topological manifolds to Atiyah’s L2-index theorem for closed oriented smooth
manifolds.

Indeed, every topological vector bundle V over a topological manifold M
has a multiple which is topologically bordant to a smooth vector bundle over a
smooth manifold (compare [41, Theorem 1.6 and the following discussion]).

It then remains to prove that the topological twisted signature is a bordism
invariant. This is not clear from the classical proof of bordism invariance of the
signature, which relies on the homological interpretation of the signature, and
this is not available for twisted signature. However, Teleman [41, Theorem 1.2]
proves the bordism invariance for the ordinary twisted signature, and we expect
that a proof for the bordism invariance of twisted L2-signature is possible along
similar lines.

When looking at manifolds with boundary, equality of signature and L2-
signature fails as badly as possible. This follows from the fact that essentially
arbitrary intersection forms can be constructed, if the boundary is non-empty.
This is an easy consequence of Wall’s non-simply connected generalization of
Milnor’s plumbing construction (compare [46, Proof of Theorem 5.8]). Since we
are not aware of a reference of this fact in the literature, and since this is quite
interesting a result, we prove it here in reasonable detail.
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1.8 Proposition. Fix a dimension 2k ≥ 6 and a finitely presented group π.
Let X be a closed (2k− 1)-dimensional manifold with fundamental group π and
with Morse decomposition without a k-handle. Let V ∼= (Zπ)l be a free finitely
generated Zπ-module with (possible singular) (−1)k-self dual map σ : V → V ∗ :=
HomZπ(V,Zπ) of the form σ = ψ+(−1)kψ∗ (i.e. σ has a quadratic refinement).

Then there is a compact manifold with boundary (W ;X,Y ) of dimension 2k
with boundary ∂W = XqY and with fundamental group π, such that the Morse
chain complex C∗(W̃ ) of the universal covering W̃ is isomorphic to C∗(X̃) ⊕
V , where V is considered as trivial chain complex concentrated in the middle
dimension k, and with inverse Poincaré duality homomorphism

C2k−∗(W̃ )→ C2k−∗(W̃ , ∂W̃ ) PD−1

−−−−→ C∗(W̃ )

which in the middle dimension is exactly σ. Here PD−1 is a chain homotopy
inverse to the cup product with [W,∂W ].

Proof. We use Wall’s extension of Milnor’s plumbing construction, as described
in [46, Proof of Theorem 5.8].

More precisely, start with X × [0, 1]. Choose l disjoint embedded discs
D2k−1
i ⊂ X. Let i : Sk−1 × Dk → D2k−1 be the standard embedding. By

composition we obtain r disjoint embeddings fi : Sk−1 × Dk
i ↪→ X. Choose

lifts to the universal covering X̃. We now simultaneously deform the fi to new
embeddings f1

i using regular homotopies ηi. The ηi can be regarded as framed
immersions of Sk−1×[0, 1] to X×[0, 1] (with boundary embedded). One can now
count intersections and self-intersections as in [46, (5.2)] (taking the fundamen-
tal group into account using the chosen lifts). By [44, p. 247] the intersections
and self-intersections can be chosen arbitrarily and independently.

Now attach k-handles to X × [0, 1] with attaching maps f1
i × 1. Let W be

the resulting manifold. Evidently, ∂W = X q Y , where Y is obtained from X
by certain surgeries. Since the attaching maps are by construction homotopic
to trivial embeddings, the statement about the cellular chain complex follows.

It remains to adjust the intersection form. Choose the ηi in such a way that
the intersection of ηi with ηj is σ(ei)(ej) where {ei} is the preferred bases of
(Zπ)r and where we use the canonical isomorphism V ∼= V ∗∗. Moreover, choose
ηi such that the self-intersection of ηi is ψ(ei). Then the intersection of ηi with
itself is ψ(ei) + (−1)kψ(ei)∗, since our normal bundles are trivial.

A canonical basis {Si} for the middle degree chain complex is given by the
cores of the attached handles, completed to spheres using the images of the ηi in
X×[0, 1] and the discs in D2k−1

i spanning the images of the fi (and with corners
rounded). Then Si∩Sj = ηi∩ηj , and the statement about the intersection form
follows from the usual calculation of the Poincaré duality homomophism using
intersection numbers.

1.9 Remark. Note that we could also prove a version of Proposition 1.8 for
manifolds with middle dimensional handles in a Morse decomposition, with an
additional summand in the middle degree chain complex.
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Observe that we use the usual translation of Poincaré duality to homology,
which, because of the use of intersection numbers is more convenient to deal with
in the case of smooth manifolds than the cohomological version. Proposition
1.8 implies, together with Lemma 3.25 the following corollary.

1.10 Corollary. If, in Proposition 1.8, X has a Morse decomposition without
any k-cells and V ∼= (Zπ)l, then the manifold W has for an arbitrary Zπ-module
K “intersection form” for homology twisted with K

Hk(W ;K) = Kl idK ⊗Zπσ−−−−−−→ Kl ∼= Hk(W ;K).

In particular, for π the augmentation module ε : Zπ → R we get the ordinary
intersection form

Hk(W ;R) = R
l ε(σ)−−→ R

l ∼= Hk(W ;R) = Hk(W ;R)

where we use the canonical identification Hk(W ;R) = Hk(W ;R) coming from
cellular Hodge decomposition. Note that the (ordinary) signature is the signature
of this self adjoint map (i.e. the difference of the dimensions of positive and
negative eigenspaces).

Similarly, if K = l2(π) we get the “L2-intersection form”

H
(2)
k (W ) = (l2(π))l σ−→ (l2(π))l ∼= Hk

(2)(W ) = H
(2)
k (W )

where we use the canonical identification H
(2)
k (W ) = Hk

(2)(W ) coming from
cellular Hodge decomposition. Note that the L2-signature is the L2-signature
of this self adjoint map (i.e. the difference of L2-dimensions of positive and
negative spectral parts). Compare also (2.5) and (2.6) and Section 3.4.

Note that, if 2k−1 ≥ 7, for any finitely presented group π one can construct a
closed manifold X with fundamental group π and with a CW-structure without
cells in dimension k.

1.11 Theorem. Given any non-trivial finitely presented group π and any di-
mension 4k ≥ 8, there is a manifold W with boundary and with fundamental
group π, such that

sign(2)(W̃ ) 6= sign(W ).

Proof. This follows immediately from Corollary 1.10, if we can produce appro-
priate (singular) intersection forms over Zπ. We use the fact that the signature
and the L2-signature can be computed in therms of the homology intersection
form as well as the cohomological one, compare 3.25.

Any non-trivial group π contains a non-trivial cyclic group Γ. Any finitely
generated free ZΓ module with a given (possibly degenerate) intersection form
can be induced up to a finitely generated free Zπ module with induced intersec-
tion form, and the ordinary signature as well as the L2-signature of the induced
intersection form coincides with the original ones (compare also the proof of
Remark 2.7). Therefore, it suffices to treat the case π cyclic.
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Using the canonical basis, we identify (Zπ)l with its dual. It suffices to
consider the case l = 1. In the case π = Z take A to be the (1, 1)-matrix (1− z)
for z ∈ Z a generator and let σ : Zπ → Zπ be given by multiplication with
A∗ + A. Then the augmentation ε : Zπ → R gives ε(A + A∗) = 0 and yields
zero as ordinary signature. The map A+ A∗ : l2(Z) → l2(Z) is a positive weak
isomorphism and yields therefore the L2-signature 1 (the spectrum is contained
in [0,∞), but there is no kernel). Notice that A + A∗ is not invertible over
Z[Z] so that we get no contradiction to the conjecture that for torsion-free Γ
the maps sign(2) and sign defined in (2.5) and (2.6) agree.

If π is a finite cyclic group of order p > 1, we let A = (1−z) and σ : Zπ → Zπ
again be given by multiplication with (1− z) + (1− z−1) where z is a generator
of π. The augmentation yields the operator zero with ordinary signature 0. On
the other hand, on l2(π) = Cπ the operator A + A∗ is non-negative with one-
dimensional kernel (it diagonalizes with eigenvalues the values of (1− z) + (1−
z−1) at all p-th roots of unity). Therefore its signature (over C) is dimC Cπ−1 =
p − 1. The L2-signature is obtained by division by dimC Cπ = p and therefore
is 1− 1/p 6= 0.

