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Abstract: Mutations in mitochondrial aminoacyl-tRNA synthetases (mtARSs) have been reported
in patients with mitochondriopathies: most commonly encephalopathy, but also cardiomyopathy.
Through a GWAS, we showed possible associations between mitochondrial valyl-tRNA synthetase
(VARS2) dysregulations and non-ischemic cardiomyopathy. We aimed to investigate the possible
consequences of VARS2 depletion in zebrafish and cultured HEK293A cells. Transient VARS2 loss-of-
function was induced in zebrafish embryos using Morpholinos. The enzymatic activity of VARS2
was measured in VARS2-depleted cells via northern blot. Heterozygous VARS2 knockout was
established in HEK293A cells using CRISPR/Cas9 technology. BN-PAGE and SDS-PAGE were used
to investigate electron transport chain (ETC) complexes, and the oxygen consumption rate and
extracellular acidification rate were measured using a Seahorse XFe96 Analyzer. The activation of
the integrated stress response (ISR) and possible disruptions in mitochondrial fatty acid oxidation
(FAO) were explored using RT-qPCR and western blot. Zebrafish embryos with transient VARS2
loss-of-function showed features of heart failure as well as indications of CNS and skeletal muscle
involvements. The enzymatic activity of VARS2 was significantly reduced in VARS2-depleted
cells. Heterozygous VARS2-knockout cells showed a rearrangement of ETC complexes in favor of
complexes III2, III2 + IV, and supercomplexes without significant respiratory chain deficiencies. These
cells also showed the enhanced activation of the ISR, as indicated by increased eIF-2α phosphorylation
and a significant increase in the transcript levels of ATF4, ATF5, and DDIT3 (CHOP), as well as
disruptions in FAO. The activation of the ISR and disruptions in mitochondrial FAO may underlie
the adaptive changes in VARS2-depleted cells.
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1. Introduction

Genome-wide association studies (GWASs) have been very successful in identify-
ing novel variant–trait associations. In 2014, we showed through a large GWAS that
the single-nucleotide polymorphism (SNP) rs9262636, located in a non-coding region of
chromosome 6, is associated with dilated cardiomyopathy (DCM), described as the systolic
dysfunction and dilatation of the left ventricle (LV) in the absence of coronary artery disease
or abnormal loading conditions [1,2]. Further expression quantitative trait loci (eQTL) anal-
ysis in the blood of healthy volunteers found mitochondrial valyl-tRNA synthetase (VARS2)
mRNA to be significantly upregulated in individuals carrying the minor allele G [1]. VARS2
is one of the nuclear-encoded mitochondrial aminoacyl-tRNA synthetases (mtARSs) and
belongs to the class-I aminoacyl-tRNA synthetase family. It mediates the formation of
carbon–oxygen bonds in aminoacyl-tRNA and facilitates the conjugation of the amino acid
valine to its cognate tRNA molecule. It also possesses the ability to edit mischarged tRNAs,
and its variations may lead to mistranslation [3]. Whereas variants in VARS2 have been
associated with a better breast cancer prognosis and a higher risk of developing chronic
hepatitis B [4,5], homozygous or compound heterozygous mutations in this gene have been
found to cause mitochondriopathies, with encephalopathy being the most common, but
cardiomyopathy and pulmonary hypertension also occurring [6–14]. In the present study,
we investigated the consequences and thus the possible disease mechanisms of VARS2
depletion in two different model systems, zebrafish embryos and cultured HEK293A cells.

2. Results

VARS2 is expressed ubiquitously, including in tissues with a higher energy turnover,
such as the cerebellar hemisphere, cerebellum, and left ventricle. Thirteen transcripts have
been described in humans, of which six are protein-coding. Isoform 1 (ENST00000321897.9),
with 29 coding exons, 4073 bps, and 1066 amino acids, is the most abundant protein-coding
isoform in human left ventricles (data source: GTEx Analysis Release V8 (dbGaP Accession
phs000424.v8.p2 on 03/03/2022)) (Figure S1).

