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Abstract

A major challenge in interpreting the large volume of mutation data identified by next-generation sequencing (NGS) is to
distinguish driver mutations from neutral passenger mutations to facilitate the identification of targetable genes and new
drugs. Current approaches are primarily based on mutation frequencies of single-genes, which lack the power to detect
infrequently mutated driver genes and ignore functional interconnection and regulation among cancer genes. We propose
a novel mutation network method, VarWalker, to prioritize driver genes in large scale cancer mutation data. VarWalker fits
generalized additive models for each sample based on sample-specific mutation profiles and builds on the joint frequency
of both mutation genes and their close interactors. These interactors are selected and optimized using the Random Walk
with Restart algorithm in a protein-protein interaction network. We applied the method in .300 tumor genomes in two
large-scale NGS benchmark datasets: 183 lung adenocarcinoma samples and 121 melanoma samples. In each cancer, we
derived a consensus mutation subnetwork containing significantly enriched consensus cancer genes and cancer-related
functional pathways. These cancer-specific mutation networks were then validated using independent datasets for each
cancer. Importantly, VarWalker prioritizes well-known, infrequently mutated genes, which are shown to interact with highly
recurrently mutated genes yet have been ignored by conventional single-gene-based approaches. Utilizing VarWalker, we
demonstrated that network-assisted approaches can be effectively adapted to facilitate the detection of cancer driver genes
in NGS data.
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Introduction

Next-generation sequencing (NGS) technologies have enabled

genome-wide identification of somatic mutations in large scale

cancer samples. One major challenge in interpreting the large

volume of mutation data is to distinguish ‘driver’ mutations from

numerous neutral ‘passenger’ mutations to facilitate the identifi-

cation of targetable genes and new drugs. So far, the most widely

adopted method is to search for highly frequently mutated genes

within one cancer type [1,2]. Although effective in many cases,

frequency-based approaches suffer from disadvantages such as lack

of power to detect infrequently mutated driver genes and failure to

incorporate functional interconnections and regulations among

genes. Recently, many new methods have been reported. For a

more comprehensive review, please refer to [3,4].

The complex features of mutations derived from NGS data present

great challenges for computational approaches, both genetically and

technically. First, the probability that a gene is mutated in a sample,

i.e., the gene-based mutation rate, is influenced by both genetic and

environmental factors. In this study, we only consider single nucleotide

variants (SNVs) and small insertions and deletions (indels), and we

define a mutant gene (abbreviated as MutGene) if it harbors at least

one non-silent deleterious SNV or indel (see Materials and Methods).

Assuming that mutations occur randomly across the genome, long

genes have a better chance of harboring mutations (e.g., the gene

TTN). Other factors, including sequence context, GC content,

replication timing, chromatin organization, and alterations in

mutation repair systems [5,6,7], as well as personal lifestyle and

mutagen exposure period and level, have an impact on the gene-based

mutation rate in an individual. Second, mutation ‘hotspot’ families,

among other factors, often contribute many genes to the list of top

candidate genes that are ranked by frequency. For example, genes

from the olfactory receptor family are frequently mutated in many

cases [1], including both normal and disease samples [8]. However, it

remains unknown whether these mutations, or only some of them, are

disease-related. Finally, sequence errors exist; however, large scale

validation is still a challenge in NGS projects that involve hundreds of

cancer samples. Since all of these factors accumulate non-clinically

related events in mutation data, these biases should be considered

when developing new approaches to prioritizing driver mutations.
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An alternative approach to detect possible driver genes overlays

the mutation genes in the context of biological pathways or

protein-protein interaction (PPI) networks and then performs

integrative analyses to identify significantly altered pathways or

subnetworks. In cancer, functional pathways or biological

networks are frequently interrupted in many patients [9], and

their gene components present mutually exclusive or co-occurring

patterns [10]. To date, only a few studies have searched the

cooperative mutation modules underlying cancer [11,12]. Nota-

bly, the incorporation of other large scale genetic and/or genomic

data, such as mRNA abundance [13] and methylation data [14],

can greatly improve the detection of driver genes. However, these

datasets are not always available for the same patient cohort in

large-scale sequencing projects, creating both challenges and a

high demand to develop comprehensive approaches that can

prioritize driver genes from mutation data.

In this work, we propose VarWalker, a network-assisted

approach that aims to prioritize potential driver genes and better

interpret mutation data in NGS studies. Our goal is to develop a

tool that can address the huge variations among cancer samples as

well as implement conventional approaches in modern NGS data

analysis. VarWalker performs sample-specific filtering and imple-

ments the Random Walk with Restart (RWR) algorithm to search

for frequently interrupted interactions between MutGenes and

their interactors. We argue that if an interaction is interrupted by

mutations in one or two of its linking proteins across many

samples, this interaction has a higher chance to be biologically

important than an interaction in which only one protein is

disrupted by mutations. We demonstrated VarWalker in two

recent large-scale NGS benchmark studies: one involving 183

matched tumor/normal LUAD samples [15] and the other

involving 121 matched melanoma samples [16]. In each cancer,

we derived a consensus mutation network, which was shown to be

significantly enriched with known cancer genes and cancer-related

functional pathways. Importantly, we not only identified highly

recurrently mutated genes, but also well-known yet infrequently

mutated genes, thereby demonstrating the usefulness of Var-

Walker to prioritize driver genes from NGS data.

Results

An overview of the VarWalker approach
The detailed description of the VarWalker algorithm is

provided in Materials and Methods. It has four steps (Figure 1).

The first three steps are implemented within each single sample,

and the last step is across multiple samples. In step 1, for each

sample, VarWalker assesses the mutation probabilities of all

human genes by fitting them to a generalized additive model based

on the patient- (or sample-) specific mutational profile. A weighted

resample-based test is then performed to filter passenger genes that

occur largely due to random events across the genome. Genes

occurring with a frequency of $5% in random datasets were

suggested for filtration. Step 2 includes the execution of the RWR

algorithm in each sample to search for the interactions among the

filtered MutGenes in the human interactome. RWR has been

proven to be sensitive in identifying disease candidate genes and

has been successfully applied in disease-phenotype analyses

[17,18]. Here, the introduction of RWR in mutation data analysis

reinforces the recognition that driver MutGenes tend to converge

in functional pathways and interrupt the same biological processes

frequently, while passenger MutGenes are more likely to occur

randomly in the genome (as do their interactors in the whole

interactome). This recognition enables us to consult both

MutGenes and their close interactors and prioritize MutGenes

based on their joint frequency. In step 3, considering the complex

topological features of human interactome data, we introduce a

randomization-based test to evaluate the candidate interactors

utilizing 100 topologically matched random networks. Candidate

interactors that remain significant (i.e., pedge,0.05) are collected to

form a universal candidate pool. This step is also implemented in

each sample, respectively. Finally, a consensus mutation subnet-

work is constructed (step 4) by collapsing all sample-specific results.

Using the overall implementation principles described above,

we rigorously examined several factors that may influence the

results as well as several parameter tunings that can potentially

improve the performance. Text S1 in the Supporting Information

provides a detailed description of these evaluations. We imple-

mented our method in the network data from the Human Protein

Reference Database (HPRD), which serves as a good balance

between completeness and biological inference.

