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One of the considerable subjects in mathematics is the study of topology. Deducing topology from arbitrary binary relations has
enticed the attention of many researchers. So, we devote this article to generate some kinds of topologies from ideals and
Ej-neighborhoods which are induced from any binary relation. We define new types of approximations and accuracy measures
from these topologies and then compare them with their counterparts induced directly from Ej-neighborhoods and ideals. Also,
we show that the approximations and accuracy measures given, herein, are better than those introduced in some previous studies
under any arbitrary relation.

1. Introduction

Rough set theory [1, 2]is one of the followed methods to
handle the vagueness (uncertainty) of the information
systems data and imperfect knowledge. In this theory, each
subset is associated with two crisp sets (called lower and
upper approximations) generated from an equivalence re-
lation. To extend the applications of rough set theory, many
authors have replaced an equivalence relation by different
kinds of relations.

'e interaction between topological and rough set theory
is due to Skowron [3] and Wiweger [4] who first discussed
the role of topological aspects in rough sets. 'en, a com-
bination of rough set theory and topological theory became
the main goal of many studies [5–11]. 'is interaction also
included some generalizations of topology such as minimal
structure [12]. We refer the reader to [13] to see the main
contributions which investigated the relationships between
topology and rough set theory.

Ideals in a topological space have been taken into ac-
count by Kuratowski [14] and defined as a nonempty col-
lectionI of subsets of a universe which is closed under finite
union and subsets. Kandil et al. [15] applied the notion of
ideals with 〈r〉-neighborhoods to generalize Pawlak’s ap-
proximations. 'ey showed that their results decrease the
boundary region in comparison with Pawlak’s method [2],
Allam’s method [16], and Yao’s method [17].

Recently, some new types of neighborhood systems have
been introduced and studied. Among them, Ej-neighbor-
hood systems [18] and Cj-neighborhood systems [19] are
studied. In [18], Al-Shami et al. exploited Ej-neighborhoods
to establish new rough and topological approximations.
'ey compared between them and showed that the accuracy
measure obtained from rough approximations is better than
their counterparts obtained from topological
approximations.

'rough this study, we first construct new topological
spaces using the ideas of Ej-neighborhood and ideals to
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minimize the boundary region and maximize the accuracy
measure of a set compared with the approaches introduced
in [18]. Second, we establish new rough approximations that
improved the topological approximations.

2. Preliminaries

In this section, we recollect several substantial features and
outcomes of rough set theory, especially those regarding to
some sorts of neighborhood systems.

Definition 1

(1) [1] A binary relationR onU (i.e.,R⊆U × U) is said
to be

(i) Equivalence if it is reflexive (i.e., (z, z) ∈R for
each z ∈ U), symmetric (i.e., (y, z) ∈R if
(z, y) ∈R), and transitive (i.e., (y, w) ∈R,
whenever (y, z) ∈R and (z, w) ∈R)

(ii) Tolerance if it is reflexive and symmetric
(iii) Preorder (quasiorder or dominance) if it is

reflexive and transitive
(iv) Partial order if it is a antisymmetric (i.e., y � z,

whenever (y, z) ∈R and (z, y) ∈R) preorder
(v) Diagonal if R � (z, z): z ∈ U{ }

(vi) Serial if every z ∈ U, there exists w ∈ U, such
that zRw

(2) [2] For an equivalence relationR on U and a subset
M⊆U, the two related sets R (M) � ⋃
G ∈ U/R: G⊆M{ } and R(M) � ⋃ G ∈ U/R: M∩{

G≠∅} are called lower approximation and upper
approximation of M, respectively.

Definition 2 (see [16, 17, 20]). LetR be a binary relation on
U. 'e j-neighborhoods of y ∈ U (Nj(y), in short) are
defined for each j ∈ r, l, i, u, 〈r〉, 〈l〉, 〈i〉, 〈u〉{ } as follows:

(1) r-neighborhood: Nr(y) � z ∈ U: yRz{ }
(2) l-neighborhood: Nl(y) � z ∈ U: yRz{ }
(3) i-neighborhood: Ni(y) � Nr(y)∩Nl(y)

(4) u-neighborhood: Nu(y) � Nr(y)∪Nl(y)

(5) 〈r〉-neighborhood:
N〈r〉(y) � ∩ Nr(z): y ∈ Nr(z){ } provided that
there exists Nr(z) containing y. Otherwise,
N〈r〉(y) � ∅.

(6) 〈l〉-neighborhood: N〈l〉(y) � ∩ Nl(z): y ∈ Nl(z){ }
provided that there exists Nl(z) containing y.
Otherwise, N〈l〉(y) � ∅.

(7) 〈i〉-neighborhood: N〈i〉(y) � N〈r〉(y)∩N〈l〉(y)

(8) 〈u〉-neighborhood: N〈u〉(y) � N〈r〉(y)∪N〈l〉(y)

Henceforth, for all the following results, we will deal with
all the values of j, j ∈ r, l, i, u, 〈r〉, 〈l〉, 〈i〉, 〈u〉{ }, unless
otherwise noted.