2.1. Transient VARS2 Knockdown Leads to Heart Failure in Zebrafish

We investigated the effect of transient VARS2 loss-of-function in zebrafish embryos
using antisense oligonucleotides (Morpholinos). In comparison to control-MO-injected
embryos, VARS2-MO-injected embryos showed the absence of exon 3 in the mature VARS2
mRNA and thus very early protein termination. The VARS2 morphants showed disturbed
cardiac contractility (decreased fractional shortening) and bradycardia, as well as dilated
ventricles, manifest pericardial edema, and pericardial blood congestion, all hallmarks of
heart failure in zebrafish. Furthermore, some embryos showed cerebral edema and a curved
back, suggesting CNS involvement and skeletal muscle affection. The knockdown efficiency
was 73% (Figure 1A–C). Whole-mount RNA antisense in situ hybridization revealed the
normal expression of atrial- and ventricle-specific myosin heavy chains as well as notch1b,
suggesting normal molecular chamber and cardiac cushion specifications (Figure 1D).
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Figure 1. Phenotype of VARS2-MO-injected embryos in comparison to control-MO-injected embryos
with 73% knockdown efficiency: n = 100 control-MO- and n = 100 splice-MO-injected embryos. Scale
bar: 0.5mm (A). Heart rate and ventricular fractional shortening in control-MO- and splice-MO-
injected embryos at 48h, 72h, and 96h post-fertilization (n = 25 each) (B). Gel electrophoresis showing
a fraction of wild-type cDNA consisting of exons 2, 3, and 4 (241 bp) in control-MO-injected embryos
and both wild-type and spliced cDNAs in splice-MO-injected embryos, with spliced cDNA missing
exon 3 (159bp) (C). Whole-mount RNA antisense in situ hybridization showing expressions of atrial-
and ventricle-specific myosin heavy chains as well as notch1b (D). v: ventricle, a: atrium, hpf: hours
post-fertilization. Scale bar: 100µm.
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2.2. VARS2-Depleted HEK293A Cells Showed Reduced Enzymatic Activity

Using MitoTracker Deep Red FM as well as a VARS2-specific antibody, we first verified
that VARS2 is indeed mainly localized in the mitochondria of HEK293A cells (Figure 2A).
In order to evaluate the enzymatic activity of VARS2, after charging valyl-tRNA with amino
acid valine, we implemented denaturing polyacrylamide gels, which separate charged
tRNA from uncharged tRNA, followed by northern blot to determine the charged fraction
of valyl-tRNA in the cultured cells. We found an increased deacylation/acylation ratio in
the valyl-tRNA after treating the HEK293A cells with VARS2-specific siRNAs compared to
the control siRNA, indicating decreased VARS2 activity (Figure 2B–C).

Figure 2. VARS2 is mainly localized in the mitochondria of HEK293A cells. The scale bar is 10 µm long
(A). VARS2 expression is significantly reduced according to mRNA and protein levels in HEK293A
cells treated with VARS2-specific siRNAs compared to control siRNA (B). HEK293A cells treated with
VARS2-specific siRNAs showed significantly increased diacylation/acylation ratio in valyl-tRNA
according to northern blot analysis. n = 5, siSCR mean = 0.4, SD = 0.07; siVARS2-1 mean = 0.59,
SD = 0.07, p = 0.0013; siVARS2-2 mean = 0.61, SD = 0.08, p = 0.0016 (C). **≤0.01, ***≤0.001.