2 L2-index theorem for Poincaré spaces

In this section we want to discuss special cases where the L2-signature theorem
for closed Poincaré duality spaces is true. For finite fundamental groups, there
are the counterexamples mentioned in the introduction. For torsion-free funda-
mental groups, however, the L2-signature theorem follows from the C∗max-version
of the Baum-Connes conjecture or from the L-theory isomorphism conjecture.

Recall that there are symmetric L-groups Lnε (R) and quadratic L-groups
Lεn(R) for certain decorations ε = p, h, s and 〈−∞〉 and that there are sym-
metrization maps Lεn(R) → Lnε (R), where in our context the ring with involu-
tion and unit R is ZΓ, QΓ or CΓ or the maximal group C∗-algebra C∗maxΓ. If
one inverts 2, then the decoration ε does not matter and the symmetrization
map is bijective. If we omit the decoration, we usually think of ε = p, i.e. the
L-theory based on finitely generated projective modules. A reference for these
definitions and facts is for instance [28, page 19, Section 1.10]. Note that for
C∗-algebras A there is a natural isomorphism between L-theory and topological
K-theory [34, Theorem 1.6]

Ln(A)
∼=−→ Kn(A) (2.1)

which will be used in the sequel without mentioning it. In dimension n = 0
it sends the class of a non-degenerate sesquilinear form on a finitely generated
projective module P to the difference of the classes given by the positive part
P+ and by the negative part P−.

The next definition is due to Wall [45]:

2.2 Definition. A d-dimensional Poincaré pair (X,Y ) over Q is a pair of finite
CW -complexes (X,Y ) such that X is connected, together with a so called fun-
damental class [X,Y ] ∈ Hd(X,Y ;Q) such that for the universal covering and
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hence for any Γ-covering p : X → X the Poincaré QΓ-chain map induced by the
cap product with (a representative of) the fundamental class

− ∩ [X,Y ] : Cd−∗(X,Y ;Q)→ C∗(X;Q)

is a QΓ-chain homotopy equivalence. If Y = ∅, we abbreviate X = (X, ∅) and
call it a d-dimensional Poincaré space.

Here C∗(X;Q) is the cellular QΓ-chain complex and Cd−∗(X,Y ;Q) is the
dual QΓ-chain complex homQΓ(Cd−∗(X,Y ;Q),QΓ). Examples of Poincaré pairs
are given by a compact connected topological oriented manifold X with bound-
ary Y or merely by a connected closed oriented rational homology manifold.

2.3 Theorem. Let X be a 4n-dimensional Poincaré space over Q. Let X →
X be a normal covering with torsion-free covering group Γ. Assume that the
(Baum-Connes) index map for the maximal group C∗-algebra

ind: K0(BΓ)→ K0(C∗maxΓ)

or the L-theory assembly map

A : H4n(BΓ;L〈−∞〉• )→ L
〈−∞〉
0 (ZΓ)

is rationally surjective. Then

sign(2)(X) = sign(X).

Proof. Since X has no boundary, its symmetric signature

σ(X) ∈ L0(QΓ) (2.4)

as an element in the symmetric projective L-group L0(QΓ) is defined (for the
definitions compare e.g. [22], [27, Proposition 2.1], [28, page 26]).

The L2-signature sign(2)(X) is the image of σ(X) under the canonical map

sign(2) : L0(QΓ) → R (2.5)

which is the composition of change of rings homomorphism L0(QΓ)→ L0(NΓ),
the isomorphism L0(NΓ) = K0(NΓ) and the map induced by the standard
trace trNΓ : K0(NΓ) → R. The signature sign(X) is the image of σ(X) under
the canonical map

sign: L0(QΓ) → Z (2.6)

which is the composition

L0(QΓ)→ L0(Q)→ L0(C) = K0(C) = Z.

Hence it suffices to show that the maps sign(2) and sign defined in (2.5) and
(2.6) agree.
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We begin with the case where the Baum-Connes index map is assumed to be
rationally surjective. By the Baum-Douglas description of K-homology, every
element of K0(BΓ) is given by a map of a closed oriented smooth manifold
M → BΓ and an elliptic operator D on M . Its index in K0(C∗maxΓ) is obtained
by twisting D with the pull back of the canonical C∗maxΓ-bundle on BΓ. The
image of this index element under the composition

t(2) : K0(C∗maxΓ)→ K0(NΓ) trNΓ−−−→ R

can be read off directly as the L2-index in the sense of Atiyah of the operator D
lifted to the Γ-covering of M which is the pull back of EΓ via the map M → BΓ.
On the other hand, the image of this element under the composition

t : K0(C∗maxΓ)→ K0(C∗max{1}) = K0(C)
∼=−→ Z

is just the index of D. (Here we need to deal with the maximal group C∗-
algebra, because the reduced group C∗-algebra is not functorial under group
homomorphisms such as Γ → {1}.) Atiyah’s L2-index theorem [2, (1.1)] now
states that these two numbers coincide. Hence the two maps t(2) and t above
coincide since we assume that the index mapK0(BΓ)→ K0(C∗maxΓ) is rationally
surjective. This implies that the maps sign(2) and sign defined in (2.5) and (2.6)
above coincide since sign(2) and sign, respectively, are given by the composition
of t(2) and t, respectively, with the map

L0(QΓ)→ L0(C∗maxΓ)
∼=−→ K0(C∗maxΓ).

Now suppose that the L-theoretic assembly map is rationally surjective. The
symmetric signature defines for any CW -complex Y a natural homomorphism

σ : Ω∗(Y )→ L∗(Zπ1(Y )).

The change of ring and decoration map L〈−∞〉∗ (Zπ1(Y ))→ L∗(Qπ1(Y )) and the
symmetrization map L∗(Qπ1(Y ))→ L∗(Qπ1(Y )) are bijective after inverting 2
[28, pages 19, 104 and 376] and [26, Proposition 8.2 or 3.3]. By the universal
properties of assembly maps, σ ⊗Z Q can be factorized as

σ ⊗Z Q : Ω∗(Y )⊗Z Q→ H∗(Y ;L〈−∞〉• )⊗Z Q
A⊗ZQ−−−−→ L

〈−∞〉
∗ (Zπ1(Y ))⊗Z Q
∼=−→ L∗(Qπ1(Y ))⊗Z Q.

where the first map is a transformation of homology theories with values in
Q-vector spaces. The first map is surjective for Y = {Pt.}. Recall that every
homology theory with values in rational vector spaces which vanishes in negative
degrees is a direct sum of copies of shifted ordinary homology with rational
coefficients (i.e. the corresponding spectrum is a wedge of rational Eilenberg-
Mac Lane spectra) (compare [7]). It follows that the first map is surjective for
all Y . This could also be concluded using homological Chern characters. The
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second map is surjective for Y = BΓ by assumption and the third map is always
bijective. Hence

σ : Ω∗(BΓ)→ L∗(QΓ)

is rationally surjective. This implies that rationally every element in L0(QΓ)
is a combination of elements of the form σ(M) for Γ-coverings M → M with
closed oriented smooth manifolds M of dimension divisible by four as basis. This
follows also from the geometric interpretation of the assembly map in terms of
the surgery sequence (see for instance [29, Proposition 18.3] for the topological
category). For coverings M → M as above we know already sign(2)(M) =
sign(M). Hence the maps sign(2) and sign defined in (2.5) and (2.6) above
coincide. In [47], a similar argument is used to prove homotopy invariance of
ρ-invariants under the same assumptions we are making.

The “max”-Baum-Connes conjecture used in Theorem 2.3 is true for K-
amenable torsion-free groups for which the Baum-Connes conjecture is true,
e.g. torsion free amenable groups or torsion-free discrete subgroups of SU(n, 1)
or SO(n, 1). For more information about the Baum-Connes Conjecture see for
instance [13], [23], [43].

Examples of groups for which the L-theory isomorphism conjecture is known
are torsion-free poly-finite-or-cyclic groups [9], fundamental groups of closed
non-positively curved manifolds [10], or knot groups [1].

