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Abstract

Motivation: Small variant calling is an important component of many analyses, and, in many in-

stances, it is important to determine the set of variants which appear in multiple callsets. Variant

matching is complicated by variants that have multiple equivalent representations. Normalization

and decomposition algorithms have been proposed, but are not robust to different representation

of complex variants. Variant matching is also usually done to maximize the number of matches, as

opposed to other optimization criteria.

Results: We present the VarMatch algorithm for the variant matching problem. Our algorithm is

based on a theoretical result which allows us to partition the input into smaller subproblems with-

out sacrificing accuracy. VarMatch is robust to different representation of complex variants and is

particularly effective in low complexity regions or those dense in variants. VarMatch is able to de-

tect more matches than either the normalization or decomposition algorithms on tested datasets. It

also implements different optimization criteria, such as edit distance, that can improve robustness

to different variant representations. Finally, the VarMatch software provides summary statistics,

annotations and visualizations that are useful for understanding callers’ performance.

Availability and Implementation: VarMatch is freely available at: https://github.com/medve

devgroup/varmatch

Contact: chensun@cse.psu.edu or pashadag@cse.psu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In recent years, next-generation sequencing data has been used in

medical and genetic research to identify how genome mutations are

related to phenotypes of interest (1000 Genomes Project

Consortium et al., 2012). In most of the studies, small variant call-

ing, including the detection of single nucleotide variants (SNVs),

multiple nucleotide variants (several SNVs occuring next to each

other), or small indels (usually less than 30 bp), plays a significant

role. Small variant calling is a mature area, with several state-of-the-

art tools, such as FreeBayes (Garrison and Marth, 2012), GATK

(McKenna et al., 2010), SAMtools (Li et al., 2009), SNVer (Wei

et al., 2011), Platypus (Rimmer et al., 2014), VarScan (Koboldt

et al., 2009) and Isaac (Raczy et al., 2013). Detected variants are

represented using the VCF file format (Danecek et al., 2011).

An important starting point of many downstream analyses is to

compare two VCF files to each other, to find matching variants.

This is important for (1) measuring the similarity and population

structure of several genomes (1000 Genomes Project Consortium

et al., 2010), (2) checking that the new variants added to a database

do not already exist there (Assmus et al., 2013; Tan et al., 2015), (3)

generating a high-confidence variant set by taking the intersection of

the results of different variant callers (Zook et al., 2014) and (4)

evaluating the relative accuracy of different tools (Baes et al., 2014)

and understanding the source of their errors (Li, 2014). There have
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been several studies comparing datasets on the same genome gener-

ated by different aligners and variant callers (Baes et al., 2014;

Cheng et al., 2014; Cornish and Guda, 2015; Hwang et al., 2015;

Highnam et al., 2015; Li, 2014), and there is various software avail-

able to identify matching variants in two VCF files [vcftools,

rtgtools, bcftools, vt, bcbio, SMaSH (Talwalkar et al.,

2014)].

Unfortunately, identifying matching variants in two VCF files is

not as simple as may first seem, because applying two different VCF

entries to a genome may result in the exact same donor sequence (they

are equivalent). A VCF entry gives an allele sequence, its position on

the reference, one or more alternate allele sequences of the donor, and,

possibly, the donor genotype. The straightforward strict matching al-

gorithm matches VCF entries which are identical, i.e. two entries that

have the same position and the same reference and alternate alleles.

However, this algorithm fails to match equivalent entries which are

not identical. For example, Figure 1a illustrates how the same 2bp de-

letion can be represented by four different VCF entries.

One way to address this problem is normalization. Tan et al.

(2015) showed that there is a canonical way to represent VCF

entries such that two entries are equivalent if and only if their canon-

ical representations are identical. The normalization algorithm is to

first normalize every entry and then run the strict matching algo-

rithm. Normalization guarantees to identify equivalent pairs of VCF

entries. However, a single variant can be represented by different

non-singleton sets of VCF entries. Figure 1b illustrates three possible

ways to represent the same variant. Each individual entry is normal-

ized, but the three VCF entry sets are not identical even though they

are equivalent. These entries will not be matched by the normaliza-

tion algorithm. Such variants are called complex.

The vcflib package provides a way to partially address this

problem through the decomposition of complex variants. It uses align-

ment of alternate allele to reference allele to break-up, or decompose,

a complex VCF entry into multiple shorter ones. The decomposition

algorithm proposed in (Li, 2014; Zook et al., 2014) is to first decom-

pose all entries, then normalize them, and then run the strict matching

algorithm. Decomposition can help match some VCF entry sets, but it

still does not work in some cases (see example in Figure 1b)

Moreover, the decomposition varies based on the alignment, which is

sometimes not unique or is not provided (e.g. in Platypus).

Decomposition also allows fractional matches of a variant, which is

difficult to interpret biologically. For example, a complex variant can

be decomposed into three smaller variants of which only one is

matched.