Int. J. Mol. Sci. 2022, 23, 7327 5 of 14

2.3. Heterozygous VARS2 Knockout (VARS2+/− Knockout) was Successfully Achieved in
HEK293A Cells

By implementing CRISPR/Cas9 technology, VARS2+/− knockout was successfully
established in HEK293A cells. As described in the Materials and Methods, this model was
achieved by co-transfecting HEK293A cells with one plasmid encoding a CRISPR/Cas9
system targeting the VARS2 gene alongside another plasmid encoding a donor template
with flanking homologous arms. Genomic PCR and sequencing, as well as RT-qPCR and
western blot, confirmed the presence of one wild-type (WT) as well as one gene-edited
allele, indicating that this cell line had a heterozygous knockout. RT-qPCR analyses showed
visible knockout during and after the edit. Western blot analyses showed a reduced amount
of VARS2 protein, whereas the total amount of mitochondrial protein as indicated by the
VDAC2 content remained unchanged (Figure S2A–C). To our knowledge, this is the first
report of an in vitro VARS2-knockout cell model created using CRISPR/Cas9 technology.

2.4. VARS2 Depletion Leads to Rearrangement of the Electron Transport Chain (ETC) Complexes
without Significant Respiratory Chain Deficiencies

To determine whether the decreased expression of VARS2 leads to changes in the
electron transport chain (ETC) complex arrangement, we performed blue native polyacry-
lamide gel electrophoresis (BN-PAGE). This showed a marked increase in the levels of
complex III dimers (III2), III2 + IV, and supercomplexes formed by two units of CIII and
a variable number of CIV units in the presence or absence of one unit of CI (Figure 3A).
This change was even more pronounced in cells that were forced to utilize mitochondrial
respiration rather than glycolysis by cultivation in galactose (Figure 3B). However, the
SDS-PAGE and the western blot analyses carried out showed no significant changes in
the abundance of each respiratory subunit in the cells cultivated in glucose or galactose,
not even in subunits of complex III or IV (Figure 3C–D). This may suggest that although
the total expression of each respiratory subunit did not change, the complex arrangement
changed following VARS2 depletion. In order to assess the energy metabolism in the VARS2
KO+/− cells, high-resolution respiration measurements with a Seahorse XFe96 Analyzer
were performed. Compared to the control cell line, the VARS2 KO+/− cells showed no
significant changes in the basal (p = 0.32), or maximal oxygen consumption rate (OCR)
(p = 0.05) under standard cultivation conditions (Table S1 and an example run is shown
in Figure S3A). The omission of glutamine, which may mask any alterations, did not
change this result. In addition to OCR, the extracellular acidification rate (ECAR) was also
measured as an indicator of glycolysis within the cells and did not show any significant
differences between the VARS2 KO+/− and control cells (Figure S3B). This suggests that
respiration in VARS2-deficient cells is still fully compensated and that mechanisms other
than mitochondrial respiration are involved in adaptive changes in these cells.

2.5. VARS2 Depletion Leads to Activation of the Integrated Stress Response (ISR)

To identify the molecular mechanism involved in maintaining homeostasis in VARS2-
depleted cells, we assessed the activation of the integrated stress response (ISR), which can
be triggered due to stresses including amino acid depravation. The activation of the ISR
results in the phosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2α) and
leads to a decrease in global protein synthesis and the preferential translation of a subset
of stress-response transcripts, including the activating transcription factor 4 (ATF4), that
together promote cellular recovery [15]. Western blot analyses showed increased eIF-2α
phosphorylation in VARS2 KO+/− cells compared to control cells (2.25x) (Figure 4A). Using
RT-qPCR, we found significant increases in the transcript levels of ATF4, as well as the
ATF4 targets ATF5 and DDIT3 (CHOP), in VARS2 KO+/− compared to the control cell line.
The ATF4 transcript level was increased by ~39%, ATF5 by ~19%, and DDIT3 by ~33%
(Figure 4B). ATF4 protein expression was also slightly higher in VARS2 KO+/− compared
to control cells.
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Figure 3. BN-PAGE analysis of respiratory chain supercomplex in mitochondria isolated from cells
grown in glucose (A) or galactose (B). Western blot analysis of denatured respiratory subunits in
mitochondria isolated from cells cultivated in glucose (C) or galactose (n = 1) (D). Mouse liver was
run as a positive control.