2.7 Remark. We have seen in the proof of Theorem 2.3 that for a given finitely
presented group Γ the L2-index formula sign(2)(X) = sign(X) holds for each Γ-
covering X → X with a 4n-dimensional Poincaré space X as base if the maps
sign(2) and sign defined in (2.5) and (2.6) agree. It turns out that this is an if
and only if statement. Namely, rationally any element in L0(QΓ) can be real-
ized as σ(X) by the following argument. Fix a closed manifold N of dimension
4n − 1 ≥ 7 with π1(N) = Γ and η ∈ Ls0(ZΓ). By Wall’s realization theorem
[46, Theorem 5.8] there is a normal map of degree one with underlying map
(f, ∂f) : (M,∂M)→ (N × [0, 1], N × {0, 1}) such that ∂f is a homotopy equiv-
alence and the associated surgery obstruction is η. The symmetrization map
Ls0(ZΓ) → L0

s(ZΓ) sends the surgery obstruction to the symmetric signature
σ(X) of the obvious Γ-covering of the 4n-dimensional Poincaré space X which
is obtained by glueing M and N × [0, 1] together along their boundary with the
homotopy equivalence ∂f [30, Proposition 6.4]. Since the composition

Ls0(ZΓ)→ L0
s(ZΓ)→ L0(ZΓ)→ L0(QΓ)

is bijective after inverting two, the claim follows.
It is not hard to check that the maps sign(2) and sign defined in (2.5) and

(2.6) are different for Γ a finite cyclic group of prime order (see for instance [29,
Example 22.28]). Since for an inclusion i : Γ → Γ′ of groups the composition
of the map sign(2) for Γ′ with the induction homomorphisms i∗ : L0(QΓ) →
L0(QΓ′) is the map sign(2) for Γ and similar for sign, the maps sign(2) and sign
for Γ can only agree if and only if Γ is torsion-free. In particular the conclusion
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in Theorem 2.3 that sign(2)(X) = sign(X) holds for Γ-coverings X → X over
4n-dimensional Poincaré spaces X can only be true if Γ is torsion-free.

2.8 Question. To which extend does Theorem 2.3 hold for arbitrary torsion-
free groups?

Note that a negative answer would give rise to interesting elements in the
(quite mysterious and not well understood) K0(C∗maxΓ) arising as (higher) sig-
natures for closed Poincaré duality spaces which, if the Baum-Connes conjecture
for Γ is true, lie in the kernel of the map K0(C∗maxΓ)→ K0(C∗rΓ).

3 Different definitions of L2-signatures

Throughout this section we consider a compact connected oriented d = 4n-
dimensional Riemannian manifold M , possibly with boundary ∂M , together
with a Γ-covering M → M . We denote by ∂M the preimage of ∂M . More
generally, we consider a d = 4n-dimensional Poincaré pair (X,Y ) over Q with a
Γ-covering (X,X) → (X,Y ). We will denote by u : M → BΓ and u : X → BΓ
the classifying maps of the Γ-coverings.

We present several different ways to define the L2-signature and show that
they in fact coincide. One can use the L2-index of the signature operator to
define sign(2)

an (M) provided ∂M = ∅. Using K-theory and L-theory respectively
one can define sign(2)

K (M) and sign(2)
L (M) respectively if ∂M = ∅. We will define

signature pairings on L2-de Rham cohomology, and also on combinatorial L2-
cohomology and take the von Neumann signature of these. This will yield
sign(2)

forms(M,∂M) and sign(2)
chain(X,Y ).

3.1 Analytic L2-signatures

3.1 Definition. Assume ∂M = ∅. The analytic L2-signature is the L2-index
(in the graded sense) of its signature operator, i.e. if D = d+ δ is the signature
operator on M and if D

±
is its positive/negative part with respect to the signa-

ture splitting on L2Ω∗(M) (i.e. the restriction to the ±1-eigenspace of τ = ±∗
(compare (1.4)) where ∗ is the Hodge-∗-operator) then

sign(2)
an (M) := indNΓ(D

+
) := dimNΓ(kerD

+
)− dimNΓ(ker(D

+
)∗). (3.2)

Note that (D
+

)∗ = D
−

. This works not only for smooth Riemannian man-
ifolds, but also for Lipschitz manifolds with Lipschitz Riemannian metrics and
the corresponding Lipschitz signature operator.

If ∂M 6= ∅ one still can use the signature operator. However, one has to sup-
ply it with the non-local Atiyah-Patodi-Singer boundary conditions. Moreover,
to get the signature, one has to subtract a certain correction term (correspond-
ing to “extended L2-solutions on the cylinder) from the index (compare [3,
(4.7)–(4.14)]). To avoid this we directly define the analytic index as the “cor-
rected cohomological” expression of the index formula, namely, we put in the
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case ∂M 6= ∅

sign(2)
an (M,∂M) :=

∫
M

L(M)− η(2)(∂M) +
∫
∂M

ΠL(∂M). (3.3)

This coincides with the above definition if ∂M = ∅, and by [25, Theorem 1.1]
it also is the L2-index of the signature operator (minus the standard correction
term) if ∂M 6= ∅.

3.2 The K-theoretic L2-signature

Suppose ∂M = ∅. Form the flat twisted von Neumann algebra bundle N :=
NΓ ×Γ M with fiber the group von Neumann algebra NΓ. Given any elliptic
differential operator D : C∞(E)→ C∞(F ) of order d on M , one can twist this
operator with the bundle N to obtain an elliptic C∗-operator on C∗-vector
bundles E , F . An overview over this construction (for general C∗-bundles) can
be found in [33, Section 1].

One can define Sobolev spaces Hs(E) of sections of E , and similarly for F .
These are Hilbert NΓ-modules, in particular, they have an inner product with
values in NΓ. The twisted operator then is a bounded operator

DN : Hs(E)→ Hs−d(F),

with a parametrix Q : Hs−d(F)→ Hs(E).
Then we define

indK0(NΓ)(DN ) := [ker(DN +K)]− [coker(DN +K)] ∈ K0(NΓ),

where we have to perturb by a C∗-compact operator K to assure that kernel
and cokernel are indeed finitely generated projective modules over NΓ.

The standard trace trNΓ defines (being a positive trace) a homomorphism

trNΓ : K0(NΓ)→ R.

3.4 Definition. If ∂M = ∅, we define the K-theoretic L2-index

ind(2)
K (DN ) := trNΓ(indK0(NΓ)(DN )) ∈ R,

and the K-theoretic L2-signature as the corresponding index of the signature
operator D+:

sign(2)
K (M) := ind(2)

K (D+
N ).

3.5 Theorem. Suppose ∂M = ∅. For any elliptic differential operator D on
M we have

indNΓ(D) = ind(2)
K (DN ),

where D is the lift of D to the Γ-covering, considered as unbounded operator on
L2-sections, and

indNΓ(D) := dimNΓ(ker(D))− dimNΓ(ker(D
∗
))
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is defined as in (3.2) for the special case of the signature operator.
In particular we get

sign(2)
an (M) = sign(2)

K (M).

A proof for this well known result can be found in [36].
For the signature and the signature operator, the only operators we are

interested in here, we can actually rely on a different set of results (already dis-
cussed at length in the literature) which relate the higher signatures to surgery
obstructions in L-theory groups. This is discussed in Subsection 3.5.

3.3 The de Rham L2-signature

Now we allow from the start that ∂M 6= ∅.
Let V be a Hilbert space and let s : V × V → C be a sesquilinear pairing

which is bounded. For us, sesquilinear also means s(v, w) = s(w, v). We can
associate to it a selfadjoint bounded operator

A : V → V (3.6)

which is uniquely determined by the property that s(v1, v2) = 〈v1, A(v2)〉 holds
for all v1, v2 ∈ V . From A we obtain an orthogonal splitting V = V− ⊕ V− ⊕ V0

of Hilbert spaces, where V+ is the image of χ(0,∞)(A), V0 is the kernel of A and
V− is the image of χ(−∞,0)(A). The pairing s is non-degenerate if and only if V0

is trivial. (One might want to require that 0 is not contained in the spectrum
of A as an ever stronger version of non-degeneracy). If V is a Hilbert module
over the von Neumann algebra NΓ and s is Γ-invariant, then A is Γ-equivariant
and the splitting above is a splitting of Hilbert NΓ-modules. The L2-signature
of s is in this case defined as

sign(2)(s) = dimNΓ(V+)− dimNΓ(V−). (3.7)

The cup-product of two L2-forms is an L1-form. If this product form is of
the dimension of the manifold, we can integrate. In this way we get a pairing

〈·, ·〉 : L2Ωp(M,∂M)× L2Ω4n−p(M,∂M)→ C

which passes to L2-cohomology as in the compact case. One should remark that
this pairing factorizes through im(Hp

(2)(M,∂M) → Hp
(2)(M)). The restriction

of the pairing to the middle dimension

sforms : H2n
(2)(M,∂M)×H2n

(2)(M,∂M)→ C (3.8)

is a sesquilinear, bounded and Γ-invariant pairing.