An alternate approach, which we also take in this article, avoids

strict matching altogether. To check if two sets of entries are equiva-

lent, we just apply them to the reference and check if the resulting

donor sequence is the same. Matching two variant datasets can then

be formulated as finding two equivalent subsets, as large as possible.

While such an approach is more computationally taxing, it avoids

some of the problems with the normalization or decomposition al-

gorithms. This approach is taken in RTG Tools, described in a pre-

print of Cleary et al. (2015). Their tool implements an exponential

time exact algorithm, but uses clever bounding strategies to prune

the search space and make the run-time feasible. To avoid blow-ups

in run-time, it employs a cutoff strategy when the search space is too

large to skip the matching of some variants. However, RTG Tools

suffers from large RAM usage and can still fail to match variants in

very dense regions, when the cut-off is activated.

Other related work includes Krawitz et al. (2010) and Assmus

et al. (2013), which gives methods to check if two indels are equiva-

lent, however, their analysis does not extend to matching non-

singleton entry sets. M€akinen and Rahkola (2013) and M€akinen and

Valenzuela (2014) describe a global approach for comparing two

variant sets: create two donor genomes by inserting the respective

variant sets, and measure the edit distance between them. Their ap-

proach is notable because it uses edit distance as an optimization cri-

teria, as opposed to the number of matched variants; however, it has

not been applied to mammalian sized genomes. Wittler et al. (2015)

also studied the problem of matching variants that are large dele-

tions (�20 bp), which is complementary to our study of small vari-

ants of different types.

In this article, we present a divide-and-conquer algorithm for the

variant matching problem. It is based on a theoretical result which

shows how to partition the set of variants into small clusters which

can be matched independently and in parallel. The partitioning step

is linear in the number of variants, and, while the run-time is still ex-

ponential within each cluster, the size of each cluster is small in

practice. VarMatch is more robust to different representation of

complex variants and is able to detect more matches then the nor-

malization or decomposition algorithms. It is also faster and uses an

order-of-magnitude less memory than RTG Tools. We show that it

is particularly useful in low complexity regions or those dense in

variants.

Our theoretical result also allow VarMatch to seamlessly sup-

port different optimization criteria. VarMatch can maximize the

number of variants matched, but can also maximize the sum of

matched edit distances, which can increase robustness to different

variant representations. Additional scoring schemes can also be eas-

ily integrated as long as there is a brute force algorithm for comput-

ing them—since partitioning divides the problem into small

instances, the asymptotic running times of computing scores are

rarely a factor. VarMatch can also support matching of VCF files

that include genotype information to one that does not distinguish

between hetero- and homozygous calls. Finally, the VarMatch soft-

ware provides summary statistics, annotations, and visualizations

that are useful for understanding callers’ performance.

2 Definitions

Let x be a sequence of elements (possibly a string). We use x[i] or xi
to denote the element at position i, for 0 � i < jxj, and we use

Fig. 1. Examples of how the same variants can be represented by different

VCF entries. VCF entries are represented by boxes but are grouped together

into entry sets A–G. (a) Illustrates a variant which is a deletion of an AT from a

short tandem repeat. VCF entry sets A–D are all singletons which are equiva-

lent and represent this deletion. (b) Illustrates a complex variant which re-

places the reference sequence GCCG with CCGA in the donor. This variant is

represented by three equivalent but non-identical VCF entry sets (E–G). E is a

singleton, F is composed of three entries, and G is composed of two entries. F

is the normalized decomposition of E, and G is already normalized and can-

not be decomposed further. The normalization algorithm would not detect

any match, while the decomposition algorithm would not match G to E or F.

1302 C.Sun and P.Medvedev

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
io

in
fo

rm
a
tic

s
/a

rtic
le

/3
3
/9

/1
3
0
1
/2

7
3
6
3
6
5
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2

Deleted Text: Baes <italic>et<?A3B2 show $146#?>al.</italic>, 2014; <xref ref-type=
Deleted Text:  <xref ref-type=
Deleted Text: (
Deleted Text: )).
Deleted Text: )
Deleted Text: )
Deleted Text: )
Deleted Text: paper
Deleted Text: paper


x[i,j] to denote the sub-sequence xi; . . . xj, for 0 � i � j < jxj. For

two sequences x and y, we use the notation x � y or just xy to be the

sequence obtained by their concatenation. A tandem repeat is a

string ðx1x2Þ
mx1, where x1 and x2 are strings, x2 is non-empty, and

m>1 is an integer. We refer to x1x2 as the repeat unit.

Let R be a string, which we call the reference genome. A variant

is a triple ðp; r; aÞ, where p is an index into R, r is a string and a is a

pair of strings a0 and a1, with r, a0, a1 possibly empty. We refer to r

as the reference allele and to a as the alternate alleles, and require

that r ¼ R½p;pþ jrj � 1�.