Int. J. Mol. Sci. 2022, 23, 7327 7 of 14

Figure 4. Western blot analyses showing a trend of a higher degree of eIF-2α phosphorylation in
VARS2 KO+/− cells (2.25x) compared to the controls (A). RT-qPCR results indicating a higher level of
ATF4, ATF5 and DDIT3 (CHOP) transcripts in the VARS2+/− compared to the control cell line (B).
* = p < 0.05 and ** = p < 0.01.

2.6. Disruptions in Mitochondrial FAO Are a Possible Pathomechanism Involved in Adaptive
Changes in VARS2-Deficient Cells

Western blot analyses revealed lower protein levels of carnitine palmitoyltransferase 2
(CPT2) (64%) and carnitine/acylcarnitine translocase (CACT) (0.52%) in VARS2 depleted
cells, suggesting alterations in mitochondrial fatty acid oxidation (FAO) compared to the
control cells (Figure 5).

Figure 5. Western blot analyses revealing a trend of slightly lower protein levels of carnitine
palmitoyltransferase 2 (CPT2) (64%) and carnitine/acylcarnitine translocase (CACT) (52%) in
VARS2-depleted cells.
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3. Discussion

Defects in the mitochondria, the organelles responsible for energy production via the
oxidative phosphorylation system (OXPHOS), appear to be the most common cause of
adult and childhood neurometabolic diseases [16]. Such rare disorders are characterized
by heterogeneous clinical presentations including hypotonia, developmental delay, lactic
acidosis, failure to thrive, encephalopathy, and cardiomyopathy [6,13]. Mitochondrial dis-
eases can be caused by mutations in both mitochondrial and nuclear DNA. Mitochondrial
DNA (mtDNA) encodes 2 mitochondrial ribosomal and 22 transfer RNAs, as well as 13 of
the 85 structural proteins of the respiratory chain (RC). The remaining RC proteins and
over 250 proteins involved in the optimal maintenance and expression of the mitochondrial
genome are encoded by nuclear genes and transported into mitochondria after cytosolic
translation [10,17]. These include mitochondrial ribosomal proteins; initiation, elongation,
and termination factors; tRNA-modifying enzymes; and aminoacyl-tRNA synthetases
(mtARSs) [7,9,18]. The 20 mtARSs catalyze the attachment of each specific amino acid to
its cognate tRNA via a two-step reaction. First, ATP reacts with the amino acid to build
an aminoacyl adenylate. Second, the amino acid is ligated to the 3′-end of tRNA, forming
the aminoacyl tRNA [19]. The mtARSs are also capable of correcting possible misloading
with the wrong amino acid through their hydrolytic editing domains [20]. Mutations in
mtARSs have been reported to cause Perrault, MLASA, and HUPRA syndromes, as well as
encephalopathies, leukodystrophies, and cardiomyopathies [21].