Definition 3 (see [20]). LetR be a binary relation on U and
ψj: U⟶ P(U) be a mapping which assigns for each z in U
its j-neighborhood in P(U). 'en, (U, R,ψj) is called a
j-neighborhood space (briefly, NjS).

Proposition 1 (see [18]). Let (U,R,ψj) be NjS and y ∈ U.
:en,

(1) If R is a reflexive relation, then N〈j〉(y)⊆Nj(y), for
all j ∈ r, l, i, u{ }

(2) If R is a transitive relation, thenNj(y)⊆N〈j〉(y), for
all j ∈ r, l, i, u{ }

(3) If R is a symmetric relation, then

Nr(y) � Nl(y) � Ni(y) � Nu(y),

N〈r〉(y) � N〈l〉(y) � N〈i〉(y) � N〈u〉(y).
(1)

Theorem 1 (see [20]). Let (U,R,ψj) beNjS. :en, for each
j, the collection ⊤j � M⊆U: ∀y ∈M,Nj(y)⊆M{ } is a
topology on U.

Definition 4 (see [18]). Let (U,R,ψj) be NjS. 'en, a set
M⊆U is called j-open set ifM ∈ ⊤j, and its complement is
called j-closed set. 'e family Γj of all j-closed sets of a
j-neighborhood space is defined by Γj � F⊆U: Fc ∈ ⊤j{ },
where Fc is the complement of F.

Definition 5 (see [18]). LetR be an arbitrary binary relation
on U. 'e Ej-neighborhood of y ∈ U (Ej(y), in short) is
defined for each j as follows:

(1) Er(y) � z ∈ U: Nr(z)∩Nr(y)≠∅{ }
(2) El(y) � z ∈ U: Nl(z)∩Nl(y)≠∅{ }
(3) Ei(y) � Er(y)∩El(y)
(4) Eu(y) � Er(y)∪El(y)
(5) E〈r〉(y) � z ∈ U: N〈r〉(z)∩N〈r〉(y)≠∅{ }
(6) E〈l〉(y) � z ∈ U: N〈l〉(z)∩N〈l〉(y)≠∅{ }
(7) E〈i〉(y) � E〈r〉(y)∩E〈l〉(y)
(8) E〈u〉(y) � E〈r〉(y)∪E〈l〉(y)

Theorem 2 (see [18]). LetR be an arbitrary binary relation
on U and y ∈ U. :en, Ej-neighborhoods have the following
properties:

(1) y ∈ Ej(z) iff z ∈ Ej(y)
(2) If R is reflexive, then E〈j〉(y)⊆Ej(y) and

Nj(y)⊆Ej(y), for all j
(3) If R is symmetric, then Er(y) � El(y) �

Ei(y) � Eu(y) and E〈r〉(y) � E〈l〉(y) � E〈i〉(y) �
E〈u〉(y)

(4) If R is transitive, then Ej(y)⊆E〈j〉(y), for all
j ∈ r, l, i, u{ }

(5) IfR is symmetric and transitive, then Ej(y) �Nj(y)
and Ej(y)⊆Ej(z) (if y ∈ Ej(z) ), for each j
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(6) If R is preorder, then Ej(y) � E〈j〉(y), for all
j ∈ r, l, i, u{ }

(7) If R is an equivalence relation, then for each j, all
Ej(y) are identical, Ej(y) �Nj(y), and
Ej(y) � Ej(z) iff y ∈ Ej(z)

In [18], Al-Shami et al. formulated the concepts of
Ej-lower and Ej-upper approximations and Ej-accuracy
measure of a subset M in terms of Ej-neighborhoods as
follows:

Definition 6 (see [18]). Let M be a subset of an
NjS(U,R,ψj). 'en, the Ej-lower and Ej-upper approxi-
mations and Ej-accuracy measure of a subset M are

(1) R−
j (M) � z ∈ U: Ej(z)⊆M{ }

(2) R+
j (M) � z ∈ U: Ej(z)∩M≠∅{ }

(3) μj(M) � (|R
−
j (M) ∩M|/|R+

j (M)∪M|), where |M|
≠ 0

Theorem 3 (see [18]). Let (U,R,ψj) beNjS andM,M
�

⊆U.
:en, for each j, the following properties hold:

(i) ∅⊆R−
j (∅) and R+

j (U)⊆U
(ii) R−

j (U) � U and R+
j (∅) � ∅

(iii) If M⊆M
�

, then R−
j (M)⊆R−

j (M
�

) and R+
j (M)⊆

R+
j (M

�

)

(iv) R−
j (M∩M

�

) �R−
j (M)∩R−

j (M
�

) and R+
j (M∪

M
�

) �R+
j (M)∪R+

j (M
�

)

(v) R−
j (M

c) � (R+
j (M))

c and R+
j (M

c) � (R−
j (M))

c

(vi) R−
j (M)∪R−

j (M
�

)⊆R−
j (M∪M

�

) and R+
j (M∩

M
�

)⊆R+
j (M)∩R+

j (M
�

)

(vii) Generally, R−
j (R

−
j (M))≠R−

j (M) and R+
j (R

+
j

(M))≠R+
j (M)

Also, Al-Shami et al. [18] employed Ej-neighborhoods to
generate various topologies and studied their basic char-
acteristics. Furthermore, they introduced the concepts of
Ej-lower and Ej-upper approximations and Ej-accuracy
measure of a subset M induced from these topologies.