3.9 Definition. Define the de Rham L2-signature

sign(2)
forms(M,∂M) := sign(2)(s)

to be the L2-signature sign(2)(sforms) defined in (3.7) for the pairing sforms in-
troduced in (3.8).
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Note that this does work for Lipschitz Riemannian manifolds as well as for
smooth Riemannian manifolds.

If M is closed, the pairing is non-degenerate because to any ω ∈ L2Ω2n(M)
we can assign ∗ω ∈ L2Ω2n(M) and

∫
M
ω∧∗ω > 0 if ω 6= 0. Moreover, we see that

the splitting in this case is given by the ±1-eigenspaces of ∗: H+ = ker(∗ − 1)
and H− = ker(∗ + 1) (this makes sense if we identify the homology with the
L2-harmonic forms as can be done by Hodge theory). Moreover, the classical
arguments apply to show that

indNΓ(D
+

) = dimNΓ(H+)− dimNΓ(H−),

i.e. all signatures signan(M), signK(M) and signforms(M), defined so far, coin-
cide. This also works for Lipschitz manifolds (compare [40, Theorem 5.3] for
the compact case).

The proof that sign(2)
an (M,∂M) = sign(2)

forms(M,∂M) for manifolds with bound-
ary (which (up to the usual error term) amounts to the fact that the index of the
signature operator with APS-boundary conditions in fact gives the signature) is
non-trivial even in the compact case, compare [3, (2.3)] and the discussion after
[3, (4.5)]. Moreover, this argument can not directly be used in the L2-case, since
it makes use e.g. of a gap near zero in the spectrum of the signature operator
on ∂M . To circumvent this requires considerable effort.

3.10 Theorem. If M is a compact connected oriented 4n-dimensional manifold
with boundary ∂M and M →M is Γ-covering as before, then

sign(2)
an (M,∂M) = sign(2)

forms(M,∂M). (3.11)

First assume that the metric on M has a product structure near the bound-
ary. The proof in the classical case in [3] consists of two steps. In the first step
they prove that the analytical index is the signature of the Poincaré duality
pairing on the L2-harmonic forms on M∞. Here M∞ is M with an infinite
cylinder ∂M× [0,∞) attached to the boundary (with the product metric, which
gives a smooth metric on all of M∞ because we started with a product metric
near ∂M).

We can similarly form M∞ by attaching a cylinder to M (this is a Γ-covering
of M∞). Let Hp(2)(M∞) be the L2-harmonic p-forms on this manifold. Vaillant

[42, 5.16] proves that the L2-signature sign(2)(sforms) of the intersection pairing

s∞ : H2n
(2)(M∞)×H2n

(2)(M∞)→ C.

is sign(2)
an (M). This is a non-trivial fact which we don’t know a short and easy

proof of. The L2-version of the first step in the treatment in [3] follows. Hence
it remains to prove

sign(2)
forms(M) = sign(2)(s∞).

We do this in the following sequence of lemmas.
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Remember first that we can define the L2-homology of M as the reduced
homology of the chain complex of L2-differential forms on M (with no boundary
conditions: compare [19, Section 5] or [18, Sections 1.4.2, 1.5] where a short
account of different competing definitions is given).

Hence, restriction gives a map

rp : Hp(M∞)→ Hp
(2)(M).

We also have the natural map

ip : Hp
(2)(M,∂M)→ Hp

(2)(M).

We will show that the closures of the image of rp and the image of ip coincide
and that the pairings on H2n

(2)(M∞) and on i2n(H2n
(2)(M,∂M)) have the same

L2-signature. Observe that the pairing on H2n
(2)(M,∂M) is well defined by a

standard integration by parts argument, and the same argument shows that it
descends to im(i2n : H2n

(2)(M,∂M)→ H2n
(2)(M)).

We first prove:

3.12 Lemma. The image of rp lies in the closure of the image of ip.

Proof. Let
qp : Hp

(2)(M)→ Hp
(2)(∂M)

be the map given by restriction. To prove the statement, because of the long
weakly exact sequence for the L2-cohomology of the pair (M,∂M) we only
have to check that qp ◦ rp vanishes. If ω ∈ H(M∞) then by definition ω is
L2-integrable. Because of elliptic regularity, it lies in H∞ :=

⋂
s≥0H

s, i.e. all
derivatives are in L2. In particular, using the continuous restriction homomor-
phism to codimension 1 submanifolds Hs(M∞)→ L2(∂M ×{t}) (s > 1/2), for
t ∈ [0,∞) the pull back map indeed gives L2-forms on ∂M × {t} = ∂M , i.e.

q[t]p : Hp(M∞)→ L2Ωp(∂M).

Notice that q[0]p = qp ◦rp. The maps q[t]p are continuous, and all the manifolds
∂M × [r,∞) are isometric. Given a form ω ∈ Hp(M∞), the sequence of its
restrictions ωt to ∂M × [t,∞) tends to zero in all Sobolev norms (where we use
the isometry just described to compare the different ωt). Therefore the sequence
q[t]p(ω) in L2Ωp(∂M) tends to zero as t→∞.

Now all forms q[t]p(ω) represent the same element in the reduced L2-homology
of ∂M . This is true since, on the cylinder, we can write ω = ω1(u) +ω2(u)∧ du
(if u is the cylinder variable), with ω1,2 L

2-functions on [0,∞] with values in
L2Ω∗(∂M). Observe that ω is closed. Therefore

0 = dω = dω1(u)± ∂ω1(u)
∂u

∧ du+ dω2(u) ∧ du

Since the summands with and without du are linearly independent, from this
we get

±∂ω1(u)
∂u

= (dω2(u)).
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Integrating this equation with respect to u we get

ω1(t)− ω1(0) = ±d(
∫ t

0

ω2(u) du).

But ω1(t) is the pullback of ω to the submanifold ∂M × {t}, and we conclude

q[t]p(ω)− q[0]p(ω) = ±d(
∫ t

0

ω2(u) du). (3.13)

We consider ω1,2 to be L2-functions on [0,∞) with values in the Hilbert
space L2Ω∗(∂M). To those, we can apply the Cauchy-Schwarz inequality: the
inner product of ω2(u) and the constant function with value 1 satisfies:

∣∣∣〈ω2(u), 1〉
L2([0,t];L2Ω∗(M̃))

∣∣∣2 =
∣∣∣∣∫ t

0

ω2(u) du
∣∣∣∣2

≤
∫ t

0

12 du ·
∫ t

0

|ω2(u)|2 du ≤ t
∫ t

0

|ω(u)|2 du, (3.14)

Therefore the difference on the left hand side of Equation (3.13) is the differential
of an L2-form. Because q[t]p(ω) t→∞−−−→ 0 in L2, this proves the lemma.

From here one, we cannot continue exactly as in the classical case, because
forms representing zero are not exactly boundaries, and homology sequences
are only weakly exact. Instead, we use von Neumann dimensions and suitable
subspaces with codimensions tending to zero.

First we address surjectivity of the restriction map

rp : Hp(2)(M∞)→ im(ip) = ker qp ⊆ Hp
(2)(M).

Consider the differential d : Ωp−1
(2) (∂M)→ Ωp(2)(∂M). This map is unbounded

and left Fredholm by elliptic regularity (compare e.g. [19, Lemma 3.3]) and hence
the image of the spectral projection χ(0,γ)(δd) has von Neumann dimension
which tends to zero for γ → 0. For given ε > 0 choose γ > 0 such that the
image of χ(0,γ)(δd) has dimension not bigger than ε. Put

Epε := im(d ◦ χ(γ,∞)(δd)) ⊆ Ωp(2)(∂M).