Mutations in the VARS2 gene, located on chromosome 6p21.3, have been so far re-
ported in 19 families, with more than 23 affected individuals [6–14,16,22,23]. Whereas
homozygous carriers of c.1100C > T (p.Thr367Ile), the most common reported VARS2
variant, experienced fewer effects on the heart, hypertrophic cardiomyopathy was very
often observed in compound heterozygotes carrying another variant alongside c.1100C > T
or two other variants [6,8,9,12–14,16,22,23]. In a genome-wide association study (GWAS),
we found an association between rs9262636, located in a non-coding region of chromo-
some 6, and dilated cardiomyopathy (DCM); through further eQTL analyses, we revealed
a significant increase in the VARS2 mRNA levels in individuals carrying the minor al-
lele G [1]. Thus, we postulated that VARS2 alterations may contribute to non-ischemic
cardiomyopathies or influence patients’ clinical courses and outcomes, and we aimed
to investigate the possible disease mechanisms. In this study, we found that zebrafish
embryos lacking normal levels of VARS2 developed heart failure, cerebral edema, and
curved backs, suggesting CNS involvement and skeletal muscle affection. We also showed
the reduced enzymatic activity (reduced acylation/deacylation ratio) of valyl-tRNA in
VARS2-depleted HEK293A cells. Moreover, we successfully generated the first in vitro
VARS2-knockout cell model using CRISPR/Cas9 technology and characterized the het-
erozygous knockout by means of genomic PCR and sequencing, RT-qPCR, and western
blot analysis. In these VARS2-depleted cells, we found a rearrangement of the electron
transport chain (ETC) complexes in favor of complex III dimers (III2), III2 + IV complexes,
and supercomplexes. Changes in five mitochondrial ETC complex activities have been
reported in muscle homogenates of patients carrying VARS2 mutations. However, these
changes were less uniform. Whereas Diodato et al. reported complex I deficiency with only
25% residual activity in an 8-year-old male patient with a homozygous missense mutation
(c.1100C > T, p.Thr367Ile) in VARS2 [7], Pereira et al. reported normal levels of ETC com-
plexes in their patients with combined oxidative phosphorylation deficiency 20 (COXPD20)
who carried the same homozygous VARS2 mutation and died at 28 months [10]. Another
5-year-old patient with the same homozygous VARS2 mutation was reported to present a
partial reduction in ETC complexes I + III in her muscle biopsy [11]. Taylor et al. reported
the reduced activity of complexes I + IV in a male patient with a compound heterozygous
mutation (c.1135G > A: p.Ala379Thr and c.1877C > A: p.Ala626Asp) [16]. This hetero-
geneity is a challenge to using abundance and activity measurements of ETC complexes
as a diagnostic method. Our VARS2 KO+/− cells showed no changes in subunit levels
of each ETC complex but rather a rearrangement towards supercomplexes. It has been
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hypothesized that the organization of mitochondrial complexes as supercomplexes may
offer structural or functional advantages, for instance preventing complex destabilization
and degradation, enhancing electron transport efficiency and substrate channeling, or
decreasing electron or proton leakages [24,25]. Seahorse analyses in the VARS2 KO+/− cells
revealed no significant abnormalities in the oxygen consumption rate (OCR) or extracellu-
lar acidification rate (ECAR), further supporting the notion that mechanisms other than
mitochondrial respiration are involved in adaptive changes in VARS2-deficient cells.

Here, we showed that the depletion of VARS2, a mitochondrial aminoacyl-tRNA syn-
thetase, resulted in the activation of the integrated stress response (ISR), which culminated
in increased levels of eIF-2α phosphorylation and increased transcript levels of ATF4, ATF5,
and DDIT3 (CHOP) in VARS2 KO+/− cells. The phosphorylation of eIF-2α plays a central
role in the ISR and leads to global translation attenuation in most proteins, with a few
exceptions, such as activating transcription factor 4 (ATF4), which is actually preferentially
translated [15]. It has been suggested that the activation of the ISR may be dependent on the
degree of mitochondrial translation inhibition, indicating that mitochondrial translational
machinery dysfunction promotes the homeostatic activation of the ISR [26].

Moreover, we demonstrated adaptive responses in mitochondrial fatty acid oxida-
tion (FAO) in the VARS2 KO+/− cells by showing their lower protein levels of carnitine
palmitoyltransferase 2 (CPT2) and carnitine/acylcarnitine translocase (CACT) compared
to the controls. Thus far, defects in FAO have not been investigated in patients carrying
VARS2 mutations. However, fatty acid β oxidation has been shown to be the preferred
energy-producing pathway in the mammalian heart, and it is essential for efficient car-
diac pumping. Thus, inherited or acquired defects in mitochondrial FAO may cause
hypertrophic (HCM) or dilated cardiomyopathies (DCM) or cardiac arrhythmias [27–30].
Treatments have been suggested for patients with CPT2 deficiency, including the avoid-
ance of fasting and/or exercise, a low-fat diet enriched with medium-chain triglycerides,
and carnitine supplementation [31]. Furthermore, such situations might be treated with
targeted drugs that enhance glucose use and pyruvate oxidation energy at the expense of
fatty acid oxidation and prevent the accumulation of long-chain acylcarnitines, which may
result in increased cardiac conduction defects and arrhythmias [29].