Theorem 4 (see [18]). Let (U,R,ψj) beNjS. For each j, the
collection ⊤Ej � M⊆U: ∀y ∈M,Ej(y)⊆M{ } is a topology on
U.

Definition 7 (see [18]). Let (U,R,ψj) beNjS. A setM⊆U is
called Ej-open set ifM ∈ ⊤Ej, and its complement is called
Ej-closed set. 'e family ⊥Ej of all Ej-closed sets of a

j-neighborhood space is defined by ⊥Ej � F⊆U: Fc ∈ ⊤Ej{ }.
Theorem 5 (see [18]). LetR be an arbitrary binary relation
on U and y ∈ U. If R is an equivalence relation, then
⊤Er � ⊤El � ⊤Ei � ⊤Eu � ⊤E〈r〉 � ⊤E〈l〉 � ⊤E〈i〉 � ⊤E〈u〉.

Definition 8 (see [18]). Let ⊤Ej be a topology generated by
Ej-neighborhoods. If M⊆U and j ∈ r, l, i, u, 〈r〉, 〈l〉, 〈i〉,{

〈u〉}, then the Ej-lower and Ej-upper approximations and
Ej-accuracy of M are defined, respectively, as

(1) L⊖j (M) � ∪ O ∈ ⊤Ej: O⊆M{ } � intEj(M), where

intEj(M) represents the interior points of M w.r.t.
⊤Ej

(2) U⊕j (M) � ∩ F ∈REj
: M⊆F{ } � clEj(M), where

clEj(M) represents closure points of M w.r.t. ⊤Ej
(3) μj(M) � (|L

⊖
j (M)|/|U

⊕
j (M)|), where |U

⊕
j (M)|≠ 0

Theorem 6 (see [21]). Let (U,R,ψj) be NjS and I be an
ideal on U. If j ∈ r, l, i, u, 〈r〉, 〈l〉, 〈i〉, 〈u〉{ }, then the col-
lection ⊤Ij � M⊆U: ∀y ∈M,Nj(y) − M ∈ I{ } is a topol-
ogy on U.

3. Sorts of Approximations Based on
Ej-Neighbourhoods and Ideals

Al-Shami et al. [18] constructed approximations relying on
various topologies that are induced from the four types of
Ej-neighbourhoods. In this portion, we shall generalize
these topologies by using ideals and deduce new rough
approximations based on Ej-neighbourhoods and ideals.
We explain the relationships between these approximations
and provide illustrative examples.

3.1. Various Topologies Generated from Ej-Neighbourhoods
via Ideals. In this part, we employ Ej-neighborhoods and
idealI to generate various topologies ζIj that are finer than
the previous one generated by Ej-neighborhoods due to [18]
for any relation.

First, we are going to offer a method of generating some
topologies by using Ej-neighborhoods and ideal I.

Theorem 7. Let (U,R,ψj) beNjS. For each j, the collection
ζIj � M⊆U: ∀y ∈M,Ej(y) − M ∈ I{ } is a topology on U.
Proof. Let Mα ∈ ζIj , α ∈ Δ, and z ∈ ∪ α∈ΔMα, then there
exists α0 ∈ Δ s.t. z ∈Mα0

. Hence, [Ej(z) − Mα0
] ∈ I. Since

− (∪ α∈ΔMα)⊆ − Mα0
, then [Ej(z) − (∪ α∈ΔMα)] ∈ I, i.e.,

∪ α∈ΔMα ∈ ζIj .
Let M1,M2 ∈ ζIj and z ∈M1 ∩M2. 'en, [Ej(z)

− M1] ∈ I and [Ej(z) − M2] ∈ I. According to properties
of I, [Ej(z) − M1]∪ [Ej(z) − M1] ∈ I. Hence, [Ej(z) −
(M1 ∩M2)] ∈ I. It follows that M1 ∩M2 ∈ EI

j .
Easily,∅, U ∈ EI

j , ∀j. Consequently, ζ
I
j is a topology on

U. □

Definition 9. Let (U,R,ψj) beNjS andI be an ideal on U.

A set M⊆U is called ζIj -open set if M ∈ ζIj , and the

complement of ζIj -open set is called ζIj -closed set. 'e

family ΠIj of all ζIj -closed sets is defined by

ΠIj � F⊆U: Fc ∈ ζIj{ }.
Theorem 8. Let (U,R,ψj) beNjS andI be an ideal on U.
:en,
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(1) ⊤Ej ⊆ ζ
I
j

(2) If R is a reflexive relation and j ∈ r, l, i, u{ }, then
ζIj ⊆ ζ

I

〈j〉

(3) If R is a symmetric, then ζIr � ζIl � ζIi � ζIu and
ζI〈r〉 � ζ

I

〈l〉 � ζ
I

〈i〉 � ζ
I

〈u〉

(4) If R is a transitive relation and j ∈ r, l, i, u{ }, then
ζI〈j〉 ⊆ ζ

I

j

(5) If R is a preorder relation and j ∈ r, l, i, u{ }, then
ζI〈j〉 � ζ

I
j

(6) IfR is an equivalence relation, then for each j, all ζIj
are identical, ⊤Ij � ζIj .