We exclude the possibility that both alternate alleles are the

same as the reference allele, as this indicates no variation. However,

it is possible that one of the alternate alleles is the same as the refer-

ence allele. It is also possible that neither of the alternate alleles are

the same as the reference allele, meaning that the reference allele is

not present in the donor. We refer to a variant with a0¼ a1 as homo-

zygous and as heterozygous otherwise—note that this is irrespective

of the reference allele. In this paper, we assume the genome is dip-

loid, but note that a haploid genome can be represented in our

framework by setting a1¼ a0 for all variants.

We say that a variant affects the substring R½p;pþ jrj � 1� of the

reference genome. A sequence of variants V affects a given region of

the reference if V contains at least one variant that affects that re-

gion. Let v ¼ ðp; r; aÞ and v0 ¼ ðp0; r0; a0Þ be two variants and assume

without loss of generality that p � p0. We say that v and v0 are inde-

pendent if the intervals ½p; pþ jrjÞ and ½p0; p0 þ jr0jÞ do not overlap.

In other words, v and v0 affect different regions of the reference

genome.

We can apply a variant v ¼ ðp; r; aÞ to obtain two donor strings,

as follows. There are three possible ways to incorporate a variant

into the donor: it can be excluded or it can be included using one of

two different ordering of the alleles. Let c 2 f�1; 0;1g be a selection

value and let j 2 f0;1g. We define the selection function s(v,c,j) as

sðv;0; jÞ ¼ r, sðv;1; jÞ ¼ aj, and sðv;�1; jÞ ¼ a1�j. Applying v using c

then gives two strings d0 and d1, where dj is obtained by replacing

R½p;pþ jrj � 1� with s(v,c,j).

Let V be a sequence of variants, and let UV ¼ f0;1;�1g
jVj be a

selection sequence. A selection sequence UV is used to represent the

selection for each variant in V. Suppose that for all i 6¼ k, if

jUV ½i�j ¼ jUV ½k�j ¼ 1, then V½i� and V½k� are independent. Then, we

can apply the sequence of variants V using UV as follows. Let

DðR;V;UV ; jÞ represent the string obtained by applying all the vari-

ants simultaneously, where the ith variant is applied using the selec-

tion function sðV½i�;UV ½i�; jÞ. Because of the independence condition,

the final donor sequence obtained is the same regardless of what

order the variants are applied in. Applying V using UV then gives us

two strings:DðR;V;UV ;0Þ andDðR;V;UV ; 1Þ.

Consider two sequences of variants, V and W, and their corres-

ponding selection sequences UV ;UW . We say that ðV;UVÞ and

ðW;UWÞ are genotype equivalent if DðR;V;UV ; jÞ ¼ DðR;W;UW ; jÞ

for all j 2 f0; 1g. On the other hand, some variant callers do not out-

put genotype information. In these cases, a VCF entry indicates that

the donor must contain at least one of the alternate alleles. For han-

dling these types of datasets, we introduce the notion of variant

equivalence. Variant equivalence is similar to genotype equivalence,

but two variants are considered matched if they share at least one al-

ternate allele. Formally, ðV;UVÞ and ðW;UWÞ are variant equivalent

ifDðR;V;UV ; 0Þ ¼ DðR;W;UW ; 0Þ.

Given a variant v ¼ ðp; r; aÞ and a selection value c, the score of v

in the unit cost model is jcj. In the edit distance cost model, its score

is jcjðEðr; a0Þ þ Eðr; a1ÞÞ, where E(�) is the edit distance function. For

a variant sequence and a selection sequence, the score is the sum of

the scores for each variant. Suppose we have two variant sequences

V, W and their selection sequences UV ;UW . Under the baseline scor-

ing scheme, their score is the score of W, while in the total scoring

scheme, their score is the score of V plus the score of W. Note that

we can compute the score even if ðV;UVÞ and ðW;UWÞ are not

equivalent.

In sum, we can define four different scoring functions

FðV;W;UV ;UWÞ. These correspond to a choice of the unit vs. edit

distance cost model and the baseline vs. total scoring schemes. The

baseline scoring scheme is appropriate when comparing multiple

datasets against one ground truth, while the total scoring scheme is

more appropriate for a two-way comparison of different tools when

a ground truth is not available. The unit distance cost model is trad-

itionally used, but, unlike the edit distance cost model, is not robust

to the decomposition of complex variants. For example, a single

complex variant counts the same as an equivalent entry set of three

SNVs (Fig. 1b). We believe that matching using both models can

make any resulting conclusions more robust to diversity in variant

representation and/or highlight important differences.

Given a reference genome R, two variant sequences V and W, a

type of equivalence (either genotype or variant), and a scoring func-

tion F, the variant matching problem VARMATCH (R,V,W) is to find

two corresponding selection sequences ðUV ;UWÞ such that ðV;UVÞ

and ðW;UWÞ are equivalent and have the highest score amongst all

equivalent pairs. Intuitively, in the unit cost model, maximizing the

score results in trying to match as many variants as possible. In the

edit distance cost model, maximizing the score results in trying to

match as many nucleotide differences with the reference genome as

possible.