Cancer Gene Census genes have small shortest path
distance in HPRD
The Cancer Gene Census (CGC) [19] is a continuous effort to

collect cancer genes with mutations that have been causally

implicated in cancer. CGC genes are widely used in many cancer

studies for benchmark evaluation. We first explored the topolog-

ical features of CGC genes in HPRD. In our downloaded version

(03/15/2012), a total of 487 CGC genes are included, and 369 of

them have protein interactions in HPRD. The examination of the

distance (measured by the shortest path) among CGC genes and

others showed that CGC genes tend to be located more closely to

each other than other genes. Specifically, 263 out of the 369

(71.27%) CGC genes are directly connected, 96 (26.02%) have a

shortest path of 2 from other CGC genes, and only 10 (2.71%)

have a shortest path$3 from other CGC genes. In contrast, in the

whole HPRD network, 2931 (33.43%) genes (including 263 CGC

genes) directly interact with CGC genes, 4657 (53.11%) genes

have a shortest path of 2 from CGC genes, 1038 (11.84%) have a

shortest path of 3, and the remaining 142 (1.62%) genes have a

shortest path .3 from CGC genes. In summary, 97.29% CGC

genes are located within two steps from other CGC genes, whereas

86.54% of all human genes are located within this distance. Based

on this observation, we conclude that known cancer genes such as

CGC genes show a strong tendency to be more closely connected,

which is consistent with previous observations that proteins

involved in the same disease have an increased tendency to

interact with each other [20]. Therefore, we implemented a

Author Summary

A cancer genome typically harbors both driver mutations,
which contribute to tumorigenesis, and passenger mutations,
which tend to be neutral and occur randomly. Cancer
genomes differ dramatically due to genetic and environmental
factors. A major challenge in interpreting the large volume of
mutation data identified in cancer genomes using next-
generation sequencing (NGS) is to distinguish driver mutations
from neutral passenger mutations. We propose a novel
mutation network method, VarWalker, to prioritize driver
genes in large scale cancer mutation data. Applying our
approach in a large cohort of lung adenocarcinoma samples
and melanoma samples, we derived a consensus mutation
subnetwork for each cancer containing significantly enriched
cancer genes and cancer-related functional pathways. Our
results indicated that driver genes occur within a broad
spectrum of frequency, interact with each other, and converge
in several key pathways that play critical roles in tumorigenesis.

VarWalker: Mutation Network Analysis
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filtering step to remove genes that are located far away from CGC

genes (e.g., those with a shortest path $3).

We explored the number of MutGenes that are retained after

each step. The largest proportion of MutGenes was removed during

mapping of MutGenes onto the HPRD network. This removal

resulted from a limitation of the current human PPI data

knowledge. Specifically, during removal of genes located two steps

away from CGC genes, an average of 88.06% (range: 66.67–100%)

were kept in LUAD compared to the previous step. Similarly in

melanoma, an average of 86.86% (range: 72.22–100%) were

retained compared to the previous step. These results indicate that

gene filtration based on distance from CGC genes does not filter a

significant proportion of the MutGenes (Figure S2).

Long genes are more frequently mutated in cancer
We first explored long genes in the two working datasets: a

LUAD patient cohort using mutation data from whole-genome

sequencing (WGS) and whole-exome sequencing (WES) [15] and a

melanoma patient cohort using WES data [16]. The LUAD

dataset contains 183 samples, among which 182 had at least one

non-silent deleterious mutation. This dataset involves a total of

11,306 MutGenes. A detailed mutational profile can be found in

Figures S3 and S4. We manually examined the MutGenes in these

samples and observed the frequency-based approach has a strong

preference towards long genes. As shown in Figure S5, of the 10

most frequently mutated genes in the LUAD samples, with the

exception of TP53 and KRAS, the remaining eight genes are

relatively long when compared to the distribution of all human

CCDS gene lengths. In contrast, we examined the least frequently

mutated genes, i.e., those mutated in one LUAD sample, and

surprisingly pinpointed several important cancer genes, including

MDM2, RAC1, AKT1, and CDK4. These observations suggest

cancer genes could mutate in a broad range of frequency

spectrums, making it difficult for the frequency-based filtering

approach to be effective.

We then systematically examined the 11,306 MutGenes in the

182 LUAD samples. Among these MutGenes, 6878 were mutated

in at least two samples (i.e., ‘‘recurrent MutGenes’’) regardless of

the mutation sites in these genes. Here, recurrent MutGenes differ

from recurrent mutations, where the latter are defined as

mutations that occur more than once at the same site. We

hypothesize that genes that were mutated in only one sample are

more likely to have their mutations attributable to random events.

We then built two sets of MutGenes. Set one included all 11,306

MutGenes, and set two included all the recurrent MutGenes. We

examined the gene length effects in these two MutGene sets by

plotting the proportion of MutGenes versus their cDNA length. As

shown in Figure 2, both sets have positive correlations with the

cDNA length, but the trend was relatively weaker in set two. This

analysis revealed that (i) the probability of observing MutGenes is

indeed positively correlated with cDNA length, with longer genes

more likely to be MutGenes; and, (ii) the correlation is reduced in

recurrent MutGenes, yet is nontrivial (Figure 2A), indicating that

even in recurrent MutGenes, random mutations still exist.

The same pattern was observed in melanoma samples

(Figure 2B). A total of 121 melanoma patients had at least one

Figure 1. Flowchart of VarWalker. The pipeline has four steps, with steps 1–3 implemented in each sample and step 4 implemented in the whole
cohort. In step 1, the mutation genes for each sample (MutGenes, defined as those with $1 deleterious somatic mutation in coding regions) are first
assessed to compute a probability weight vector (PWV) by fitting a generalized additive model. A weighted resampling test based on the PWV is then
performed to build a null distribution in which genes occur at random. Genes with freq$0.05 are filtered, unless they are CGC genes, resulting in a set
of significant MutGenes for each sample. In step 2, Random Walk with Restart (RWR) is initiated for each of the significant MutGenes, and their top
interactors are collected. In step 3, these interactors are evaluated in 100 random networks generated with the same topological structures and
performed using the same RWR algorithm. Interactors that are not observed by random chance, i.e., pedge,0.05, are then denoted as significant
interactors and retained. In step 4, all significant interactors and interactions from each sample are pooled together, and a consensus mutation
network is constructed.
doi:10.1371/journal.pcbi.1003460.g001
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non-silent deleterious mutation, involving 11,030 MutGenes that

have CCDS IDs, 6852 of which were recurrent MutGenes. As

shown in Figure 2B, both sets of MutGenes were positively

correlated with cDNA length, and the recurrent MutGenes were

less correlated, further supporting the necessity to perform gene

length-based filtering.

Application of VarWalker in LUAD samples
Build the consensus mutation network in LUAD. For

each of the 182 LUAD samples that had non-silent deleterious

mutations, we applied VarWalker to all MutGenes and obtained a

pool of significant interactions linking MutGenes and their

significant interactors. To further condense this network, we

selected highly recurrent interactions and built a subnetwork that

is frequently mutated, which we denoted as a consensus mutation

network. Notably, there are numerous methods to search for

subnetworks. In our work, to avoid ambiguity in defining

subnetworks [21], we focused on interactions that are frequently

interrupted in many samples. We tabulated all edges according to

their occurrence. As shown in Figure 3A, a linear correlation was

observed between the number of edges (in a logarithmic scale) and

their occurrence. We therefore fitted a linear regression model to

the number of edges (in logarithmic scale) at each occurrence

(R2=0.9978). The occurrence of edges in $14 samples drifted

away from the linear distribution, and these edges were

accordingly suggested for the construction of the consensus

mutation network. However, in the case of LUAD, we had 57

known LUAD genes to facilitate the cutoff selection. As shown in

Figure 3B, we manually adjusted the cutoff and chose 10 as the

threshold in order to include more known LUAD genes.