Proof. In view of 'eorem 2, then the proof is obvious.
'e next proposition shows that the relation between the

topologies ζIj and Ej-neighborhoods is reversible for
each j. □

Proposition 2. Let (U,R,ψj) beNjS andI be an ideal on
U. :en, the following results hold.

(1) ζIu ⊆ ζ
I
r ∩ ζ

I
l ⊆ ζ

I
r ∪ ζ

I
l ⊆ ζ

I
i

(2) ζI〈u〉 ⊆ ζ
I
〈r〉 ∩ ζ

I
〈l〉 ⊆ ζ

I
〈r〉 ∪ ζ

I
〈l〉 ⊆ ζ

I
〈i〉

Proof. Since Ei ⊆Ev ⊆Eu and E〈i〉 ⊆E〈v〉 ⊆E〈u〉, where v � r
or l, then the proof is obvious. □

Example 1. Let U � w1, w2, w3, w4{ } and R � (w1, w1),{
(w1, w3), (w1, w4), (w2, w4), (w4, w2), (w4, w4)} be a binary
relation on U. In Tables 1 and 2 , we calculate Nj-neigh-
borhoods and Ej-neighborhoods for each element of U.

Lemma 1. Let y ∈ U and j ∈ r, l, i, u{ }. :en, for any binary
relation R on U, N〈j〉(y)⊆E〈j〉(y).

Proof. Obvious. □

Lemma 2. Let I,J be two ideals on NjS(U,R,ψj). If
I⊆J, then ζIj ⊆ζ

J
j for each j.

Proof. Straightforward.
'e following example shows that the inclusion in

Proposition 2 and Lemma 2 cannot be replaced by the
equality relation. □

Example 2. Continued from Example 1.

⊤E〈i〉 � ⊤E〈l〉 � ⊤Ei � ⊤Er � ∅, U, w3{ }, w1, w2, w4{ }{ },
⊤E〈u〉 � ⊤E〈r〉 � ⊤Eu � ⊤El � ∅, U{ }.

(2)
If I � ∅, w1{ }{ }, then

ζIr � ∅, U, w3{ }, w2, w4{ }, w1, w2, w4{ }, w2, w3, w4{ }{ },

ζIl � ∅, U, w2, w3, w4{ }{ },

ζIi � ∅, U, w3{ }, w2, w4{ }, w1, w2, w4{ }, w2, w3, w4{ }{ },

ζIu � ∅, U, w2, w3, w4{ }{ },

ζI〈r〉 � ζ
I

〈u〉 � ∅, U, w2, w3, w4{ }{ },

ζI〈l〉 � ζ
I

〈i〉 � ∅, U, w3{ }, w2, w4{ }, w1, w2, w4{ }, w2, w3, w4{ }{ }.

(3)

If J � ∅, w1{ }, w4{ }, w1, w4{ }{ }, then

ζJr � ∅, U, w2{ }, w3{ }, w1, w2{ }, w2, w3{ }, w2, w4{ }, w1, w2, w3{ }, w1, w2, w4{ }, w2, w3, w4{ }{ },
ζJl � ∅, U, w2{ }, w3{ }, w1, w3{ }, w2, w3{ }, w1, w2, w3{ }, w2, w3, w4{ }{ },
ζJi � ∅, U, w1{ }, w2{ }, w3{ }, w1, w2{ }, w1, w3{ }, w2, w3{ }, w2, w4{ }, w1, w2, w3{ }, w1, w2, w4{ }, w2, w3, w4{ }{ },
ζJu � ∅, U, w2{ }, w3{ }, w2, w3{ }, w1, w2, w3{ }, w2, w3, w4{ }{ },
ζJ〈r〉 � ζ

J

〈u〉 � ∅, U, w2, w3{ }, w1, w2, w3{ }, w2, w3, w4{ }{ },
ζJ〈l〉 � ζ

J

〈i〉 � ∅, U, w2{ }, w3{ }, w1, w2{ }, w2, w3{ }, w2, w4{ }, w1, w2, w3{ }, w1, w2, w4{ }, w2, w3, w4{ }{ }.

(4)
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3.2. Generalized Rough Approximations Based on Various
Topologies Generated from Ej-Neighbourhoods via Ideals.
Herein, we will construct some kinds of rough approxi-
mations using the topologies generated from Ej-neighbor-
hoods and ideals and give some properties of them.

Definition 10. Let ζIj be a topology generated by
Ej-neighborhoods and ideal I. 'en, Ej-lower and
Ej-upper approximations and Ej-accuracy of a subsetM⊆U
are defined, respectively, for each j as

(1) LI⊖j (M) � intIEj(M), where intIEj(M) represents
interior of M w.r.t. ζIj

(2) UI⊕
j (M) � clIEj(M), where cl

I
Ej
(M) represents clo-

sure of M w.r.t. ζIj
(3) σIj (M) � (|L

I⊖
j (M)|/|UI⊕

j (M)|), where |UI⊕
j (M)|

≠ 0
Henceforth, (U,R,I,ψj) isNjSwith idealI onU and

denoted by EI
j S.