3 Methods

In this section, we develop an algorithm for the VARMATCH problem.

First, we prove Theorem 1, which allows a divide-and-conquer strat-

egy to be applied (Section 3.1). Then, we describe our algorithm to

partition a problem into smaller sub-problems using the

LinearClustering algorithm (Section3.2). Finally, we solve each sub-

problem using an exact branch and bound algorithm, based on

Cleary et al. (2015). This is done over multiple threads, with each

thread solving its own subproblem. The computational complexity

of VARMATCH remains open.

3.1 Partitioning theorem

In this section, we derive our main theorem which forms the basis of

the VarMatch algorithm. First, we prove the following two lemmas

about strings.

LEMMA 1. Given non-empty strings a, b, and c, if ab¼bc, then

d¼ abc is a tandem repeat with repeat unit a.

PROOF. We prove by induction on the length of d. The base case of

jdj ¼3 is trivial. In the general case, consider three possibilities. In

the case that jbj ¼ jaj, then a¼b¼ c and d¼ a3 is a tandem repeat

with a is a repeat unit.

Now consider the case that jbj< jaj. Then, b is a prefix of a, and

we can write a¼bb0, for some non-empty string b0. Then,

bc ¼ ab ¼ bb0b, and c ¼ b0b. Then d ¼ abc ¼ bb0bb0b is a tandem

repeat with repeat unit bb0 ¼ a.

Now consider the case that jbj> jaj. Since ab¼bc, then jaj ¼ jcj.

Moreover, b’s prefix of length jbj � jcj is equal to its suffix of length

jbj � jaj. Denote this string as b1. We can then write b¼ ab1 and
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b ¼ b1c. We now apply the Lemma inductively to the equality of a

b1 ¼ b1c and get that ab1c is a tandem repeat with repeat unit a.

Then, d ¼ abc ¼ aab1c is also a tandem repeat with repeat unit a. h

LEMMA 2. Given strings s1 ¼ x1yz1 and s2 ¼ x2yz2, if x1 6¼ x2 or

z1 6¼ z2, y is not a tandem repeat and jyj > 2� minðabsðjx1j � jx2jÞ;

absðjz1j � jz2jÞÞ, then s1 6¼ s2.

PROOF. First, observe that if either jx1j ¼ jx2j or jz1j ¼ jz2j, then it

is trivial to show that s1 6¼ s2. Therefore, we can assume that

jx1j 6¼ jx2j and jz1j 6¼ jz2j. Also assume, without loss of generality,

that jx1j > jx2j.

Assume for the sake of contradiction that s1¼ s2. Then, since

js1j ¼ js2j, we have that jx1j � jx2j ¼ jz2j � jz1j. Therefore, jyj > 2�

minðabsðjx1j � jx2jÞ; absðjz1j � jz2jÞÞ ¼ 2ðjx1j � jx2jÞ. We can then

divide y into three non-empty parts y ¼ y1y2y3, such that jy1j ¼

jy3j ¼ jx1j � jx2j. Because s1¼ s2, we have that x1y1y2y3z1 ¼

x2y1y2y3z2. Using what we know about the lengths of these strings,

we have that y1y2 ¼ s1½jx1j; js1j � jz1j � jy3j � 1�� ¼ s1½jx1j; js1j�

jz2j � 1�� ¼ s2½jx1j; js2j � jz2j � 1� � ¼ s2½jx2j þ jy1j; js2j � jz2j � 1�� ¼

y2y3. Applying Lemma 1 to the equality y1y2 ¼ y2y3, we get

that y ¼ y1y2y3 must be a tandem repeat, contradicting the conditions

on y. h

Let X and Y be two variant sequences. We define themax change

in length of X and Y, denoted by MCLðX;YÞ, as

max
UX ;UY ;dX;dY2f0;1g

absðjDðR;X;UX; dXÞj � jDðR;Y;UY ; dYÞjÞ

Intuitively, MCLðX;YÞ is the maximum difference in the size of

the donor sequences that can be obtained for any selection sequences

over X and Y.

THEOREM 1. Consider an interval of the reference, ½b; e�, for

0 � b � e < jRj. Consider four variant sequences, Vi;j, for

i 2 f0; 1g and j 2 f0; 1g, satisfying

1. V0;0 and V1;0 only affect R0 ¼ R½0; b� 1�,

2. V0;1 and V1;1 only affect R1 ¼ R½eþ 1; jRj � 1�.

3. R½b; e� is not a tandem repeat

4. jR½b; e�j > 2 �minjðMCLðV0;j;V1;jÞÞ

For all j, let ðU0;j;U1;jÞ be an optimal solution for

VARMATCHðRj;V0;j;V1;jÞ. Let Vi ¼ Vi;0 � Vi;1 and Ui ¼ Ui;0 � Ui;1, for

all i. Then, ðU0;U1Þ is an optimal solution for VARMATCHðR;V0;V1Þ.