Interactions that occurred in $10 samples were collected to build

the consensus mutation network for LUAD. This approach

resulted in a subnetwork that included 307 interactions and 367

proteins encoded by MutGenes.

Validation of the LUAD consensus mutation network in

an independent dataset. To validate the LUAD consensus

mutation network, we retrieved The Cancer Genome Atlas

(TCGA) LUAD somatic mutation data (denoted TCGA LUAD)

and applied the same VarWalker procedure used for the discovery

LUAD data. A total of 518 (as of 7/18/2013) TCGA LUAD

samples were included (Table S1). After obtaining a significant

interaction pool, the threshold for interaction selection was

determined as 31 based on the interaction occurrence distribution

(with no manual adjustment). Thus, interactions that occurred in

$31 samples were collected to build the consensus mutation

network, resulting in an evaluation mutation network consisting of

218 proteins and 197 interactions. Comparing the component

genes in the discovery consensus mutation network with those in

the evaluation mutation network, we found 116 genes (116/

367=31.61% of the discovery network and 116/218= 53.21% of

the evaluation network) overlapped between the two networks.

These overlapping genes were assessed as significantly higher than

the expected level by a randomization test (p-value,161023,

Figure S6).

The LUAD consensus mutation network is enriched with

known cancer genes. To evaluate these genes, we performed

the following examination. (i) Comparison with known LUAD

genes. As aforementioned, 31 out of the 52 known LUAD genes

were included in our LUAD mutation network (5 known LUAD

genes had no interaction annotation in the HPRD PPI network

and were excluded). Note that the known LUAD genes had been

used to adjust the threshold for interactions; therefore, the high

proportion of known LUAD genes was expected. (ii) Comparison

with CGC genes (independent test). A total of 369 CGC genes

were present in the HPRD PPI network, among which 70 were

included in our LUAD mutation network (p-value,2.2610216).

(iii) Comparison with kinase genes (independent test), which are

often cancer driver genes [22]. A set of 21 proteins in the mutation

Figure 2. Distribution of mutation genes (MutGenes) as a function of gene length (cDNA length). (A) The proportion of MutGenes in
lung adenocarcinoma (LUAD) samples versus gene length (cDNA length). The green line indicates all MutGenes in the 182 LUAD samples, and the red
line indicates recurrent MutGenes, which occurred in $2 LUAD samples. (B) The proportion of MutGenes in melanoma samples versus gene length
(cDNA length). The green line indicates all MutGenes in the 121 melanoma samples, and the red line indicates recurrent MutGenes, which occurred in
$2 melanoma samples.
doi:10.1371/journal.pcbi.1003460.g002
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network were found to be encoded by kinase genes. These first

three annotation categories include a total of 76 genes (20.71%),

indicating that many of the genes in the mutation network are

potentially cancer related.
The consensus mutation network in LUAD is enriched

with cancer-related pathways. Our functional analyses of the

consensus mutation network using the tool DAVID (Database for

Annotation, Visualization and Integrated Discovery) [23] revealed

a significant enrichment of multiple cancer-related pathways

annotated by either the Kyoto Encyclopedia of Genes and

Genomes (KEGG [24], Table S2) or Gene Ontology (GO) [25]

biological process domains (Table S3). Of the top 15 significant

pathways (pBonferroni,10
26), 12 are directly related to cancer.

Although expected, this result further demonstrated the enrich-

ment of cancer genes in our mutation network.
Genes in the consensus mutation network correspond to

hallmarks in LUAD. Figure S7 shows the entire consensus

mutation network, which consists of 67 subgraphs, including 30

non-orphan subgraphs (consisting of $2 edges) and 37 orphan

subgraphs. We denote an orphan subgraph as one that consists of

two nodes connected by one edge and are disconnected from any

other subgraph(s) in the consensus network. Interestingly, nearly

all the LUAD genes (29/31) were included in 9 of the 10 largest

subgraphs, while only 2 known LUAD genes were included in 2

orphan subgraphs (Figure S7). Figure 4 shows the three largest

subgraphs. For each subgraph, we performed a functional

enrichment analysis of its genes. The results indicated that

cancer-related pathways are primarily enriched in each of these

subgraphs. Below, we briefly describe the subgraphs in decreasing

order of the number of component genes.

The largest subgraph (Figure 4A) contains 126 genes, including

15 proteins encoded by known LUAD genes. Notably, these

known LUAD genes could be highly frequently mutated (e.g., in

more than 18265%=9.1 samples), such as TP53 (in 85 samples),

KRAS (49), NF1 (19), BRAF (13), TLR4 (13), RBM10 (12), PIK3CG
(11), and NTRK3 (11). These genes could also be rarely frequently

mutated (e.g., in ,5% samples), such as CDKN2A (9), SMAD4 (6),

NTRK1 (5), RB1 (4), AKT1 (1), HRAS (1), and MDM2 (1).

Functional enrichment analysis of this subgraph revealed a

number of pathways related to cell signaling, receptor signaling,

and cell cycle, among others (Table S4). Of special interest, three

component interactions formed the central part of this subgraph,

as highlighted in Figure 4A: (i) the proteins that mainly function in

the EGF receptor signaling pathway (including HRAS, RAF1,

BRAF, NF1, MAPK3, PRKCA, PRKCB, AKT1, PIK3CG, and

KRAS, pBonferroni=5.7561023); (ii) the proteins that function in

the regulation of nuclear SMAD2/3 signaling pathways (SMAD2,

SMAD4, MYOD1, CREBBP, JUN, SNIP1, NCOA1, NCOR1,

CDK2, AKT1, CDK4, and KAT2B, pBonferroni=1.1761026); and

(iii) the proteins that play key roles in the p53 signaling pathway

Figure 3. Distribution of significant interaction frequency. (A)
Distribution of the number of edges (in a logarithmic scale) versus their
occurrence in LUAD. The vertical line at 14 indicates the threshold at

which the edges drifted away from the linear distribution. The vertical
line at 10 indicates the threshold used for edge selection after a manual
adjustment based on known LUAD genes. (B) The x-axis shows the
frequency of interactions that were identified in 182 LUAD samples. The
y-axis shows the proportion of interactions with the corresponding
frequency in the x-axis. The black bar indicates the frequency for all
significant interactions in all samples, while the grey bar indicates the
frequency for the significant interactions involving any of the 52 known
LUAD in HPRD. (C) Distribution of the number of edges (in a logarithmic
scale) versus their occurrence in melanoma. The vertical line at 10
indicates the threshold at which edges drift away from the linear
distribution; this threshold is used as the cutoff to select edges in
melanoma.
doi:10.1371/journal.pcbi.1003460.g003
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(MDM2, BCL2, RB1, TP53, CDK2, and CDK4, pBonfer-
roni=4.5661025).