Since d ◦ χ(−∞,0](δd) is zero, Epε has codimension ≤ ε in im(d). Moreover, Epε
is closed since the restriction of δd to the relevant subspace fulfills δd ≥ γ and
hence is invertible.

If, using the well established Hodge decomposition (compare e.g. [37, Theo-
rem 5.10])

L2Ω2n−1(M) =

(im(d
2n−2

))⊕ (im(δ
2n|{ω;ω|∂M=0}))⊕ ker(∆2n−1|{ω;(∗ω)|∂M=0=(δω)|∂M}),

(3.15)
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we identify Hp
(2)(M) with the space of harmonic forms which fulfill absolute

boundary conditions, pulling back to the boundary gives a well defined bounded
map Hp

(2)(M)→ Ωp(2)(∂M). Let

Kp
ε ⊆ H

p
(2)(M)

be the inverse image of Epε under this map. It is a closed subspace of Hp
(2)(M)

which actually is contained in ker(qp), the inverse image of im(d(∂M)), and has
codimension ≤ ε in ker(qp).

3.16 Lemma. Kp
ε is contained in the image of rp : Hp(2)(M∞)→ im(ip).

Proof. Let ω be a harmonic form representing an element in Kp
ε . Then we have

to find a harmonic form h ∈ Hp(2)(M∞) whose restriction to M represents the

cohomology class of ω. By assumption, qpω = dα for suitable α ∈ Ωp−1
(2) (∂M)

in the domain of d. Note that dα itself is smooth by elliptic regularity since
ω is harmonic. Choose a smooth function ψ : [0,∞) → R with ψ(t) = 1 in
a neighborhood of 0 and with ψ(t) = 0 for t > 1/2. Define α̃ = α · ψ(t) ∈
Ωp−1

(2) (∂M × [0,∞)). Note that α̃ is an L2-form in the domain of d, which is
smooth in a neighborhood of the boundary. For such forms, all usual integraion
by parts formulas hold, a fact we are using frequently in the sequel and which
follows e.g. from the methods of [11], or is explained in more detail in [37].

Let Q : ∂M × {0} ↪→ ∂M × [0,∞) be the inclusion. Then Qp−1α̃ = α and
Qpdα̃ = dα. Define the L2-form ω̃ on M∞ to coincide with ω on M , and with
dα̃ on ∂M × [0,∞). We claim that ω̃ ∈ ker(d), i.e. that ω̃ is orthogonal to δφ
for all smooth φ with compact support. This is checked by integration by parts
(on M and ∂M × [0,∞) separately): since ω is closed

〈ω̃|M , δφ|M 〉L2(M) = −
∫
∂M

dα ∧ q[0]4n−1−p(∗φ),

on the other hand

〈ω̃|∂M×[0,∞), δφ|∂M×[0,∞)〉L2(∂M×[0,∞)) = −
∫
∂M
−
dα ∧ q[0]4n−1−p(∗φ).

Because of opposite inward directions the orientation of ∂M in the first and
second integral are different. Changing the orientation changes the sign of the
integral of a differential form. This implies the vanishing of 〈ω̃, δφ〉L2(M∞),
which is just the sum of the two terms above.

By Hodge decomposition, we therefore can write ω̃ = h + x where h ∈
Hp(2)(M∞) and x lies in the closure of the image of d. If we apply rp to this
equation, we see that the forms ω and rp(h) represent the same L2-cohomology
class in Hp

(2)(M), which finishes the proof.

3.17 Corollary. The map rp : Hp(2)(M∞)→ im(ip) has dense image.
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Proof. The map surjects onto subspaces of arbitrary small codimension.

Now we have to compare the intersection forms. Again we can not do this
directly, but have to restrict our attention to subspaces with small codimension.
Observe that q[0]p defines a map from Hp(2)(M∞) to im d(∂M). Let

Hpε ⊆ H
p
(2)(M∞)

be the inverse image of Eε under this map. On the space of harmonic forms,
the pull back map is bounded in the L2-norm, therefore Hpε is closed. The
codimension of Hpε in Hp(2)(M∞) is not bigger than ε.

3.18 Lemma. Let ω, η ∈ H2n
ε , with q[0]2nω = dα and q[0]2nη = dβ. Define α̃

and β̃ as in the proof of Lemma 3.16. Assume, without loss of generality, that
M has a collar of length 1 which is isometric to a product. Define α̃′ and β̃′ as
above, but with support on this collar of M (i.e. replacing the “outward” ∂M ×
[0,∞) by the “inward” collar). Then v := r2n(ω) − dα̃′ and w := r2n(η) − dβ̃′
pull back to zero on ∂M and represent the same homology classes as r2n(ω) and
r2n(η), respectively. Moreover,∫

M

v ∧ w =
∫
M∞

ω ∧ η. (3.19)

Proof. We only have to prove Equation 3.19. Integration by parts shows that∫
M

v ∧ w =
∫
M

ω ∧ η +
∫
∂M

α ∧ dβ, (3.20)

since the additional terms
∫
∂M

dα ∧ α and
∫
∂M

dβ ∧ β vanish as 2dα ∧ α =
dα ∧ α+ α ∧ dα = d(α ∧ α) = 0 as α is of odd degree.

We therefore have to show that∫
∂M×[0,∞)

ω ∧ η =
∫
∂M

α ∧ dβ.

Write ω−dα̃ = h1 +x and η−dβ̃ = h2 +y, where we restrict to ∂M× [0,∞)
and use the Hodge decomposition for closed forms with vanishing pullback to
the boundary. This implies that the harmonic forms h1 and h2 also fullfill
q2n(h1) = 0 = q2n(h2), and x, y ∈ d(im(db)), where db stands for the differential
d, but with domain only the smooth compactly supported forms whose pull
back to the boundary is zero. Integration by parts shows that∫

∂M×[0,∞)

(h1 + x) ∧ (h2 + y) =
∫
∂M×[0,∞)

h1 ∧ h2.

We can write h1 = a(t) + b(t) ∧ dt and h2 = c(t) + b(t) ∧ dt, and because of
the product structure the fact that h1 is harmonic implies that the form a is
harmonic and the form b (or equivalently b ∧ dt) is harmonic. But 0 = q2nh1 =
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a(0), and a harmonic form which vanishes identically at the boundary is zero,
therefore a = 0. In the same way, c = 0. This implies h1 ∧ h2 = 0 since
dt ∧ dt = 0. Consequently

0 =
∫
∂M×[0,∞)

(ω − dα̃) ∧ (η − dβ̃) =
∫
∂M×[0,∞)

ω ∧ η −
∫
∂M

α ∧ dβ,

where the last equation follows from integration by parts (see [11] as in (3.20).
This finishes the proof of Lemma 3.18.

Let
L2n
ε ⊆ im(ip)

be the closure of the image of H2n
ε under rp : Hp(2)(M∞) → im(ip). The codi-

mension of L2n
ε ⊆ im(ip) is ≤ ε because of Corollary 3.17, since the codimension

of Hpε in Hp(2)(M∞) is ≤ ε. The intersection form

schain : H2n
(2)(M,∂M)×H2n

(2)M,∂M)→ C

descends to a pairing on im(ip) which can be restricted to a paring

s : L2n
ε × L2n

ε → C.

Since the codimension of L2n
ε ⊆ im(ip) is ≤ ε, we get

| sign(2)(schain)− sign(2)(s)| ≤ ε.

Lemma 3.18 implies that the intersection form

s∞ : H(2)(M∞)×H(2)(M∞)→ C

restricts to a pairing on H2n
ε which descents to the pairing s : L2n

ε × L2n
ε → C

above. Since the codimension of Hpε in Hp(2)(M∞) is ≤ ε we get

| sign(2)(s∞)− sign(2)(s)| ≤ ε.

We conclude
| sign(2)(s∞)− sign(2)(schain)| ≤ 2ε.

Since ε > 0 was arbitrary, we get

sign(2)(s∞) = sign(2)(schain).

This finishes the proof of Theorem 3.10 in the case, where the Riemannian
metric is a product metric near ∂M .

The argument also shows that rp : Hp(2)(M∞)→ Hp
(2)(M) is injective. This

is the case because the intersection pairing is non-degenerate on Hp(2)(M∞)
(if 0 6= h ∈ Hp(2)(M∞) then h is not perpendicular to ∗h where ∗ is the Hodge
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operator), and because on subspaces of arbitrarily small codimension this passes
to the image of rp.