PROOF. Let ðU�0;U
�
1Þ be an optimal solution for VARMATCH

ðR;V0;V1Þ, and suppose for the sake of contradition that it is better

than ðU0;U1Þ.

LetU�i;0¼U
�
i ½0;jVi;0j�1� andU

�
i;1¼U

�
i ½jVi;0j;jU

�
i j�1�. For the score

functions we consider in this paper,
P

j2f0;1gFðV0;j;V1;j;U
�
0;j;U

�
1;jÞ¼

FðV0;V1;U
�
0;U

�
1Þ> FðV0;V1;U0;U1Þ¼

P
j2f0;1gFðV0;j;V1;j;U0;j;U1;jÞ.

Then, there must exist a j such that FðV0;j;V1;j;U
�
0;j;U

�
1;jÞ>

FðV0;j;V1;j;U0;j;U1;jÞ. We can assume without loss of generality that

j¼0.

Intuitively, this means that the optimal solution to VARMATCH

ðR;V0;V1Þ, projected onto the “left” variants (i.e. V0;0 and V1;0Þ,

has a higher score then the optimal solutions of the “left” prob-

lem alone, i.e. VARMATCH ðR0;V0;0;V1;0Þ. This can only be

possible because this projection is not a feasible solution to the

“left” problem, i.e. the donor sequences are not identical.

Thus, there exist d 2 f0;1g such that DðR0;V0;0;U
�
0;0; dÞ 6¼

DðR0;V1;0;U
�
1;0; dÞ.

Let ti;j ¼ DðRj;Vi;j;U
�
i;j; dÞ and ti ¼ DðR;Vi;U

�
i ; dÞ, for all i and j,

We will apply Lemma 2 to the strings t1 and t2. To see that the con-

ditions of Lemma 2 apply, observe that

• 8i; ti ¼ ti;0 � R½b; e� � ti;1
• t0;0 6¼ t1;0
• R½b; e� is not a tandem repeat.
• jR½b; e�j > 2 �minjðMCLðV0;j;V1;jÞÞ � 2 �minjabsðjt0;jj � jt1;jjÞ

Then, 2 implies that t0 6¼ t1. However, this contradicts that ðU�0;U
�
1Þ

is a solution for VARMATCH ðR;V0;V1Þ. h

The following counterexample shows that Theorem 1 is not true

if R½b; e� is a tandem repeat. Let R ¼ CCATATATGC be the refer-

ence sequence, let b¼2 and e¼7, and let

• V0;0 ¼ ð0;CC; �Þ and V1;0 ¼ ð0;CC;ATÞ
• V0;1 ¼ ð7;GC;ATÞ and V1;1 ¼ ð7;GC; �Þ

Here, � denotes the empty string. Observe that all conditions of the

Theorem are satisfied, except that R½b; e� ¼ ATATAT is a tandem re-

peat. In particular, jR½b; e�j ¼ 6 > 2 �minjðMCLðV0;j;V1;jÞÞ ¼ 4. The

optimal solutions for the two corresponding VARMATCH subproblems

do not select any variants, and the Theorem implies that the optimal

solution to VARMATCH ðR;V0;V1Þ is also empty. However, the opti-

mal solution selects all variants since fV0;0;V0;1g and fV1;0;V1;1g are

equivalent.

3.2 Clustering algorithm

Theorem 1 can be applied to the VARMATCH problem to divide the

input into subproblems that can be solved separately. In particular,

we can identify separator regions—long-enough regions of the refer-

ence that are not affected by any variants and are not tandem re-

peats. We can then divide our variants into two clusters—those on

the left and on the right of the separator region. Each cluster can be

solved independently, and the solutions can then be trivially

combined.

Many clustering strategies are possible, based on how these sep-

arator regions are identified. We found a simple greedy strategy

works well in practice. We make a linear scan through all the vari-

ants, and for each new variant, we check if the reference region be-

tween it and the previous variant is a separator. If it is, then we start

a new cluster and add the current variant to it. If not, we simply add

the current variant to the current cluster. The pseudocode for the al-

gorithm, called LinearClustering, is provided below.

In order to check if a region is long-enough to be a separator, we

check if its length is > 2c, where c ¼MCLðV 00;V
0
1Þ and V 00 and V 01

are the variants in the current cluster. This ignores the MCL of the

variants to the right of the separator, which are not yet known due

to the greedy nature of our algorithm. In terms of Theorem 1, in-

stead of finding minjMCLðV0;j;V1;jÞ, our algorithm just calculates

MCLðV0;0;V1;0Þ. Theorem 1 still applies, since jR½b; e�j > 2�

MCLðV0;0;V1;0Þ � minjMCLðV0;j;V1;jÞ.