The second subgraph (Figure 4B) consists of 18 nodes, including

four known LUAD proteins, i.e., EGFR (mutated in 29 samples),

PDGFRA (9), CBL (5), and ERBB2 (4). The focus of this subgraph is

transmembrane receptors and receptor protein signaling pathways

(Table S5), including the GO terms of transmembrane receptor

protein tyrosine kinase activity (GO:0004714, pBonferroni=
3.4561029) and the related signaling pathway (GO:0007169,

pBonferroni=8.90610211), as well as various receptor binding

processes (Table S5). Because many receptor proteins (e.g., EGFR,

PDGFRA, PDGFRB, ERBB2, and ERBB4) are typically located in

the upstream of cancer-related signaling pathways such as

proliferation, cell death, and cell cycle progression [9], mutations

in these genes are likely critical to cancer development.

The third subgraph (Figure 4C) includes 12 nodes spread

around two hub proteins, STK11 (mutated in 27 samples) and

ATM (mutated in 18 samples), both of which are encoded by

known LUAD genes. Interestingly, the biological function of this

subgraph is cell cycle and DNA repair (Table S6). Eight of the

proteins in this subgraph participate in the cell cycle arrest process

(GO:0007050, pBonferroni=1.4361028), and six proteins function

in the double-strand break repair process (GO:0006302, pBonfer-
roni=3.0961028).

Infrequently mutated genes were recruited in the

mutation network. In addition to the highly frequently

mutated genes (e.g., in $5% samples), there are several well-

known cancer-related genes in the mutation network that are only

mutated in a few samples. We specifically examined 204 (66.45%)

interactions that linked an infrequently mutated gene (in ,5%

samples) and a highly frequently mutated gene (in $5% samples)

and found 34/204 interactions that involved both interactors, each

of which were encoded by known LUAD genes, CGC genes, or

kinase genes (Table S7). These interactions were among 28

infrequently mutated genes (in ,5% samples) and 16 highly

frequently mutated genes (in $5% samples). Thus, these 28 genes

are particularly promising, as they are cancer relavent genes and

interact with highly frequently mutated genes, yet they would be

ignored by a frequency-based approach. For example, the protein

encoded by BRCA1 (a CGC gene) interacts with TP53 (a high-

frequency gene, known LUAD gene, and CGC gene), but it is only

mutated in one sample. Similarly, the protein RAF1 (a CGC gene

and kinase) interacts with both BRAF and KRAS (high-frequency

genes), but it is only mutated in 2 samples. These genes provided a

promising candidate list for driver genes in LUAD and warrant

future investigation.

Comparision of consensus mutation networks for LUAD

smokers versus never smokers. According to the smoking

information of LUAD samples, there were 118 heavy smokers, 17

light smokers, 27 never smokers, and 21 with unknown status. To

reveal potential differences between the consensus mutation

networks of smokers and never-smokers, we applied VarWalker

Figure 4. Selected subgraphs in the lung adenocarcinoma consensus mutation network. Node size is proportional to the number of
samples harboring mutations in the corresponding gene (MutGene), as indicated in the parenthesis after the node name. The triangular nodes
denote the proteins encoded by known LUAD genes (see Materials and Methods). Edge width is proportional to the number of samples in which the
interaction is detected, which is also indicated by the number on each edge. Figures in (A), (B), and (C) show three selected subgraphs in LUAD.
doi:10.1371/journal.pcbi.1003460.g004
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to the 135 smokers and 27 never smokers, respectively. The

smokers’ consensus mutation network contains 62 proteins

connected by 47 interactions (Figure S8). For never smokers, the

interactions have low frequency. We chose to manually select

those interactions occurring in $3 samples, resulting in a never

smoker-specific consensus mutation network with 15 proteins

connected by 8 interactions. As shown in Figure S8, the two

mutation networks are substantially different. In the smoker-

specific consensus mutation network, the hubs include TP53

(mutated in 70 smoker samples), KRAS (42), STK11 (23), KEAP1

(20), EGFR (18), SNTG1 (16), ATM (15), and NF1 (15). In the

never smoker-specific mutation network, we did not obtain many

interactions, with EGFR being the most frequently mutated gene

(mutated in 10 never smokers). Notably, TP53 was mutated in 5

samples out of the 27 never smokers. However, its interactions did

not have a high frequency; thus, it was not included in the

consensus mutation network. Since the small sample size of never

smokers is small, a more connected mutation network would be

expected when large samples are available.

Application of VarWalker in melanoma samples
The same procedure that was used in LUAD was applied to the

121 melanoma samples, all of which had MutGenes. Using the

same criteria, we constructed a melanoma consensus mutation

network, which contains 331 MutGenes involved in 301 interac-

tions. We found that 65 of these 331 MutGenes are CGC genes,

indicating a significant enrichment of cancer genes in the network

(p-value,2.2610216, Fisher’s Exact test). Further examination

showed 15 kinase proteins in the network, most of which

overlapped with CGC genes.

We also validated the melanoma consensus mutation network

using somatic mutation data from the TCGA Skin Cutaneous

Melanoma (SKCM) project. Many genes in the discovery

consensus network were replicated (Table S1). In particular, 86

overlapping genes that account for 25.98% in the discovery

dataset and 73.50% in the evaluation dataset were identified,

which is significantly higher than expected by chance (p-

value,161023, Figure S6). Similar to the case of LUAD, these

results demonstrated that cancer-related genes are effectively

prioritized by VarWalker.

Functional enrichment analysis of the mutation network revealed

many cancer-related signaling pathways (Table S8) and biological

processes (Table S9), further indicating that the resultant network is

enriched with cancer-related genes and regulation. For example, 12

of the 19 top significant KEGG pathways (pBonferroni,10
26) are

cancer-related (Table S8).

Consensus mutation network in melanoma. As shown in

Figures 5 and S9, the melanoma mutation network formed 50

subgraphs. Of them, 26 are non-orphan subgraphs and 24 are

orphan subgraphs. We describe two subgraphs from the consensus

network. The first subgraph, as shown in Figure 5, consists of 34

proteins spread across several hub nodes. These hub nodes have a

substantially higher degree than the rest of the nodes in the

subgraph, and among them are BRAF, NRAS, NF1, DAB1, and

BCLAF1. BRAF and NRAS genes typically show a mutually

exclusive mutation pattern in melanoma samples [12]. In our

mutation network, proteins encoded by these two genes do not

interact directly; rather, they connect through RAF1, a less

frequently mutated gene (mutated only in 2 melanoma samples).

In fact, these three proteins, BRAF, RAF1, and NRAS, play key

roles in the Raf/MEK/ERK and PI3K/Akt cascades, which serve

as the common upstream regulation of several important signaling

pathways. Indeed, functional enrichment analysis of this subgraph

revealed a number of significant pathways (Table S10) that involve

the Raf/MEK/ERK and/or PI3K/Akt cascades, such as the Ras

pathway (pBonferroni=1.1561024), FGF signaling pathway (pBonfer-

roni=1.9361023), VEGF signaling pathway (pBonferroni=1.566

1023), and PDGF signaling pathway (pBonferroni=5.2661023).