The general version of Theorem 3.10 (without product metric near the
boundary) now follows by observing that H∗(2)(M,∂M) is unchanged if we de-
form the metric on M to a product metric, and that the intersection form also
does only depend on the homology. We can deform the metric in such a way
that the restriction to the boundary is unchanged (but of course the second
fundamental form changes). If one does this, in sign(2)

an (M) only the local terms∫
M
L(M) and

∫
∂M

ΠL(∂M) are changed. Exactly the same changes appear in
the Atiyah-Patodi-Singer index formula for the ordinary signature on the com-
pact manifold M . We know that the classical index formula also for manifolds
without product metric near the boundary computes the signature, which does
not depend on the metric. Therefore the overall changes are zero, and the same
is true for sign(2)

an (M). Since we just argued that sign(2)
forms(M) does not depend

on the metric on M , Theorem 3.10 follows.

3.4 The combinatorial L2-signature

Now we want to give a combinatorial construction of the pairing in (3.8). As-
sume therefore that instead of a compact connected oriented Riemannian man-
ifold M we have a 4n-dimensional Poincaré pair (X,Y ) over Q. Recall that the
Poincaré structure is given by a fundamental class [X,Y ] ∈ H4n(X,Y ;Q) with
the following property. Let the fundamental chain [X,Y ] ∈ C4n(X,Y ;Q), de-
noted in the same way as the fundamental class, be a closed chain representing
the fundamental class. Let (X,Y ) → (X,Y ) be a regular covering. Lift this
closed chain [X,Y ] to the covering X. The lift will be a closed bounded chain
(without compact support) [X,Y ] ∈ L∞C4n(X,Y ) = l∞(Γ)⊗CΓ C4n(X,Y ;C).
There is a duality pairing L1Cm(X,Y ;C)× L∞Cm(X,Y ;C)→ C. We call the
pairing against [X,Y ] “integration over X”. Now the cup product of one L2-
cochains with the complex conjugate of a second one on X gives an L1-cochain
which, if the dimensions are right, can be integrated over X. This passes to
reduced L2-(co)homology

3.21 Definition. Denote the induced sesquilinear Γ-invariant bounded pairing
of Hilbert NΓ-modules (in the middle dimension 2n) by

schain : H2n
(2)(X,Y )×H2n

(2)(X,Y )→ C. (3.22)

Define the combinatorial L2-signature sign(2)
chain(X,Y ) to be the associated L2-

signature signNΓ(schain) of schain as in (3.7).

To show that this definition makes sense, recall that the definition of the
cup-product involves a cellular approximation to the diagonal embedding X →
X×X, which we can lift to an equivariant cellular map X → X×X. This way,
there is a global bound K such that the image of each cell in X under the diag-
onal approximation meets only K cells of X ×X. Remember that the cochain
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representing the cup-product of a and b maps a cell σ to a certain linear com-
bination of a(σ1) · b(σ2) n (given locally by the diagonal approximation), where
σ1×σ2 runs through all cells in the image of σ under the cellular approximation
to the diagonal. This implies in a standard way that this cup-product map is
continuous from the product of the L2-cochain spaces to the L1-cochains.

The result of the pairing between a cochain
∑
σ p-cell λσσ and a chain of the

form
∑
σ p-cell µσσ is the number

∑
σ p-cell λσµσ. This is a continuous pairing

between L1-cochains and L∞-chains.
Taken together, we get a pairing on L2-cochains with values in the complex

numbers. If we restrict in one factor to cochains with compact support, this
is the classical pairing. In particular,

∫
X
a ∪ b = 0 if a = δ(a′) and a′ has

compact support and δ(b) = 0, since this is true (in the classical situation) if
a has compact support and b is completely arbitrary. We want to check the
corresponding statement if a is in the closure of the image of δ in the space of
L2-cochains, and b is an L2-cochain with δ(b) = 0. Now a = limn→∞ δ(an),
where we can assume that all an have compact support, because δ is continuous
and the cochains with compact support are dense in the space of L2-cochain.
But then continuity implies the claim that our pairing vanishes on (the closure
of the space of) coboundaries and therefore passes to reduced L2-cohomology.
The usual proofs apply to show that the cup product (and the pairing) does
not depend on the particular way we constructed it (e.g. the particular cellular
approximation to the diagonal embedding).

Note that the construction is homological in nature and therefore depends
only on the oriented homotopy type of the pair (X,Y ). In particular it is
independent of the CW-structure and the choice of the closed cycle representing
the fundamental class.

An alternative description of Definition 3.21 can be given using the sequence

C4n−∗
(2) (X,Y )

−∩[X,Y ]−−−−−−→ C
(2)
∗ (X)→ C

(2)
∗ (X,Y ). (3.23)

Note that this is obtained by tensoring the corresponding CΓ-chain map over
CΓ with l2(Γ). It induces a selfadjoint bounded Γ-equivariant operator

A : H2n
(2)(X,Y )→ H

(2)
2n (X,Y )

g−→∼= H2n
(2)(X,Y ) (3.24)

using the canonical identification H
(2)
2n (X,Y ) = H2n

(2)(X,Y ) which comes from
the cellular Hodge decomposition. Actually, putting any positive inner product
on H(2)

2n (X,Y ) will give rise to an identification with its dual space H2n
(2)(X,Y ),

and the fact that the Poincaré duality homomorphism is self dual implies that
after the identification the homomorphism is self adjoint (with respect to the
used inner product), as can be seen by going through the definitions.

3.25 Lemma. The homological Poincaré duality homomorphism

B : H(2)
2n X) PD−1

−−−−→∼= H2n
(2)(X,Y ) i∗−→ H2n

(2)(X)
g−1

−−→∼= H
(2)
2n (X)
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has the same L2-signature as A of (3.24), where PD−1 is the defined to be the
inverse of the isomorphism induced by cup product with the fundamental class
(which we abbreviate with PD in this lemma). The corresponding remark holds
for the ordinary signature of (X,Y ).

For the calculation of L2-signatures and ordinary signatures, the Poincaré
duality chain map can be replaced by any chain homotopic map, and moreover,
it can be “conjugated” with a chain homotopy equivalence and its adjoint.

Proof. Given any self-adjoint Hilbert NΓ-module morphism a : V → W and a
(not necessarily unitary) Hilbert NΓ-isomorphism f : V →W , we have

sign(2)(a) = sign(2)(faf∗).

This follows from the fact that the isomorphism f∗ intertwines a and faf∗, i.e.

〈(faf∗)x, x〉 = 〈a(f∗x), (f∗x)〉 ∀x ∈W,

i.e. f∗ maps the positive or negative spectral part, respectively, of faf∗ to
the corresponding part of a, and being an NΓ-isomorophism, it preserves the
NΓ-dimension.

In our case,

sign(2)(B) = sign(2)(PD∗ ◦B ◦ PD) = sign(2)(PD∗g−1i∗)

= sign(2)((g−1 ◦ i∗ ◦ PD)∗) = sign(2)(A),

since first i∗ : H2n
(2)(X,Y )→ H2n

(2)(X) is dual to i∗ : H(2)
2n (X)→ H

(2)
2n (X,Y ), and

therefore i∗ ◦ g−1 is adjoint to g−1 ◦ i∗ by the usual relations between dual and
adjoint on Hilbert spaces, and secondly A∗ = A.

The statement about the chain homotopy invariance follow trivially from
the fact that L2-signature and signature depend on the homological Poincaré
duality map only, which is not affected by passing to a chain homotopic map, and
“conjugation” with a chain homotopy equivalence and its adjoint corresponds
to “conjugation” by an isomorphism and its adjoint. We have just checked that
this does not change the L2-signature.

The identical argument applies to the ordinary signature (which can be
considered as the L2-signature for the trivial one-sheeted covering).

The standard relations between cup- and cap-product and “integration” of
homology against cohomology classes imply

3.26 Proposition. The operator in (3.24) is the operator associated in (3.6)
to the pairing appearing in Definition (3.21). In particular we get

sign(2)
chain(X,Y ) = dimNΓ(χ(0,∞)(A))− dimNΓ(χ(−∞,0)(A)). (3.27)

Suppose (X,Y ) happens to be an oriented cocompact smooth manifold with
boundary, and the CW-structure is given by a smooth triangulation. Then by
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the L2-de Rham isomorphism of Dodziuk [6, Theorem 1] and its version for
manifolds with boundary ([37, Corollary 1.7] or [12]), L2-simplicial and L2-de
Rham cohomology are isomorphic.