To maintain the current value of c, our algorithm maintains four

counters. The running total of the maximum possible decrease (re-

spectively, increase) of the reference length for the variants V 00 and

V 01 is maintained by a0 and a1 (respectively, b0 and b1). Then, we

can compute c ¼ maxðb0 þ a1; b1 þ a0Þ. To check if a potential sep-

arator is tandem repeat, we use a simple algorithm described in

Fungtammasan et al. (2015).

Finally, we solve each subproblem using a variation of the exact

branch and bound algorithm of Cleary et al. (2015). Due to its high
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similarity, we do not describe it here, but, for the sake of complete-

ness and clarity, we provide its details in the Supplementary

Information. The algorithm’s running time and memory usage is

Xð3jVjþjWjÞ. However, the algorithm is fast in practice, since it is

applied only on small subproblems generated by the

LinearClustering algorithm and it employs pruning strategies.

4 Results

We implemented the VarMatch Toolkit, which takes multiple

query VCF files and matches them separately to one baseline VCF

file. The baseline could be a ground truth set, or, if one is unavail-

able, any of the callsets. Based on the various scoring functions

and equivalence definitions given in Section 2, our software runs

in different modes. The cost model of VarMatch can be either unit

(denoted by U) or edit distance (E). The equivalence mode can be

either genotype (G) or variant (V). Also, the scoring scheme can be

either baseline (B), query (Q), or the total (T). The query scoring

scheme is applicable when there is only one query file and seeks to

maximize the score of the query. It is like the baseline scoring

scheme defined in Section 2 but with the roles of query and base-

line reversed. Considering all combinations of above, there are 12

possible modes, each denoted by a three letter abbreviation (e.g.

UGT for unit cost, genotype equivalence, and total scoring

scheme).

For each query, VarMatch automatically matches it to the base-

line, simultaneously using all the modes. VarMatch then outputs

files containing annotations of matched variants and recall and pre-

cision statistics and plots. It also identifies and outputs visualizations

of variants that are matched in one mode but not in another (as in

Supplementary Figure S2). VarMatch can also create Precision-

Recall curves by varying the minimum quality cutoff for the VCF

file (not shown).

4.1 Datasets

To evaluate the performance of VarMatch, we selected five state-

of-the-art variant calling methods: Platypus(pt), GATK

HaplotypeCaller(hc), GATK UnifiedGenotyper(ug), Freebayes(fb)

and SAMtools(st). The algorithms of these tools vary, resulting

in potentially different representations of variants. For example,

pt performs local assembly, pt/hc/ug perform local realignment,

and pt/fb phase haplotypes and thus tend to merge variants into

longer complex variants.

For evaluation, we use the variant call sets provided by Li

(2014). The CHM1 dataset comes from 65x Illumina sequencing of

the haploid CHM1hTERT cell line, mapped to GRCh37 using bow-

tie2, and small variants called separately by fb/hc. The CHM1 data-

set has less variants, due to the haploid nature of the CHM1hTERT

cell line. The NA12878 dataset comes from 55x Illumina sequencing

of the NA12878 diploid cell line, mapped to GRCh37 using bow-

tie2, and small variants called separately by fb/ug/pt/st. It also in-

cludes Freebayes run on mappings generated by BWA-MEM, which

we will refer to as bwa-fb. Samtools was not run in genotype mode,

and only the presence of alternate alleles, and not the corresponding

genotype, was reported.

4.2 Evaluating VarMatch’s accuracy and resources

We compared VarMatch against the normalization algorithm

(running ’normalize’ function of vt(version v0.5) (Tan et al.,

2015) followed by strict matching, the decomposition algorithm

(running ’vcfallelicprimitives’ function of vcflib, followed by nor-

malization algorithm and strict matching) and RTG Tools

(Cleary et al., 2015) (version 3.6.2, running ’vcfeval’ function

with paramaters ’—all-records’ and ’—ref-overlap’). The decom-

position algorithm changes the number of variants in a VCF file

and thus poses a challenge for counting the number of matches.

In this case, an original query entry (the baseline case is symmet-

ric) is said to be partially matched if at least one of its decom-

posed child variants is matched but either (1) one of its

decomposed children is not matched, or (2) one of its decom-

posed children matches a baseline decomposed child which has a

decomposed non-matched sibling. Partial matches do not reflect

true matches and thus are not counted. All experiments were

run on an Intel Xeon CPU with 512GB of RAM and using 8

cores (at 2.67GHz). VarMatch and RTG Tools are multi-

threaded and were allowed to use all threads, while vt and vcflib

are single threaded. VarMatch was run in UGT mode unless

otherwise stated.

Tables 1 and 2 show the exact matching results of comparing

CHM1 fb to CHM1 hc datasets, and the NA12878 fb and ug data-

sets. Note that since we only consider exact matches, the algorithm

that can find the highest number of matches is the best. The variants

matched by the decomposition algorithm were always a subset of

the variants matched by RTG Tools, which were in turn always a

subset of the variants matched by VarMatch. RTG Tools and

VarMatch match the same set of variants in Table 1, but in Table 2,

RTG Tools reported skipping 23 genome regions because it reached

the search space upper bound, discarding all the variants in these re-

gions. As a result, VarMatch matches more entries then RTG Tools.