Several fundamental properties of LI⊖j (M) and
UI⊕
j (M) are listed in the next proposition.

Proposition 3. Let M,M
�

be subsets of EI
j S(U,R,I,ψj).

:en, the following properties hold for each j.

(1) LI⊖j (M) � (UI⊕
j (Mc))c

(2) LI⊖j (U) � U

(3) If M⊆M
�

, then LI⊖j (M)⊆ LI⊖j (M
�

)

(4) LI⊖j (M∩M
�

) � LI⊖j (M)∩LI⊖j (M
�

)

(5) LI⊖j (M∪M
�

)⊇LI⊖j (M)∪ LI⊖j (M
�

)

(6) LI⊖j (∅) � ∅
(7) LI⊖j (M)⊆M
(8) LI⊖j (M) � LI⊖j (LI⊖j (M))

(9) UI⊕
j (M) � (LI⊖j (Mc))c

(10) UI⊕
j (∅) � ∅

(11) If M⊆M
�

, then UI⊕
j (M)⊆UI⊕

j (M
�

)

(12) UI⊕
j (M∪M

�

) � UI⊕
j (M)∪UI⊕

j (M
�

)

(13) UI⊕
j (M∩M

�

)⊆UI⊕
j (M)∩UI

j (M
�

)

(14) UI⊕
j (U) � U

(15) M⊆UI⊕
j (M)

(16) UI⊕
j (M) � UI⊕

j (UI⊕
j (M))

According to Example 2, Table 3 explains generalized
rough approximations based on various topologies gener-
ated from Ej-neighbourhoods via ideals.

Table 4 demonstrates that the accuracy measure for j � i
is the highest from the cases j ∈ r, l, i, u{ }, and the accuracy
measures for j � 〈i〉, 〈l〉 are the highest from the case
j ∈ 〈r〉, 〈l〉, 〈i〉, 〈u〉{ }. However, we can find another ex-
ample illustrating that the accuracy measure for j � 〈i〉 is
the highest from the case j ∈ 〈r〉, 〈l〉, 〈i〉, 〈u〉{ }.

In the following remark, the inclusion relation of parts 3,
5, 7, 11, 13, and 15 in Proposition 3 cannot be replaced by the
equality relation.

Remark 1. Example 2 and Table 3 show that

(1) If M � w1{ } and M� � w2{ }, then LJr (M)⊆ LJr (M
�

)

and UI⊕
j (M) ⊆UI⊕

j (M
�

), whereas M⊈M
�

.

(2) If M � w2{ }, M� � w4{ }, then LJi (M)∪ LJi (M
�

) �

w2{ } and LJi (M∪M
�

) � w2, w4{ }. Hence, LJi (M∪
M
�

)⊈ LJi (M)∪ LJi (M
�

).

(3) If M � w1{ }, then M⊈ LJ〈i〉(M).
(4) If M � w1, w2, w3{ } and M

�

� w1, w3, w4{ }, then

UI⊕
j (M)∩UI⊕

j (M
�

) � w1, w3, w4{ } and UI⊕
j (M∩

M
�

) � w1, w3{ }. Hence, UI⊕
j (M)∩UI⊕

j (M
�

)

⊈UI⊕
j (M∩M

�

).

(5) If M � w2{ }, then UI⊕
〈l〉 (M)⊈M.

Definition 11. Let (U,R,I,ψj) be E
I
j S on U. A subsetM

of U is called

(1) Totally Ij definable, if L
I⊖
j (M) �M � UI⊕

j (M)

(2) Internally Ij definable, if LI⊖j (M) �M and
UI⊕
j (M)≠M

(3) Externally Ij definable, if LI⊖j (M)≠M and
UI⊕
j (M) �M

(4) Ij rough, if L
I⊖
j (M)≠M and UI⊕

j (M) ≠M

Remark 2. Example 2 and Table 3 show that w3{ } is a totally
Jr-definable set, w1, w2{ } is an internally Jr-definable set,
w1, w4{ } is an externally Jr-definable set, and w1, w2{ } is a
Jl-rough set.

Table 1: Nj-neighborhoods of each element in U.

Nj(U) w1 w2 w3 w4

Nr w1, w3, w4{ } w4{ } ∅ w2, w4{ }
Nl w1{ } w4{ } w1{ } w1, w2, w4{ }
Ni w1{ } w4{ } ∅ w2, w4{ }
Nu w1, w3, w4{ } w4{ } w1{ } w1, w2, w4{ }
N〈r〉 w1, w3, w4{ } w2, w4{ } w1, w3, w4{ } w4{ }
N〈l〉 w1{ } w1, w2, w4{ } ∅ w4{ }
N〈i〉 w1{ } w2, w4{ } ∅ w4{ }
N〈u〉 w1, w3, w4{ } w1, w2, w4{ } w1, w3, w4{ } w4{ }

Table 2: Ej-neighborhoods of each element in U.