4. Materials and Methods
4.1. Zebrafish Strains

Care and breeding of zebrafish, Danio rerio, were carried out as previously described [32].
This study was performed after obtaining institutional approvals that conformed to the
Guide for the Care and Use of Laboratory Animals published by The US National Insti-
tute of Health (NIH Publication No. 85-23, revised 1996). For all Morpholino injection
procedures, the TüAB wild-type strain, Heidelberg, Germany was used.

4.2. Morpholino Injection Procedures, Phenotyping, and RNA in Situ Hybridization

Morpholino-modified antisense oligonucleotides (Gene Tools) were directed against the
splice-acceptor site of exon 3 (VARS2-MO (5′-TCA CGT CCT GTA AAA AGT TCA GGT T-3′))
of zebrafish vars2 (zvars2). The VARS2-MO and a standard control oligonucleotide
(5′-CCT CTT ACC TCA GTT ACA ATT TAT A-3′) were diluted in 0.2 mol/liter KCl and
microinjected into one-cell-stage zebrafish embryos. The microinjection was performed
using a Femtojet Microinjection device (Eppendorf, Heidelberg). The capillary pressure
was 15 hPa, and the injection time was 0.1s. The injection pressure was adjusted to the
size of the needle. For sequencing zvars2, forward primer 5′-CCC GGA CAC AAG CAG
AAA AAG CC-3′ and reverse primer 5′-TGC TCG GGA CTG AAG AAT TCC TGT -3′ were
used. To measure the heart rate and ejection fraction, a 10 s video was recorded using a
LEICA DM IRB microscope and LEICA DFC360 FX camera (Heidelberg). The heart rate
was determined by counting the heart beats per minute. Fractional shortening was defined
as FS = EDD−ESD

EDD × 100%, where FS is fractional shortening, LVEDD is left-ventricular
end-diastolic diameter (mm), and LVESD is left-ventricular end-systolic diameter (mm).
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The diameters were measured with the help of zebraFS software (http://www.benegfx.de).
Whole-mount in situ hybridization of zebrafish embryos was performed as previously
described on embryos fixed in 4% paraformaldehyde [33].

4.3. Manipulating the Expression of VARS2 Gene in HEK293A Cells

Human embryonic kidney cells (HEK293A) were purchased from ThermoFisher sci-
entific (#R70507, Heidelberg, Germany). Cells were cultured in DMEM (Gibco, #21969-
035) supplemented with 10% fetal calf serum (FCS) (c.c.pro, #S-10-L), 1% penicillin and
streptomycin (Gibco, #15070-063), and L-glutamine (Gibco, #20530-024). Cultivation was
performed at 37 ◦C and 5% CO2 in an incubator. The cells were distributed at approx. 80%
confluence in a ratio of 1:10 among new cell-culture flasks. For detachment, the cells were
incubated with 0.25% trypsin for 3 min at 37 ◦C and then collected, centrifuged (5 min,
1000 g), and distributed among new cell culture flasks. Initially, three different siRNAs
complementary to the mRNA of VARS2 and one siRNA without complementary RNA
(so-called scrambled siRNA, siSCR) were purchased from Sigma-Aldrich, Taufkirchen, Ger-
many (from 5′→3′—siVARS2-1: GUC AAC UGG UCA UGU GCU U[dT][dT]; siVARS2-2:
CGC UUU AUC CUC AAU GCU U[dT][dT]; siVARS2-3: CUA AGG AGU UAG UAU UGU
A[dT][dT]; and siSCR: UCU CUC ACA ACG GGC AUU U[dT][dT]). The transfection was
carried out according to the Lipofectamine RNAiMax protocol (Invitrogen, Waltham, MA,
USA, #13778). The efficiency of the knockdown was determined 24 h later. We excluded
siVARS2-3 from further analysis because of severe cell toxicity.