The second subgraph, which contains the largest number of

component nodes (top of Figure S9), has its 95 nodes anchored to

the known cancer proteins CTNNB1, APC, PTEN, TP63,

MAPK4, MET, RAC1, and ROS1. A few proteins encoded by

genes from the cadherin superfamily were linked to the subgraph

through interactions with CTNNB1. The cadherin superfamily

plays important roles in cell-cell adhesion and transfers informa-

tion between two cells; its deregulation has been reported in

tumorigenesis, cell migration, and invasion [26,27]. Cadherin

family gene changes have been observed at several levels,

including germline and/or somatic mutations, dysregulated

expression, and abnormal methylation levels [27]. In our network,

CDH2, CDH6, CDH7, CDH9, CDH10, CDH12, CDH15, and

CDH18 intensively interact with each other, and some of these

proteins interact with the cancer proteins CTNNB1 and APC.

The right section of this subgraph reflects the signaling events

mediated by VEGFR1 and VEGFR2, including the protein KDR

and its interactors (FLT1, FLT4, VEGFC, SHC1, MAPK3,

MAPK1, PLCG1, PIK3R1, PRKACA, PTPN11, and PTPN6).

Many of these genes are also part of the EGF/EGFR signaling

pathway (pBonferroni=1.3861029), FGF signaling pathway (pBonfer-

roni=7.4561029), and PDGFR-beta signaling pathway (pBonfer-

roni=1.4061028), indicating their correlated functional roles in

signaling pathways. Finally, several proteins, starting from MET

through CBL, SYK, VAV1, RAC1, and ending with PAK7 and its

interactors, form part of the B cell receptor related signaling events

(pBonferroni=2.57610215). Note that RAC1 was reported as a

novel mutation gene in the original work [16]. Here, we unveiled

its mutation interaction context through our network analysis,

which will likely provide deeper biological interpretation and

generate new hypotheses for future studies.

Comparison with single gene frequency based approach
We compared our results with those from the single-gene-based

strategy. In our application of VarWalker in LUAD, we selected

interactions that occurred in $10 samples. This approach resulted

in 367 genes, 70 of which are CGC genes (70/367= 19.07%).

Using the single-gene-based strategy, we also selected genes that

were mutated in $10 samples. This step resulted in 426 genes, 16

of which are CGC genes (16/426= 3.76%), much less than those

observed in the consensus mutation network. In melanoma, we

also selected interactions that occurred in$10 samples, generating

a consensus mutation network with 331 genes, 65 of which are

CGC genes. Using the single-gene-based strategy, we obtained

404 mutated genes in $10 melanoma samples, 23 of which are

CGC genes. The proportion of CGC genes obtained by the single-

gene-based strategy (23/404= 5.69%) is also smaller than the

proportion obtained by VarWalker (65/331= 19.64%). These

comparisons clearly proved that our network-based approach is

superior to the single gene frequency based strategy.

Discussion

In cancer research, distinguishing between driver mutations,

which contribute to tumorigenesis, and passenger mutations, which

are mostly neutral and occur randomly, is extremely important to

understand and design targeted therapies and treatments. We

proposed an approach to prioritize candidate driver MutGenes and

biological networks using individual or cohort NGS data. Our

method VarWalker estimates the occurrence of mutation events in

VarWalker: Mutation Network Analysis
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the genome according to approximated probabilities based on

coding gene length. It implements gene-based filtering such that it

can exclude genes that are mutated largely due to random events.

VarWalker utilizes the Random Walk with Restart algorithm to

search for interaction partners that are close to the mutation genes

and assesses the resultant interactions using a comprehensive

randomization test, thereby greatly reducing potential random

interactors (e.g., those with high degrees). In summary, this method

has the advantages of both filtering random mutation genes and

detecting possible driver genes along with their functional interac-

tions. Hence, it is promising for driver gene prioritization in the era

of personalized medicine.

The applications of our method to both LUAD samples and

melanoma samples revealed a mutation network for each of them.

These mutation networks include a large proportion of known

cancer genes and show the interconnections among the protein

products of mutant genes. Interestingly, in each of the subgraphs

within the consensus mutation network, we observed key

components involved in cancer-related signaling pathways and

biological processes. For example, in the LUAD mutation

network, the three largest subgraphs focused on (i) the EGF

receptor signaling pathway, the regulation of nuclear SMAD2/3

signaling pathways, and the p53 signaling pathway; (ii) transmem-

brane receptors and receptor protein signaling pathways; and, (iii)

the cell cycle and DNA repair systems, respectively. The

subgraphs in the melanoma mutation network revealed featured

pathways such as the Raf/MEK/ERK pathway and receptor

signaling pathways (e.g., EGF/EGFR, FGF, PDGFR-beta signal-

ing pathways). The diversity of the component mutation genes in

the mutation networks confirms the multifactorial and multigenic

mechanisms underlying cancer. These observations also demon-

strated the advantages of network-based approaches over

frequency-based approaches in prioritizing cancer genes and

revealing their functional impacts.

Comparison of the consensus mutation networks of LUAD and

melanoma revealed 94 overlapping genes, 33 of which are also

CGC genes (Figure S10). We performed a functional enrichment

test of these 94 genes (Table S11) and found that most of them are

enriched in protein binding categories or cancer-related signaling

pathways. The most highly enriched GO terms are involved in

enzyme binding (pBonferroni=2.16610213), receptor binding (pBon-

ferroni=3.03610213), phosphatase binding (pBonferroni=5.856

1029), and kinase binding (pBonferroni=1.7661026). The most

significant pathways include the pathway of ‘‘influence of Ras and

Rho proteins on G1 to S transition’’ (pBonferroni=1.2661029),

‘‘signaling events mediated by VEGFR1 and VEGFR2’’ (pBonfer-

roni=1.7461028), and ‘‘tumor suppressor Arf inhibits ribosomal

biogenesis’’ (pBonferroni=1.0161027). Collectively, these results

suggested that the overlapping genes between LUAD and

melanoma mainly function in cell signaling.

The advantages of our approach are threefold. First, in contrast

to single-gene-based mutation frequency, our method is based on

the joint frequency of two interacting proteins; thus, at the same

threshold of frequency, our method can detect moderately or even

rarely mutated genes that fail the threshold individually. Second,

our interaction-based method helps to filter out many randomly

occurring passenger genes, as these genes are expected to be

randomly distributed in the network and the chance that their

Figure 5. Selected subgraphs in the melanoma consensus mutation network. Node size is proportional to the number of samples
harboring mutations in the corresponding gene (MutGene), as indicated in the parenthesis after the node name. Edge width is proportional to the
number of samples harboring the interactions, which is also indicated by the number on each edge. For example, NRAS was mutated in 29 samples,
PIK3CA was mutated in 6 samples, and the interaction between their protein products was found by RWR in 29 samples. In contrast, RASGRP2 was
mutated in one sample and the interaction between its protein product and NRAS was found by RWR in 30 samples.
doi:10.1371/journal.pcbi.1003460.g005
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interactors are mutation genes is smaller. Third, our mutation

network shows the interactions and context of mutation genes,

providing an interpretation to facilitate biological functional

analysis in the future, such as further investigation of the novel

gene RAC1 in melanoma.

The limitations of our work, which could be improved in future

investigations, are reflected in several factors that may impact the

results. First, the method is sensitive to the reference network,

though it could be flexibly selected. Currently, PPI network

resources are comprehensive, but most of them are collected from

large scale experiments [28,29,30,31]. Functional correlation

networks are valuable when representing biological knowledge

and correlations among genes but are generally limited to genes

that have already been annotated. As shown in Figure S1, a

condensed mutation network was generated from the functional

correlation network. This consensus network recruited 22 known

LUAD genes, fewer than the 31 known LUAD genes that were

recruited in the HPRD-based mutation network. Future expansion

of biological networks is expected to improve the detection of

mutation networks.