Ej(U) w1 w2 w3 w4

Er w1, w2, w4{ } w1, w2, w4{ } ∅ w1, w2, w4{ }
El w1, w3, w4{ } w2, w4{ } w1, w3, w4{ } U
Ei w1, w4{ } w2, w4{ } ∅ w1, w2, w4{ }
Eu U w1, w2, w4{ } w1, w3, w4{ } U
E〈r〉 U U U U
E〈l〉 w1, w2{ } w1, w2, w4{ } ∅ w2, w4{ }
E〈i〉 w1, w2{ } w1, w2, w4{ } ∅ w2, w4{ }
E〈u〉 U U U U
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'e following theorem presents the relationships be-
tween the current approximations given in Definition 10 and
the previous one which was mentioned in Definition 8.

Theorem 9. Let (U,R,I,ψj) be E
I
j S andM⊆U. :en, for

each j,

(1) L⊖j (M)⊆LI⊖j (M)

(2) UI⊕
j (M)⊆U⊕j (M)

(3) μj(M)≤ σJl (M)

Proof. It follows from the fact that ⊤Ej ⊆ ζ
I

j for each j.
According to 'eorem 2, the topologies ⊤Ij and ζIj

coincide for each j when R is a symmetric and transitive
relation. 'is means that our approximations given in
Definition 10 and those given in [21] are identical under a
symmetric and transitive relation. On the other hand, there
is a limitation in our approaches as the next result
demonstrates. □

Theorem 10. Let (U,R,I,ψj) be E
I
j S, such that R is a

reflexive relation. :en, ζIj ⊆⊤Ij for each j.

Proof. Let M ∈ ζIj . 'en, Nj(y) − M ∈ I. Since
Ej(y)⊆Nj(y) for all j under a symmetric and transitive
relation (item 2 of 'eorem 2) and I is an ideal, then
Ej(y) − M ∈ I. Hence, ζIj ⊆⊤Ij . □

4. Classifications of Approximations and
Regions in Terms of Ej-Neighborhoods
and Ideals

By using ideals and Ej-neighborhoods, we deduce another
method to define EI

j -lower and E
I
j -upper approximations,

EI
j -boundary region, and E

I
j -accuracy measure of a subset

M. 'en, these kinds of approximations are compared with
those in Section 3.2. Also, we clarify the relationships among
them with the aid of several examples and show their es-
sential properties.

Definition 12. LetM be a subset of EI
j S(U,R,I,ψj). 'en,

the IR−
j -lower and

IR+
j -upper approximations of a subset

M are defined as

(1) IR
−

j (M) � z ∈ U: Ej(z) − M ∈ I{ }
(2) IR

+

j (M) � z ∈ U: Ej(z)∩M ∉ I{ }
(3) ]Ij (M) � (|

IR
−

j (M)∩M|/|IR
+

j (M)∪M|),
|IR

+

j (M)|≠ 0
It should be noted that when I � ∅{ } in Definition 12,

then the present approximations IR
−

j (M) and
IR

+

j (M)

coincide with the previous ones IR
−

j (M) and R+
j (M) in

Definition 6. So, the current work is considered as a gen-
eralization of Al-Shami et al. work [18]. Now, we shall study

the properties ofIR
−

j (M) and
IR

+

j (M) as it is presented in

the following results.

Proposition 4. Let M be a subset of EI
j S(U,R,I,ψj).

:en, the following properties hold for each j.

(i) IR
−

u(M)⊆IR
−

r (M)⊆IR
−

i (M) and IR
−

u(M)⊆
IR

−

l (M)⊆IR
−

i (M)

(ii) IR
+

i (M)⊆IR
+

r (M)⊆IR
+

u(M) and IR
+

i (M)⊆
IR

+

l (M)⊆IR
+

u(M)

(iii) ]Iu (M)≤ ]Ir (M)≤ ]Ii (M) and ]
I
u (M)≤ ]Il

(M)≤ ]Ii (M)
(iv) IR

−

〈u〉(M)⊆IR
−

〈r〉(M)⊆IR
−

〈i〉(M) and IR
−

〈u〉

(M)⊆IR−

〈l〉(M)⊆IR
−

〈i〉(M)

(v) IR
+

〈i〉(M)⊆IR
+

〈r〉(M)⊆IR
+

〈u〉(M) and IR
+

〈i〉

(M)⊆IR+

〈l〉(M)⊆IR
+

〈u〉(M)

(vi) ]I〈u〉(M)≤ ]I〈r〉(M) ≤ ]I〈i〉(M) and ]
I
〈u〉(M)≤

]
I
〈l〉(M)≤ ]I〈i〉(M)

Proof. Straightforward. □

Theorem 11. LetMandM
�

be subsets of EI
j S(U,R,I,ψj).

:en, the following properties hold for each j.

(i) IR
−

j (U) � U

Table 4: Comparison between σIj -accuracy measures for j ∈ r, l, i, u, 〈r〉, 〈l〉, 〈i〉, 〈u〉{ }.