4.4. Immunohistochemical Studies in HEK293A Cells

To first confirm the subcellular localization of VARS2 in HEK293A cells, they were
examined immunocytochemically using an anti-VARS2 antibody (Proteintech #15776-
1-AP, Polyclonal, Germany). Mitochondria were stained using MitoTracker Deep Red
FM (ThermoFisher #M22426, Germany), and nuclei were stained using DAPI. β-actin, a
structural protein of the cytoskeleton, served as a control (Sigma-Aldrich #A5441). VARS2
antibodies were detected using a fluorescein-labelled secondary antibody (anti-mouse FITC,
Sigma Aldrich #F5262, Germany).

4.5. Primers

The following RT-qPCR primers were used to assess transcript levels in HEK293A cells.
VARS2 for siRNA experiments: forward 5′-CAG CAT CTC GGT TGC CCC-3′ and reverse
5′-CTT TGG TGA GCT GGT ACG GT-3′; VARS2 for CRISPR/Cas9 experiments: forward
5′-GAG GTA GCA GCG GAA CTG AC-3′ and reverse 5′- GTG ACA GGG GGT AGA AAC
GA-3′ (VARS2 FR4), forward 5′-TGT GTA TCC CAC CTC CCA AT-3′and reverse 5′- TCC
ACC ACA GCT TGT GTA GC-3′ (VARS2 FR5), and forward 5′- CTA CGA AAC CCG GTG
AAA AG-3′ and reverse 5′-TGA AGA AGC CCT CTC GTA CC-3′ (VARS2 FR8); ATF4:
forward 5′-CAG CAA GGA GGA TGC CTT CT-3′ and reverse 5′-CCA ACA GGG CAT CCA
AGT C-3′; ATF5: forward 5′-GAG CCC CTG GCA GGT GAT-3′ and reverse 5′-CAG AGG
GAG GAG AGC TGT GAA-3′; DDIT3: forward 5′-GCA AGA GGT CCT GTC TTC AGA
TG-3′ and reverse 5′-CTC AGT CAG CCA AGC CAG AGA-3′; ACTB: forward 5′-AGA
GCT ACG AGC TGC CTG AC-3′ and reverse 5′-AGC ACT GTG TTG GCG TAC AG-3′.

The following primers were used in genomic PCRs to genotype the gene-edited VARS2
allele in HEK293A cells: Forward 5′-AAG GTT AGG GGT CAG ACA GC-3′ and reverse
5′-CCG TAG CTC CAA TCC TTC CA-3′, forward 5′-CAA CCT CCC CTT CTA CGA GC-3′

and reverse 5′-GCG AGT GGA AGA AGG TGA GA-3′, and forward 5′-AAG GTT AGG
GGT CAG ACA GC-3′ and reverse 5′-GCG AGT GGA AGA AGG TGA GA-3′.

4.6. Northern Blot

For a detailed description of the northern blot protocol, please refer to the
Supplementary Materials.

http://www.benegfx.de
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4.7. Establishing a Monoclonal VARS2-Knockout HEK293A Cell Line

The VARS2+/− knockout was achieved with an “HDR-mediated CRISPR kit” from
Rockville, MD, USA) following the manufacturer’s CRISPR/Cas9 genome-editing ap-
plication guide with a few adaptations. For a detailed explanation, please refer to the
Supplementary Materials.