For reasons of completeness, we will prove that the pairings which give rise to
sign(2)

forms and sign(2)
chain are compatible with respect to this isomorphism. It would

perhaps be more satisfactory to prove that the isomorphism is compatible with
the products. However, we don’t want to discuss the L1-version of the Hodge-
de Rham theorem (and note that the product of two L2-forms is an L1-form),
so we use this shortcut. The advantage is that we can give a “local” proof
of the weaker result, which holds on the chain level. Note that, in contrast,
there is no good way to describe a good cup product on the level of cochains
of a simplicial complex which is at the same time graded commutative and
associative, as is the case for the wedge product of differential forms. Similar
and related work has e.g. been done in [21, Section 7], and his methods could
be used as well. Another version would use an intermediate simplicial L2-de
Rham complex as in the treatment in [8] of multiplicativity of the ordinary de
Rham isomorphism. Actually, this method is used in [12] to prove the de Rham
theorem for L2-cohomology (as well as Lp-cohomology), but without taking care
of the multiplicative structure. We believe that the combination of [8] and [12]
proves that the L2-de Rham isomorphism preserves the multiplicative structure.

We choose to give a direct argument, using some calculations of [31].
To start with, we recall a possible definition of the cup product on the cochain

level of a simplicial complex (using the Alexander-Whitney approximation).
So, assume X is a simplicial complex. Choose an orientation of X, i.e. an

orientation of each simplex of X. Next, we choose a local ordering of the chain
complex, i.e. a total ordering of the vertices of every simplex with the compati-
bility condition that, if a simplex σ is the face of a simplex τ , then the restriction
of the ordering on the simplices of τ should give the ordering on σ. Custom-
arily, such a local ordering is obtained by globally ordering all the vertices of
the simplicial complex, but that is by no means necessary for the following cup
product construction, and for us it will later be much more convenient to use
local orderings.

Observe that we do not require that the ordering is compatible with the
orientation (later on, we will use different local orderings, but the same orien-
tation).

If e0, . . . , en are the ordered vertices of a simplex σ, then 〈e0, . . . , en〉 :=
ε(e0, . . . , en)σ is a chain, where ε(e0, . . . , en) = 1 if (e0, . . . , en) represents the
orientation of σ, and ε(e0, . . . , en) = −1, otherwise.

Following the conventions in [32], the cup product of a p-cochain a and a
q-cochain b is defined by

a ∪ b(〈e0, . . . , en〉) = a(〈e0, . . . , ep〉)) · b(〈ep, · · · , en〉). (3.28)

Note in particular that, if a is the elementary cochain corresponding to
〈e0, . . . , ep〉 (i.e. maps this simplex to one, and all other simplices to zero), and
b is the elementary cochain of 〈ep, . . . , en〉, then a∪ b is the elementary cochain
of 〈e0, . . . , en〉.
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The de Rham map
∫

maps a (sufficiently smooth) p-form ω to a p-cochain of
the simplicial cochain complex of a smooth triangulation of the manifold. The
value of

∫
(ω) on a p-simplex σ simply is the integral of ω over σ. This is a chain

map.
An inverse map W from the cochain complex to differential forms (going

back to Whitney) is given by mapping an elementary p-cochain σ with vertices
(e0, . . . , ep) to the “barycentre form”

W (σ) := p!
p∑
i=0

(−1)ixi dx0 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxp,

where the hat means, as usual, that the corresponding entry is omitted, and
the xi are defined to be the barycentric coordinates with non-zero values in the
stars of the vertices ei. The form W (σ) is non-zero only on the open star of σ.

Dodziuk [6], compare also [12], proves that W indeed induces an isomor-
phism on reduced L2-cohomology. The inverse is essentially induced by

∫
. In

particular, it is easily established that
∫
◦W = id. However, since

∫
is (below

the top degree) not defined for all L2-forms, one has to be somewhat careful
here. This is the main reason why we don’t prove that the de Rham isomor-
phism is multiplicative for Lp-cohomology (where the product of an Lp and an
Lq-form is an Lr-form with 1/r = 1/p+ 1/q).

3.29 Lemma. If c1 and c2 are elements of the simplicial L2-cochain complex
such that the degrees add up to 4n, then on the 4n-dimensional manifold X

schain(c1, c2) =
∑

σoriented 4n simplex of X

(c1 ∪ c2)(σ) =
∫
X

W (c1 ∪ c2),

where the sum is over all 4n-simplices with orientation induced from X.

Proof. The first equality is the definition of the pairing. For the second one
observe that∫

X

W (c1 ∪ c2) =
∑

σ 4n-simplex of X

∫
σ

W (c1 ∪ c2)

=
∑

σ 4n-simplex of X

(
∫
◦W )(c1 ∪ c2)(σ) =

∑
σoriented 4n-simplex of X

(c1 ∪ c2)(σ).

We used the fact that
∫
◦W is identically the identity map.

Since we already know that W induces an isomorphism, from this it suffices
to check for the compatibility of the two pairings that

〈W (c1),W (c2)〉 :=
∫
X

W (c1) ∧W (c2) =
∫
X

W (c1 ∪ c2) (3.30)

for c1 and c2 cochains as in Lemma 3.29, since the right hand side equals
schain(c1, c2).
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We are only interested in the result on cohomology. Therefore, we can define
the cup product on the cochain level appropriately. Recall, as already observed
above, that many choices are possible. Our description depends e.g. on the
chosen local ordering.

First, we assume that our triangulation is the barycentric subdivision of
some other triangulation (if it is not yet, pass to the barycentric subdivision).
There, a canonical local ordering is defined: a simplex σ of the barycentric
subdivision is by definition a chain s0 ⊂ s1 ⊂ · · · ⊆ sk of simplices of the
original triangulation with vertices s0,. . . , sk; and the ordering on the latter is
given by inclusion, or, equivalently, by ordering according to the dimension.

In the latter description, on our 4n-dimensional simplicial complex X we
define a collection of local orderings parameterized by the symmetric group
Σ4n+1 of permutations of {0, . . . , 4n} with vertices si, sj of the simplex σ above
satisfying si <τ sj under the ordering induced by τ ∈ Σ4n+1 if and only if
τ(si) < τ(sj).We denote the cup product induced by this local ordering by ∪τ .

The cup product to be used for Equation (3.30) is then the average of all
the ∪τ :

c1 ∪ c2 :=
1

(4n+ 1)!

∑
τ∈Σ4n+1

c1 ∪τ c2.

We now prove Equation (3.30) with this definition of the cup product.

Proof. Let v1(c1, c2) :=
∫
X
W (c1) ∧W (c2) and v2(c1, c2) :=

∫
X
W (c1 ∪ c2) for

simplicial L2-cochain c1, c2.
Then v1 and v2 are sesquilinear and jointly continuous. For the latter we

use the fact that W is a continuous map from L2-cochain to L2-forms as well as
from L1-cochain to L1-forms (this follows from its “local” character). Moreover,
the wedge as well as our cup product are continuous from L2 to L1 by an
appropriate application of the Hölder inequality (again, the “local” definition
of the cup product is used here).

The span of the elementary cochains given by the (oriented) simplices of
the triangulation (defined after Equation (3.28)) is dense in the space of all
L2-cochains. Consequently, it suffices to prove that v1(c1, c2) = v2(c1, c2) if c1
and c2 are two cochains corresponding to oriented simplices σ1 = (e0, . . . , ep) =
〈e0, . . . , ep〉 or σ2 = (f0, . . . , fq) = 〈f0, . . . , fq〉, respectively.

Let us first consider the case that σ1 and σ2 have no vertex in common.
Then the cup product of c1 and c2 is zero. At the same time, the supports of
W (c1) and W (c2) (being the open stars of the simplices σ1 and σ2) have empty
intersection. In this case therefore v1(c1, c1) = 0 = v2(c1, c2).