M⊆U σJr (M) σJl (M) σJi (M) σJu (M) σJ〈r〉(M) σJ
〈l〉(M) σJ〈i〉(M) σJ〈u〉(M)

w1{ } 0 0 1 0 0 0 0 0
w2{ } (1/3) (1/2) (1/2) (1/3) 0 (1/3) (1/3) 0
w3{ } 1 (1/3) 1 (1/3) 0 1 1 0
w4{ } 0 0 0 0 0 0 0 0
w1, w2{ } (2/3) (1/3) (2/3) (1/3) 0 (2/3) (2/3) 0
w1, w3{ } (1/2) (2/3) 1 (1/3) 0 (1/2) (1/2) 0
w1, w4{ } 0 0 (1/2) 0 0 0 0 0
w2, w3{ } (1/2) (1/2) (2/3) (1/2) (1/2) (1/2) (1/2) (1/2)
w2, w4{ } (2/3) (1/2) 1 (1/3) 0 (2/3) (2/3) 0
w3, w4{ } (1/2) (1/3) (1/2) (1/3) 0 (1/2) (1/2) 0
w1, w2, w3{ } (3/4) (3/4) (3/4) (3/4) (3/4) (3/4) (3/4) (3/4)
w1, w2, w4{ } 1 (1/3) 1 (1/3) 0 1 1 0
w1, w3, w4{ } (1/3) (2/3) (2/3) (1/3) 0 (1/3) (1/3) 0
w2, w3, w4{ } (3/4) (3/4) 1 (3/4) (3/4) (3/4) (3/4) (3/4)
U 1 1 1 1 1 1 1 1

Complexity 7



(ii) If M⊆M
�

, then IR
−

j (M)⊆IR
−

j (M
�

)

(iii) IR
−

j (M∩M
�

) � IR
−

j (M)∩IR
−

j (M
�

)

(iv) IR
−

j (M
c) � (IR

+

j (M))
c

(v) If Mc ∈ I, then IR
−

j (M) � U

(vi) IR
+

j (∅) � ∅
(vii) If M⊆M

�

, then IR
+

j (M)⊆IR
+

j (M
�

)

(viii) IR
+

j (M∪M
�

) � IR
+

j (M)∪IR
+

j (M
�

)

(ix) IR
+

j (M
c) � (IR

−
(M))c

(x) If M ∈ I, then IR
+

j (M) � ∅

Proof. We prove only (i), (ii), (iii), (iv), and (v), and the rest
of proof is similar.

(i) For each z ∈ U, we have Ej(z) − U � ∅∈ I; then,
IR

−

j (U) � U.

(ii) z ∈ IR−

j (M), then Ej(z) − M ∈ I. Since M⊆M
�

,
Ej(z) − M

�

∈ I, i.e., z ∈ IR−

j (M
�

). So,
IR

−

j (M)⊆IR
−

j (M
�

).

(iii) It follows from (ii) that IR
−

j

(M∩M
�

)⊆IR−

j (M)∩IR
−

j (M
�

). Conversely, let

z ∈ IR−

j (M)∩IR
−

j (M
�

). 'en, z ∈ IR−

j (M) and

z ∈ IR−

j (M
�

). 'erefore, Ej(z) − M ∈ I and

Ej(z) − M
�

∈ I. 'us, Ej(z) − (M∩M
�

) ∈ I.

Hence, z ∈ IR−

j (M∩M
�

), as required.

(iv) Since z ∈ IR−

j (M
c) iff Ej(z) − M

c ∈ I, iff
Ej(z)∩M ∈ I, iff z ∉ IR+

j (M), iff z ∈
(IR

+

j (M))
c. 'en, the result holds.

(v) Obvious

In view of (ii) and (vii) of 'eorem 11, the next corollary
is obvious. □

Corollary 1. Let M andM
�

be subsets of EI
j S(U,R,I,ψj).

:en, the following properties hold for each j.

(i) IR
−

j (M)∪IR
−

j (M
�

)⊆IR−

j (M∪M
�

)

(ii) IR
+

j (M∩M
�

)⊆IR+

j (M)∩IR
+

j (M
�

)

Example 3. In view of example 1, Table 5 offers
japproximations for each j.

According to Table 5, we construct Table 6 which
represents the ]

I
j -accuracy measure for every subsets

of U.
To elucidate that the converses of the items (ii), (v), (vii),

and (x) of 'eorem 11 and Corollary 1 are not always
credible, we display the next example.

Example 4. In view of Example 1 and Table 5, note the
following.

(i) For M � w3{ } and M
�

� w2, w4{ }, we have
IR

−

r (M) � w3{ } and IR
−

r (M
�

) � U. But, M⊈M
�

.

(ii) For M � w2, w4{ }, IR−

r (M) � U. But, M
c ∉ I.

(iii) For M � w1{ }, we find M
�

� w2{ }, we have
IR

+

u(M) � ∅ and IR
+

u(M
�

) � w1, w2, w4{ }. But,
M⊈M

�

.