Second, the threshold we used to select interactions, i.e., 10 for

both LUAD and melanoma samples, is a trade-off between

accuracy and recall rate. Decreasing this threshold value would

recruit more cancer genes, but it would also introduce false-

positives. Currently, we propose to fit a linear regression model

between the number of edges and the edge recurrence. This

strategy works in most cases, including the independent TCGA

LUAD and SKCM datasets. In practical applications, expert

guidance could help to further refine the selection of candidate

genes, e.g., in the case of LUAD dataset [16]. In future work, we

plan to optimize the selection of interactions by making it

threshold-free.

Third, we may improve the mutation recurrence (mr) index

through the use of more sophisticated statistical tests and by

including protein domain information (details of the mr index is

described in Methods and Materials). In our work, we examined

the resultant mutation networks either with or without applying

the criterion of mr,1.05 in LUAD samples. In the latter case, the

recall rate of LUAD genes increased by 4%; however, this

application also led to 20% more proteins recruited in the final

mutation network and, correspondingly, greatly decreased the

specificity. Taken together, the parameter mr performs satisfacto-

rily in our work.

In summary, we present a sample-specific mutation network

analysis method to prioritize cancer driver genes using the

mutation profiles generated in NGS projects. Our method will

be useful for investigators who explore cancer genes through

rapidly emerging NGS applications in cancer research and

personalized medicine. It can also be applied to explore functional

mutations in other complex diseases or traits. The source code in

R is available at http://bioinfo.mc.vanderbilt.edu/VarWalker.

html.

Materials and Methods

Datasets
Lung adenocarcinoma mutation data. The lung adeno-

carcinoma mutation dataset is from a recent NGS study of 183

LUAD samples and their matched normal tissues [15]. Among

them, 159 were sequenced by WES only, 1 by WGS only, and 23

by both WES and WGS. The called mutations from the 23

samples using both platforms were employed for cross-platform

validation, and the validation rate was shown to be high (97–98%

for substitutions and 84–86% for indels) [15]. Therefore, although

the mutation data has not been completely validated through

traditional Sanger resequencing, the quality of the data was

estimated to be high. The samples include several levels of smokers

ranging from never-smokers to heavy smokers. Thus, the

mutational profile for each patient varies dramatically. More

details can be found in the Supporting Information, Text S1.

The authors of the original work [15] nominated 25

significantly mutated genes using the software InVEx. Further-

more, they collected 19 well-known LUAD genes based on an

expert review of the previous studies, 6 genes based on related

copy number variation data, and 22 genes from two previous

large-scale sequencing studies of LUAD [9,32]. We manually

extracted all of these genes, resulting in a collection of 57

candidate genes. We used them as ‘known’ driver genes for LUAD

in the evaluation of our method.

Melanoma mutation data. The second mutation dataset

was obtained from a recent large-scale NGS study of melanoma

patients [16] (Text S1). WES was successfully performed in 121

tumor/normal pairs, with mutation data available for coding

regions. In the original work, the authors highlighted 6 novel

melanoma genes (PPP6C, RAC1, SNX31, TACC1, STK19, and

ARID2).

Mutation annotation. We utilized the software tool ANNO-

VAR [33] and related annotation files to perform biological and

functional annotations of these mutations. Only mutations in

coding regions were considered, as they are more likely to be

clinically relevant. To assess the functional impact of these

mutations, we incorporated two popular prediction systems, SIFT

[34] and PolyPhen2 [35], both of which are available through the

ANNOVAR website. For the SIFT program, a lower score

indicates a stronger probability to be deleterious. In contrast, a

higher PolyPhen2 score indicates a stronger probability. In this

work, we denoted a non-synonymous SNV to be deleterious if it

has a SIFT score,0.05 or a PolyPhen2 score$0.5. For indels in

the coding regions, we denoted all of them as deleterious. In

summary, our individual-based ‘deleterious mutation’ profile

includes deleterious missense SNVs, all the other non-silent SNVs

(nonsense, nonstop, splicing sites, and translation start sites), all

non-silent dinucleotide polymorphisms (DNPs), all non-silent tri-

nucleotide polymorphisms (TNPs), and all indels. The details of

these mutations and filtering processes are provided in Figure S3.

A mutation gene is denoted as a ‘MutGene’ if it harbors at least

one deleterious mutation.

PPI and gene annotation data. We retrieved the most

recent version of PPI data from the Human Protein Reference

Database (release 9, 06/29/2010) [36] to serve as our reference

network. Only the binary interactions were used. As a result, the

complete PPI network included a total of 9617 proteins and

39,240 interactions.

We utilized the CCDS genes [37] (accessed 10/09/2012) to

serve as a benchmark gene resource. All data used in this work,

including both mutation data and network data, were mapped to

CCDS genes. Only those that have matched CCDS gene symbols

were retained for the follow-up analysis. For each CCDS gene, we

estimated its cDNA length based on its coding sequences.

Prioritization of mutation genes using Random Walk with
Restart algorithm
Figure 1 shows the workflow, which has the following four steps.

Step 1. Patient-specific assessment of MutGenes. The aim of this

step is to filter out potential genes whose mutations likely occur by

chance based on the patient- (or sample-) specific mutational

profile. Note the data and model fitting in this step are both

performed for each single sample. As aforementioned, the
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likelihood of a gene to be mutated in a sample relies on many

factors, including both genetic and environmental factors, which

makes it impractical to accurately estimate the mutation rate for

each gene. Here, instead of a direct estimation, we tackled this

problem by formulating a generalized additive model and

estimated a relative mutation rate for each gene. Given a cancer

sample with MutGenes, let the vector Y denote the mutation status

of each CCDS gene, i.e., yi=1 if the ith gene is a MutGene in the

sample and yi=0 if it is not. A vector of X represents cDNA gene

length. We formulate the following model to estimate the

probability of a gene to be mutated as a function of its cDNA

length, i.e.,

logit(p)~log
p

1-p

� �
e f (X ),

where p is the proportion of MutGenes in the investigated samples

(i.e., p~
#MutGenes

#CCDS genes
) and f(.) represents an unspecified smooth

function. The function is then solved using a monotonic cubic

spline with six knots. Based on the successful fitting of the function,

each gene is assigned a weight, which represents its relative

probability to be a MutGene (hereafter denoted as probability

weight vector, or PWV) and is used as the gene-specific weight in

the follow-up weighted resampling process. PWV retains the

relative weight of each gene in a particular patient genome and

this relative weight changes in different samples.

We then resampled random gene sets to build the null

distribution of MutGenes occurring at random. Each random

gene set has the same number of MutGenes. In this random

selection procedure, each gene was selected from the genome

following its probability weight as defined in the sample-specific

PWV. The resampling process thus resembles the way in which

MutGenes occur in a specific genome in random cases. The

weighted resampling process was performed 1000 times in each

sample, and a mutation frequency was computed for each gene

using freq~
# resamples selecting the gene

1000
. Here, a freq$5%

indicates the gene likely occurs at random and a frequency ,5%

indicates the gene is highly unlikely to be mutated due to random

events. Accordingly, we filter genes with freq$5%. Upon

completion of this step, we obtained a list of significant MutGenes

for each sample.