Though the number of these variants is small, they are located in re-

gions dense with variants which might be of particular interests to

researchers. Both RTG Tools and VarMatch match more entries

than the normalization or decomposition algorithms, but VarMatch

uses less running time and an order of magnitude less memory than

RTG Tools.

Algorithm 1. LinearClustering

Input: Variant sequences V0, V1, reference sequence R

Output: A partitioning of the variants into clusters.

1: a0; a1;b0; b1  0 " accumulated MCL counters

2: c 0 " cluster id

3: b; e 0 " positions in R

4: for all variants v 2 V0 [ V1, in increasing order of v:p do

5: if v is not the first variant considered then

6: e v:p� 1

7: if b< e then

8: c maxðb0 þ a1;b1 þ a0Þ " set MCL

9: if e� bþ 1 > 2 � c and R½b; e� is not a tandem

repeat then

10: c cþ 1 " separate cluster

11: b0;b1; a0; a1  0 " Reset MCL counters

12: end if

13: end if

14: end if

15: b maxðb; v:pþ jv:rjÞ

16: Assign v to cluster c

17: Let j 2 f0;1g such that v 2 Vj

18: aj  aj þmaxð0; jv:rj � jv:a0j; jv:rj � jv:a1jÞ

19: bj  bj þmaxð0; jv:a0j � jv:rj; jv:a1j � jv:rjÞ

20: end for
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We also evaluated the effectiveness of our clustering algorithm.

Figure 2 shows the distribution of the sizes of each subproblem.

VarMatch partitions 6 438 208 initial small variants into 3 272 206

subproblems, 99.9% of which have less than nine variants in them.

4.3 Comparison of different modes

To test VarMatch’s ability to match between datasets with and

without genotype information, we use UVT mode to compare the

NA12878 fb and st datasets against the GIAB benchmark (version

2.18) (Zook et al., 2014). We find that fb has a precision of 49.85%

and a recall of 99.64%, while st has a precision of 63.90% and a re-

call of 98.96%. RTG Tools could not process the st dataset due to

lack of genotype calls.

We then evaluate the difference in results when different scoring

schemes and equivalence modes are used. Table 3 illustrates the re-

sults on the NA12878 fb and ug datasets. Observe that on this data-

set, ug outperforms fb in most modes, but there is a discrepancy

when variant equivalence is used—the edit distance score favors fb

while the number of variants matched favors ug. This could indicate

that, in this dataset, fb is better at detecting the presence of variants

then it is at genotyping them. Observe also that fb has more matches

when the scoring scheme maximizes the number of fb matches (e.g.

UGB) then when the total number of matches in both fb and ug are

maximized (e.g. UGT). VarMatch flags variants that are matched in

one mode but not in the other, making it possible for a researcher to

further investigate the source of such discrepancies. These may un-

cover bugs, quirks, or features of a variant caller. Supplementary

Figures S1 and S2 show examples, simplified from real data, that il-

lustrate why the number of matched variants varies under different

criteria. We recommend users to run VarMatch simultaneously in

all modes (the default option), and using the graphs, tables and visu-

alizations provided in the output to detect and understand any

anomalies in the datasets.

Finally, we evaluated the robustness of matching results to the score

model being used. We repeated several unit cost model experiments

from the paper in the edit distance cost model (Supplementary Table

S1). We found that there was little difference in the results.

4.4 Matching variants in hard regions

To illustrate the power of VarMatch to detect matches, we focus on

genomic regions where variants are particularly hard to match.

We downloaded co-ordinates of low complexity regions (Li,

2014), covering about 2% of the autosomal genome. Alignment and

variant calling is particularly challenging in these regions, often

leading to different representations, and we evaluated how

VarMatch performs there. Table 4 shows the comparison of

NA12878 ug, pt, and bwa-fb datasets, restricted to variants in the

low complexity regions. Because no ground truth is available in

these regions, we arbitrarily used ug as a baseline. The goal is to

identify all the high-confidence variants, i.e. those that occur in all

three datasets. VarMatch is able to detect 14% more high-

confidence variants than the normalization algorithm, and 4.8%

more than the decomposition algorithm, and 576 more (.16%) than

RTG Tools. RTG Tools skipped some genome regions because of its

search space upper bound and was also unable to process some of

the genotype information in pt dataset.