(iv) For M � w3{ }, IR+

r (M) � ∅. But, M ∉ I.

(v) For M � w2{ } and M
�

� w4{ }, we have
IR

−

〈l〉(M) � w1, w3{ }, IR
−

〈l〉(M
�

) � w1, w3{ }, and
IR

−

〈l〉(S∪M
�

) � U. 'en, IR
−

〈l〉(M) ∪IR
−

〈l〉

(M
�

)≠IR−

〈l〉(S∪M
�

).

(vi) For M � w1, w3{ } and M
�

� w1, w4{ }, we have
IR

+

〈r〉(M) � U,
IR

+

〈r〉(M
�

) � U, and IR
+

〈r〉

(S∩M
�

) � ∅. 'en, IR
+

〈r〉(M)∩IR
+

〈r〉

(M
�

)≠IR+

〈r〉(S∩M
�

).

Note that some basic properties of rough sets with re-
spect to IR

−

j -lower and
IR

+

j -upper approximations may
evaporate. In what follows, we mention those missing
properties.

(i) IR
−

j (M)⊆M
(ii) IR

−

j (∅) � ∅
(iii) IR

−

j (
IR

−

j (M)) �
IR

−

j (M)

(iv) M⊆IR+

j (M)

(v) IR
+

j (U) � U

(vi) IR
+

j (
IR

+

j (M)) �
IR

+

j (M)

'e next example supports assertions of the above note.

Example 5. In view of Example 1 and Table 5, note the
following.

(i) If M � w1{ }, then IR
−

i (M) � w3{ }. Hence,
IR

−

i (M)⊈M.

(ii) IR
−

r (∅) � w3{ }≠∅.
(iii) If M � w2, w4{ }, then IR

−

u(M) � w2{ } and
IR

−

u(
IR

−

u(M)) � ∅. Hence, IR
−

u(
IR

−

u(M))≠
IR

−

u(M).

(iv) If M � w1{ }, then IR
+

l (M) � ∅. Hence,
M⊈IR+

l (M).

(v) IR
+

i (U) � w1, w2, w4{ }≠U.
(vi) If M � w2{ }, then IR

+

u(M) � w1, w2, w4{ } and
IR

+

j (
IR

+

j (M)) � U. Hence,
IR

+

j (
IR

+

j (M))≠
IR

+

j (M).

Lemma 3. Let I andJ be two ideals on (U,R,ψj) and
M⊆U. IfI⊆J, then the following statements hold for each j:

(1) IR
−

j (M)⊆RjJ
− (M)

(2) IR
+

j (M)⊇R
J

j (M)

(3) ]Ij (M)≤ ]
J
j (M)

Proof. Straightforward.
'e next theorem shows the relationships between the

approximations IR
−

j (M) and IR
+

j (M) of the current
approximations in Definition 6 andR−

j (M) andR+
j (M) of

Definition 6 for each j. □
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Theorem 12. Let (U,R,ψj,I) and M⊆U. :en, the fol-
lowing statements hold for each j:

(1) R−
j (M)⊆IR

−

j (M)

(2) IR
+

j (M)⊆R+
j (M)

(3) μj(M)≤ ]Ij (M)

Proof. Direct to prove.
To preserve some Pawalk’s properties which are loss in

the approximations given in Definition 12, we formulate
new approximations and accuracy measures in the
following. □

Definition 13. LetM be a subset of EI
j S(U,R,I,ψj). 'en,

the Rj◇-lower and R◇j -upper approximations and ]
I
j -ac-

curacy measure of a subset M are

(1) Rj◇(M) �
IR

−

j (M) ∩M
(2) R◇j (M) �

IR
+

j (M)∪M
(3) ]Ij◇(M) � (|Rj◇(M)|/|R

◇
j (M)|), |R

◇
j (M)|≠ 0.

Remark 3. It should be noted that the current approxi-
mations Rj◇(M) and R◇j (M) in Definition 13 have the
same properties of the current approximations IR

−

j (M)
andIR

+

j (M), which are stated in'eorem 11 and Corollary
1. Additionally, it satisfies the following properties:

(1) Rj◇(M)⊆M⊆R◇j (M)
(2) Rj◇(∅) � ∅, R◇j (U) � U.

5. Conclusion and Future Work

Rough set is a powerful mathematical to deal with uncer-
tainty. Approximation operators are the core concepts in
rough set content; they have topological properties similar to
all/some properties of the interior and closure operators.
Neighborhood systems are one of the followed methods to
study rough approximations using topological interior and
closure operators.

In this study, we have initiated different types of to-
pologies from ideals and Ej-neighborhoods induced from
any binary relations. We have applied these topologies to
study new kinds of approximations and accuracy measures.
'en, we have compared between them and their coun-
terparts induced directly from Ej-neighborhoods and ideals.
Also, we have illustrated the advantages of our approaches to
obtain higher accuracy measures than those proposed in
[18]. Some limitations of our approaches have been
investigated.

In the upcoming works, we will study new types of
topologies and approximations induced from other neigh-
borhoods and ideals. Also, we will investigate the concepts
and results presented, herein, in fuzzy and rough sets
contents.
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