We attempt to fit sample-specific models using MutGenes for

each sample such that the heterogeneous background of cancer

patients can be properly considered. However, a practical

challenge is to determine the minimum number of observations

for reliable model fitting. For example, samples with very few

MutGenes may not accomplish successful model fitting. Determi-

nation of the minimum number of observations remains an open

question in statistics. In our case, to avoid arbitrary selection, we

compared the results that were obtained using the sample-specific

model with those obtained using the universal model. Here, the

universal model was generated by using all MutGenes from the

cohort. As shown in Figure S11, the difference in the retained

MutGenes was large when samples had more MutGenes. We

therefore selected 50 as the cutoff. For samples with $50

MutGenes [128 (70%) LUAD samples and 110 (91%) melanoma

samples, Figure S4], we fitted a sample-specific model and

obtained a sample-specific PWV. For other patients with fewer

MutGenes, we performed a resample-based test using the

universal PWV.

As a positive control, we examined the performance of the

resample-based strategy on CGC genes, which are well-studied

cancer genes. We found that 96.30% CGC genes had a frequency

,5% in random datasets. Only 3.70% CGC genes had a

frequency $5%. This result indicates our resample-based strategy

retains a high sensitivity as evaluated by CGC genes; thus, the

filtered genes are more likely randomly-occurring genes. Based on

this observation, we created a manual adjustment to always retain

CGC genes, even if they were occasionally observed with $5%

frequency in random datasets. In practice, the users may remove

this inclusion criterion.

Step 2. Sample-specific application of the Random Walk with

Restart algorithm to search candidate interactors and MutGenes.

The RWR algorithm simulates a random walker’s transition in the

network from a starting node (or a few starting nodes), with pre-

defined starting probabilities, to its neighbors until it reaches a

stable status. RWR allows for revisiting of the starting node(s) with

revisiting probabilities. Given a network G with n nodes, we denote

W as the column-normalized adjacency matrix for G; therefore, W

is an n6n matrix. The RWR algorithm is formulated as:

ptz1
~ 1{rð ÞW ptzr p0

where r is the restart probability (e.g., r=0.5 in this study), and p0,

pt, and pt+1 are vectors of size n. Each of the three parameters, p0,

pt, and pt+1, represents a vector in which the ith element holds the

probability that the walker is at node i at time steps 0, t, and t+1,

respectively. In general, assuming that there are k initial genes

from which the walker would start with equal probability, the

initial vector p0 is defined as a vector, with the initial nodes having

a probability of 1/k and the remaining nodes having a probability

0, such that the sum of the probabilities equals 1, i.e.,

p0~ p0i
� �

~
1=k, starting nodes

0, otherwise

�
, where i=1,…,n. The RWR

function is solved using this iteration process when the difference

between pt and pt+1 is below a predefined threshold (e.g., 1026 in

our analyses).

In each patient, we iteratively took each MutGene as the

starting point to initiate the random walk and retained the top

1% (i.e., 10) of nodes that have the highest probabilities with

which the walker would stay at a stable status as the highly

accessible nodes for the initial node. Previous studies suggested

various ways to select candidate nodes, e.g., the most accessible

node (i.e., top 1) [18], top 5 [38], top 10 [39,40], top 20 [40], and

top 100 [41], but no consensus rules have been made. In this

work, we chose to retain the top 10 accessible nodes. Although

this selection criterion is arbitrary, our strategy is based on the

observation that, in real biological networks, especially PPI

networks, each node often has more than one important

interactor. For example, TP53 is inhibited by the protein

MDM2, but it is activated by ATM, both of which have a direct

interaction with TP53 [36]. In such cases, consideration of only

the most accessible interactor would overlook other important

interactors. Taken together, the number of candidate interactors

should not be too small (e.g., 1), as it may miss many important

interactors; however, it should not be too large either, as many

irrelevant genes may be included. We tested the selection of the

top 1, top 5, and top 10 interactors using the data in this study.

Based on the assessment, we selected 10 as a balance between

choosing too few informative genes (e.g., top 1) and too many

genes. However, this criterion can be adjusted depending on the

specific data. It is worth noting that these 10 nodes (genes) that

are most highly accessible from the starting node (gene) may not

always be statistically significant compared to mere chance and

will be evaluated in the next step.

VarWalker: Mutation Network Analysis
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Step 3. Randomization-based evaluation of the candidate

interactors. To evaluate whether the subnetworks generated by

RWR in step 2 do not occur by chance, we generated 100 random

networks, each of which maintains the topological characteristics

of the original network (e.g., degree of each node). We adapted the

switching algorithm proposed by Milo et al. [42], which starts from

the observed network and preserves the degree distribution in the

generated random network.

We also performed RWR for MutGenes in each of the 100

random networks and we extracted the top 10 nodes with the

highest probabilities. For each node encoded by aMutGene, the 10

candidate interactors in the observed network, g1, g2,…, g10, were

assessed by computing an empirical p-value: pedge~
#fp(gi)g

100
,

where p(gi) is a random network in which gi, i=1,…,10, was found

as the top 10 candidate genes to the same initial node. The

empirical p-value indicates the probability of a candidate

interactor to be selected by chance. The interactors with

pedge,0.05 are retained and denoted as significant interactors

for the MutGene (see Figure 1).

Step 4. Construction of a consensus mutation subnetwork. After

detecting MutGenes and their interactors in each sample, all

significant interactions were pooled together, forming a universal

candidate pool. This pool enabled us to better incorporate the

information across multiple samples. After tabulating all edges, we

explored the number of edges versus the edge occurrence

(Figure 3). By fitting a linear regression model, we observed that

the number of high frequency edges occurred more often than

expected. A cutoff was selected according to the distribution (e.g.,

10 for melanoma) and was manually adjusted based on expertise

(e.g., 10 for LUAD) when necessary. Furthermore, we required

both proteins involved in an interaction to be encoded by

MutGenes. After pooling all the sample-specific MutGenes and

their interactions, we implemented this step such that a pair of

MutGenes and its interactor could be either mutated in the same

patient or in different patients. In either instance, the interaction

would be interrupted.

Next, we defined a parameter called the mutation recurrence

(mr) index for each gene, or a pair of genes whose proteins interact,

to control the false positive rate. The mr index is defined as

mr~
# all mutations

# unique mutations
, where ‘# all mutations’ refers to

mutations occurring in the gene across all samples, and ‘# unique

mutations’ refers to the non-redundant set of ‘all mutations.’

Redundancy was determined if two mutations shared the same

genomic coordinate regardless of the derived alleles. The

introduction of the mr index is based on the observation that

mutations in driver genes typically occur in important domains

(e.g., kinase domains) and tend to cluster around ‘hotspots’ [43]. In

contrast, mutations in passenger genes do not have particular

features and may occur randomly across the whole gene. We

removed interactions involving MutGenes whose mr,1.05. This

cutoff of mr (,1.05) corresponds to MutGenes with.20 non-silent

deleterious mutations in the cohort but none shared with any other

(i.e., all are unique mutations). This filtering procedure resulted in

a pool of high confidence interactions. Then, a consensus mutation

network that was frequently mutated or revisited across many

samples was derived by selecting the highly recurring interactions

according to the overall distribution of the interaction pool.