Secondly, assume σ1 and σ2 have 2 or more vertices in common. Then
W (c1) ∪ W (c2) = 0 since each summand contains the square of a one-form
dxj for some barycentre function xj . Similarly, c1 ∪ c2(σ) = 0 for each non-
degenerate simplex and in particular for each (non-degenerate) 4n-simplex, so
again v1(c1, c2) = 0 = v2(c1, c2).

Finally, for the interesting case, assume f0 = ep is the only vertex which both
simplices have in common (f0 = ep is no real loss of generality, we could replace
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an oriented simplex by the negative of a simplex with the wrong orientation and
the whole argument would go through). Evidently, only the case p+ q = 4n is
of interest, in which case (e0, . . . , ep = f0, f1, . . . fq) spans a 4n-simplex. Let σ
be the oriented simplex with these vertices and with orientation induced from
X. Observe that σ is spanned by σ1 and σ2, but the orientation it gets that way
differs from its orientation by ε(e0, . . . , fq) =: ∗(σ1, σ2). The latter notation is
used in [31, p. 23].

The support of W (σ1)∪W (σ2) is the interior of this 4n-simplex. Therefore,
its integral over any other 4n-simplex is zero.

Moreover, c1 ∪ c2 vanishes on all 4n-simplices apart from σ (as follows im-
mediately from the formula for the cup product), and hence W (c1 ∪ c2) =
(c1 ∪ c2)(σ). It remains to compute this number. Our definition of the cup
product involves one summand for each of the (4n + 1)! permutations of the
simplices of σ. The contribution of such a permutation can only be nontrivial,
when the first p+1 simplices (e0, . . . , ep) are mapped to themselves and the last
q+1-simplices (f0, . . . , fq) are also mapped to themselves, in particular, ep = f0

has to be fixed by such a permutation. Observe that we obtain exactly p! · q!
permutations with non-trivial contribution.

c1 ∪ c2(〈e0, . . . , ep = f0, . . . , fq〉) =
1

(p+ q + 1)!

∑
π∈Σp,ψ∈Σq

c1(〈eπ(0), . . . , eπ(p−1), eq〉)c2(〈f0, fψ(1), . . . fψ(q)〉).

(3.31)

The definition of the chain

〈eπ(0), . . . , eπ(p−1), ep〉

differs from the simplex (eπ(0), . . . , eπ(p−1), ep) by a sign which makes up for
the (possible) change of orientation compared to the oriented simplex spanned
by e0, . . . , ep. This implies that the value of the expression in (3.31) does not
depend on the particular permutation. For our cup product, we therefore get

c1 ∪ c2(〈e0, . . . , ep = f0, . . . , fq〉) =
p! · q!

(p+ q + 1)!
c1(〈e0, . . . , ep〉)c2(〈f0, . . . , fq〉) =

p! · q!
(p+ q + 1)!

by the definition of c1 and c2. Finally, observe that

c1 ∪ c2(σ) = ∗(σ1, σ2)c1 ∪ c2(〈e0, . . . , fq〉) = ∗(σ1, σ2)
p! · q!

(1 + p+ q)!
.

It remains to calculate
∫
σ
W (c1) ∧W (c2). This is carried out in [31, Ap-

pendix] and we obtain indeed∫
σ

W (c1) ∧W (c2) = ∗(σ1, σ2)
p! · q!

(p+ q + 1)!
.
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This finishes the proof of the claim.

In particular, it follows that:

3.32 Proposition. Assume M is a compact oriented smooth manifold with
boundary ∂M . Then

sign(2)
chain(M,∂M) = sign(2)

forms(M,∂M).

3.5 The L-theoretic L2-signature

3.33 Definition. Consider a Poincaré space X of dimension d = 4n over Q.
Let X → X be a regular Γ-covering. We have already mentioned its symmetric
signature σ(X) ∈ L0(ZΓ) in (2.4). Define its L-theoretic L2-signature

sign(2)
L (X) ∈ R

as the image of σ(X) under the map sign(2) : L0(QΓ)→ R introduced in (2.5).

3.34 Lemma. In the situation of Definition 3.33, we have

sign(2)
L (X) = sign(2)

chain(X).

Proof. Let U(Γ) be the algebra of operators affiliated to NΓ. Algebraically U(Γ)
is the Ore localization of NΓ and has the property that it is a von Neumann reg-
ular ring, i.e. any finitely generated submodule of a finitely generated projective
UΓ module is a direct summand [18, Theorem 8.22]. There is a commutative
square

L0(NΓ) −−−−→ K0(NΓ)y∼= y∼=
L0(UΓ) −−−−→ K0(UΓ)

where the vertical maps are change of rings maps and isomorphisms [18, Theo-
rem 9.31]. Since UΓ is von Neumann regular, the UΓ-chain complex

· · · 0−→ H∗(C∗(X;Q)⊗QΓ UΓ) 0−→ · · ·

given by the homology and the trivial differentials consists of finitely generated
projective UΓ-chain modules and there is a UΓ-chain homotopy equivalence

i∗ : H∗(C∗(X;Q)⊗QΓ UΓ)→ C∗(X;Q)⊗QΓ UΓ

which is up to homotopy characterized by the property that it induces the
identity on homology. The symmetric Poincaré structure on C∗(X;Q) ⊗QΓ

UΓ induces one on H∗(C∗(X;Q) ⊗QΓ UΓ) and i∗ is an UΓ-chain homotopy
equivalence of symmetric UΓ-Poincaré complexes. This implies for their classes
in L0(U) [28, Proposition 1.2.1].

[C∗(X;Q)⊗QΓ UΓ] = [H∗(C∗(X;Q)⊗QΓ UΓ)].
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Elementary algebraic surgery in the sense of [28, Section 1.5] shows that the class
[H∗(C∗(X;Q) ⊗QΓ UΓ)] in L0(U) is given by the sesquilinear non-degenerate
pairing on the middle homology group H2n(C∗(X;Q)⊗QΓ UΓ). Let

PH2n(C∗(X;Q)⊗QΓ NΓ)

be the projective part of the finitely generated NΓ-module H2n(C∗(X;Q)⊗QΓ

NΓ) in the sense of [18, Definition 6.1]. It is a finitely generated projectiveN (Γ)-
module [18, Theorem 6.7] and inherits a sesquilinear non-degenerate pairing
from the Poincaré structure. There is a canonical isomorphism(

PH2n(C∗(X;Q)⊗QΓ NΓ)
)
⊗NΓ UΓ)

∼=−→ H2n(C∗(X;Q)⊗QΓ UΓ)

which is compatible with the pairings (see [18, Theorem 6.7 and Lemma 8.33]).
We have shown that the image of σ(X) under the change of rings maps L0(QΓ)→
L0(NΓ) agrees with the class represented by the Poincaré pairing on

PH2n(C∗(X;Q)⊗QΓ NΓ).

We conclude from the definitions, Proposition 3.26 and [18, Theorem 6.24] that
the map

L0(NΓ)
∼=−→ K0(NΓ)→ R

sends the class represented by the Poincaré pairing on PH2n(C∗(X;Q)⊗QΓNΓ)
to sign(2)

chain(X). We conclude from the definition of sign(2)
L (X) that sign(2)

chain(X) =
sign(2)

L (X) holds.

If X is a closed oriented smooth Riemannian manifold then, as we have
seen above, the signature operator twisted with the canonical non-trivial flat
NΓ-bundle on X has an index in K0(NΓ).

It is now a fundamental result, due to Mishchenko and Kasparov, that this
index is equal to the element given by the symmetric signature (they are actually
using the group C∗-algebra C∗Γ, but the argument for the von Neumann algebra
is the same). For an extensive treatment of these facts (and a generalization to
more general C∗-algebra-module bundles), compare [21]. In particular, we get
the following result (see also [16, pages 728-729]).

3.35 Theorem. Let M be a closed oriented smooth Riemannian manifold of
dimension 4n. Let M →M be a regular Γ-covering. Then

sign(2)
L (M) = sign(2)

K (M).

3.6 Künneth formula

3.36 Proposition. The L2-signature is multiplicative: if X and Y are two
Poincaré spaces with a regular ΓX-covering X → X and a regular ΓY -covering
Y → Y , then we get a regular ΓX × ΓY -covering X × Y → X × Y and we have

sign(2)(X × Y ) = sign(2)(X) · sign(2)(Y ).

Proof. This follows, as in the classical compact case, in a straightforward way
from the Künneth formula for L2-cohomology.
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