4.8. Isolation of Mitochondria

The mitochondria were extracted via differential centrifugation after homogenization
of the cells in THE buffer (300 mM trehalose, 10 mM KCl, 10 mM HEPES, 1 mM EDTA, 1 mM
EGTA, 0.5 mM PMSF, pH 7.4; 1× complete protease inhibitor from Roche, 1× phosphatase
inhibitor from Roche, and mechanical disruption using a Dounce homogenizer). All
centrifugation steps were performed at 4 ◦C, and we included a clarifying step at 400 g
for 5 min, followed by a 800 g centrifugation step for 5 min and a centrifugation step at
18,620 g for 10 min. The supernatant resulting from this step corresponded to the cytosolic
cell fraction, and the pellet corresponded to the mitochondrial fraction. The pellet was then
washed in THE buffer and subjected to a final centrifugation step at 18,620 g for 5 min. The
resulting pellet, consisting of the isolated mitochondria, was resuspended in THE buffer.
For experiments run on BN-PAGE, 30 µg mitochondria or in one case 19 µg was run per
lane. All SDS-PAGE processes performed with the mitochondrial cell fraction included
20 µg or 15 µg mitochondria per lane. For SDS-PAGE processes with whole-cell lysate,
around 60 µg or 75 µg whole-cell lysate was run per lane. For quantification of VARS2 and
VDAC protein levels, 10 µg whole-cell lysate was run on each lane.

4.9. Blue Native PAGE (BN-PAGE)

Mitochondrial membranes were solubilized in either a 1% digitonin solubilization
buffer (20 mM Tris HCl pH 7.4, 0.1 mM EDTA, 50 mM NaCl, 10% glycerol, and 1 mM PMSF)
for at least 30 min at 4 ◦C, and the non-solubilized material was removed by a clarifying
spin at 20,000 g for 10 min at 4 ◦C. 10× loading dye (5% Coomassie blue G-250, 500 mM
ε-amino n-caproic acid, 100 mM Bis-Tris pH 7.0) was added to the supernatant before
separation on a 4–13% polyacrylamide gradient gel at 4 ◦C. After running the BN-PAGE for
1 h using a BN anode buffer (50 mM Bis-Tris HCl pH 7.0) and a BN cathode buffer (50 mM
Tricaine pH 7.0, 150 mM Bis-Tris, 0.02% Coomassie blue G-250), the BN cathode buffer
was replaced by a new BN cathode buffer without the Coomassie blue G-250 [34]. Upon
completion of the electrophoresis, the remaining steps were identical to western blotting.

4.10. Seahorse

The oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) were
measured with a Seahorse XFe96 Analyzer from Agilent. In brief, 15,000 cells per well
were seeded in an Agilent Seahorse 96-well XF Cell Culture Microplate in standard 4.5 g/L
glucose DMEM. On the day the assay was run, the medium was exchanged for Seahorse
XF base medium supplemented with 10 mM (1.8 g/L) glucose, 1 mM pyruvate, and 2 mM
glutamine, unless otherwise specified. The plate was then placed in an incubator at 37 ◦C
without CO2 for 1 h before running the assay. Three OCR and ECAR measurements were
performed per metabolic state, beginning with the basal measurements. The different
metabolic states were induced by the subsequent addition of 3 µM oligomycin, 2 µM FCCP,
1 µM antimycin A, and 2 µM rotenone. The assay results were analyzed using Wave 2.6.1
desktop software and exported to an Excel spreadsheet for graphical presentation.

4.11. Statistical Analyses

Statistical differences were determined using the Student’s t-test or a two-way ANOVA,
where p < 0.05 was considered statistically significant. Multiple testing was corrected using
the Benjamini and Hochberg method. For a detailed description of the statistical analyses
used for RT-qPCR and western blot data, please refer to Supplementary Materials.
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5. Conclusions

The activation of the integrated stress response (ISR) and alterations to mitochondrial
fatty acid oxidation (FAO) are two possible mechanisms involved in the adaptive changes
in VARS2-depleted cells. Considering these results and based on our previous findings, we
hypothesize that VARS2 alterations may contribute to non-ischemic cardiomyopathy or in-
fluence patients’ clinical courses and outcomes; therefore, we suggest further investigation.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ijms23137327/s1 [35–37].
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