Functional enrichment analyses
We used the online tools DAVID [23] and ToppGene [44] for

functional analyses. Both tools provide comprehensive resources

for biological pathway annotation (e.g., canonical pathways from

KEGG [24]) and biological processes (e.g., GO [25] terms).

ToppGene also collected information from other databases,

including BioCarta, BioCyc, Reactome, GenMAPP, and

MSigDB. Wherever applicable, multiple testing correction using

the Bonferroni method was performed to control the false

discovery rate.

Supporting Information

Figure S1 Performance evaluation of four factors in
VarWalker using lung adenocarcinoma samples. (1) All

MutGenes (denoted as ‘‘all’’) versus recurrent MutGenes (‘‘recur-

rent’’). (2) The reference network: HPRD, PINA, and a network

based on functional pathway annotation (denoted as ‘‘PathNet’’).

(3) Measurement of cDNA length: the actual cDNA length

(‘‘cDNA’’) versus the sum of all possible non-silent mutations

occurring in the cDNA regions (‘‘NScount’’). (4) Implementation

of filtering genes that are two steps away from CGC genes

(denoted as ‘‘cgcYes’’) versus avoiding this filtering step (‘‘cgcNo’’).

(TIF)

Figure S2 The proportion of genes retained after each
step. Three steps are examined: remove genes that failed gene

length assessment by GAM (abbreviated as ‘‘By GAM’’), map

genes to the HPRD network (‘‘Mapped to HPRD’’), and remove

genes that are two steps away from the CGC genes (‘‘By step = 2

from CGC’’).

(TIF)

Figure S3 Somatic mutation profile for 183 lung adeno-
carcinoma (LUAD) samples (A) and 121 melanoma
samples (B). We retrieved raw mutation data from the

supplemental information provided by the original publications

[15,16]. The mutations in LUAD samples were all somatic coding

mutations [15]. Somatic mutations in the melanoma samples were

provided for the whole gene regions (coding and noncoding) [16].

As described in the main text, deleterious mutations are denoted

using grey boxes. The numbers shown in this figure include known

SNPs from dbSNP or The 1000 Genomes Project. In our follow-

up analyses, genes related to the mutations indicated in the grey

boxes were further filtered by excluding known SNPs (dbSNP)

according to the dbSNP_Val_Status in the original files.

(TIF)

Figure S4 Distribution of MutGenes per sample. The

black vertical bars indicate the number of all MutGenes in each

sample, and the red bars indicate the number of recurrent

MutGenes in each sample.

(TIF)

Figure S5 Distribution of genes’ cDNA length (bp) in
log10 scale. All human CCDS genes were included. The 10

genes shown on the X-axis are the 10 most frequently mutated

genes in the LUAD samples. TP53 and KRAS, two well-known

driver genes in LUAD, are shown in red.

(TIF)

Figure S6 Evaluation of overlapping genes in indepen-
dent datasets. The null distribution of overlapping genes

compared to those observed in lung adenocarcinoma and

melanoma are plotted, respectively. The red dots in both panels

indicate the observed number of overlapping genes.

(TIF)

Figure S7 Consensus mutation network in lung adeno-
carcinoma (LUAD) samples. Node size is proportional to the

number of samples harboring mutations in the corresponding gene

(MutGene), as indicated in the parenthesis following the node
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name. The triangular nodes denote the proteins encoded by

known LUAD genes (see Materials and Methods). Edge width is

proportional to the number of samples in which the interaction

was observed, which is also indicated by the number on each edge.

Note that only edges occurring in $10 samples are shown in the

figure.

(TIF)

Figure S8 Consensus mutation networks for LUAD
smokers and never smokers. (A) Distribution of the number

of edges (in a logarithmic scale) versus their occurrence in LUAD

smokers. (B) Consensus mutation networks for smokers. (C)

Distribution of the number of edges (in a logarithmic scale) versus

their occurrence in LUAD never smokers. (D) Consensus mutation

networks for never smokers. In (B) and (D), node size is

proportional to the number of samples harboring mutations in

the corresponding gene (MutGene), as indicated in the parentheses

after the node name. Note the node size is not in the same scale in

(B) and (D) because there are only 27 never smokers and the

mutation frequency is low. Edge width is proportional to the

number of samples in which the interaction is detected, which is

also indicated by the number on each edge.

(TIF)

Figure S9 Consensus mutation network in melanoma
samples. Node size is proportional to the number of samples

harboring mutations in the corresponding gene (MutGene), as

indicated in the parenthesis after the node name. Edge width is

proportional to the number of samples in which the interaction

was observed, which is also indicated by the number on each edge.

Note that only edges occurring in $10 samples are shown in the

figure.

(TIF)

Figure S10 Venn diagram of genes in the lung adeno-
carcinoma consensus mutation network, the melanoma
consensus mutation network, and CGC genes.
(TIF)

Figure S11 Differences of the number of retained
MutGenes after weighted resampling using the sam-
ple-specific probability weight vector (PWV) from that
using universal PWV. Y-axis: the difference between the

number of retained genes when using the sample-specific PWV

and that when using the universal PWV.

(TIF)

Table S1 Comparison of data in the discovery and
evaluation datasets for lung adenocarcinoma (LUAD)
and melanoma.
(DOCX)

Table S2 Functional analysis of the mutation network
for lung adenocarcinoma: Top significant KEGG path-
ways (pBonferroni,1026).
(DOCX)

Table S3 Functional analysis of the mutation network
for lung adenocarcinoma: Top significant Gene Ontolo-
gy (GO) terms in the Biology Process (BP) category
(listed are pBonferroni,10210).
(DOCX)

Table S4 Functional analysis of the first subgraph in the

mutation network for lung adenocarcinoma: top signif-

icant pathways.

(DOCX)

Table S5 Functional analysis of the second subgraph in

the mutation network for lung adenocarcinoma (LUAD):

Top 10 significant Gene Ontology (GO) terms in the

Molecular Function (MF) and Biological Process (BP)

categories.

(DOCX)

Table S6 Functional analysis of the third subgraph in

the mutation network for lung adenocarcinoma (LUAD):

Top 10 significant Gene Ontology (GO) terms in the

Molecular Function (MF) and Biological Process (BP)

categories.

(DOCX)

Table S7 Significant interactions in which both inter-

actors are encoded by genes from known LUAD genes,

Cancer Gene Census (CGC), or kinase and involve one

highly mutated gene and one rarely mutated gene (in

bold), as determined by the threshold for mutation

frequency, i.e., 18265%=9.1 samples.

(DOCX)

Table S8 Functional analysis of the melanomamutation

network: Top significant KEGG pathways (pBonfer-

roni,1026).

(DOCX)

Table S9 Functional analysis of the melanomamutation

network: Top significant GO terms (pBonferroni,1026).

(DOCX)

Table S10 Functional analysis of selected subgraphs in

the melanoma mutation network: Top 10 significant

pathways.

(DOCX)

Table S11 Functional analysis of 94 overlapping genes

between the lung adenocarcinoma consensus mutation

network and the melanoma consensus mutation net-

work (top 5 in each category).

(DOCX)

Text S1 Detailed description of datasets and evaluation

of the algorithm.

(DOCX)
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