A recent evaluation study of Highnam et al. (2015) compared the

results of different variant callers and aligners against the GIAB bench-

mark (Zook et al., 2014), However, they excluded dense regions—any

10 bp regions that contain an indel and another variant in the

Table 2. Comparison of VarMatch to NA12878 fb and ug

Method # Matches RAM

(Gb)

Real

Time(s)

CPU

Time(s)

fb ug

norm 4 092 161 4 092 161 0.004 858 849

decomp þ92 592 þ214 501 0.004 3384 3373

RTG þ104 909 þ229 836 73 732 1623

VarMatch þ104 977 þ229 922 7 541 1437

Table 1. Comparison of VarMatch to CHM1 fb and hc datasets

Method # Matches RAM

(Gb)

Real

time(s)

CPU

time(s)

fb hc

norm 2 778 372 2 778 372 0.004 506 499

decomp þ58 470 þ122 676 0.004 1686 1678

RTG þ65 024 þ134 269 48 447 997

VarMatch þ65 024 þ134 269 5 342 867

Numbers of matches are shown as offsets to the baseline numbers of the

normalization algorithm. We measure both the real running time and the total

number of CPU-seconds that the process spent. Normalization and decompos-

ition are single threaded, so the real time matches closely the CPU time.

Fig. 2. Distribution of number of variants in subproblems for experiment in

Table 1.

Table 3. Number of matched variants and the edit distance score

from the NA12878 fb and ug datasets, under different modes of

VarMatch

Mode # Matched entries Edit distance score

fb ug fb ug

UGT 4 197 138 4 322 083 5 184 864 5 169 151

UGB þ8 �32 þ31 �12

UGQ �21 þ6 �115 �36

EGT þ8 �15 þ35 þ15

EGB þ8 �45 þ43 �22

EGQ �6 �9 þ15 þ18

UVT 4 266 505 4 411 621 7 042 027 7 046 191

UVB þ33 �913 �942 �1646

UVQ �84 þ15 �166 �30

EVT �8 �775 þ85 248 þ85 280

EVB �4 �998 þ85 382 þ84 366

EVQ �70 �740 þ84 844 þ85 346

Baseline is arbitrarily chosen to be fb, and the query to be ug. The top half

shows results in genotype equivalence modes and the bottom half in variant

equivalence modes. Numbers are given as offsets to UGT in top half and to

UVT in bottom half.
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benchmark—due to the difficulty ofmatching variants in those regions.

However, the accurate detection of variants in such dense regions is par-

ticularly important in studying the mechanisms that give rise to vari-

ation. For example, the presence of a cluster of small events near

structural variation breakpoints can help differentiate microhomology-

mediated break-induced replication from non-homologous end joining

(Hastings et al., 2009;M€akinen andRahkola, 2013).Meanwhile, some

variants in dense regions are disease related, e.g. 51 variants from dense

regions are in theHLA region.

In Table 5, we measured the accuracy of fb and pt in detecting

specifically the variants in dense regions. On the whole benchmark,

fb has higher recall than pt, but pt has higher recall in dense regions,

using VarMatch (Table 5) and RTG Tools (Supplementary Table

S2). The use of VarMatch or RTG Tools can therefore allow studies

such as Highnam et al. (2015) to measure accuracy in these import-

ant regions.

5 Discussion

In this paper, we presented VarMatch, an open-source parallel tool

for matching equivalent genetic variants. VarMatch is robust to dif-

ferent representations of complex variants and supports flexible

scoring schemes. We demonstrated that it can detect more matches

than the normalization algorithm and is faster and uses an order-of-

magnitude less memory than RTG Tools. It is important to note

that, for evaluating a variant caller, VarMatch should be used in

conjunction with other validations (e.g. longer haplotypes are not

reflected in a higher match score but are a desirable feature).

There are efforts underway to represent the reference as a graph

instead of as a string, led by the GA4GH coaliation. This would af-

fect variant matching algorithms, which would need to adopt to

new reference formats; however, such formats are not yet stabilized.

For the time being, most studies continue to use a string as a refer-

ence and require accurate variant matching tools.

One weakness of VarMatch is its worst-case exponential running

time. There are theoretical cases when the run-time would become

infeasible, when there is large number of similar variants within a

long tandem repeat region (e.g. 100 SNVs within a 500bp poly-A

region). In such a case, our clustering algorithm would fail to divide

the input and the branch and bound algorithm would also fail to

prune the search space. We did not observe such extreme conditions

in our experiments, however, to handle this contingency, we moni-

tor our search space and when it reaches a fixed upper bound, we

apply the strict matching algorithm to the cluster. For the same rea-

son, VarMatch is limited in processing population-scale call sets like

dbSNP, where variants are densely packed and our clusters become

large. In such situations, the decomposition algorithm can be used.

Finally, the power of Theorem 1 is not fully explored in our lin-

ear clustering algorithm. For instance, it might be possible that while

the region bounded by two variants is not a separator, a smaller

sub-region is. Additionally, we only calculate MCLðV0;0;V1;0Þ, but

computing minjMCLðV0;j;V1;jÞ may detect new separators. Our cur-

rent linear clustering algorithm is sufficient for our experiments, but

a more powerful clustering algorithm is also theoretically possible.
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