
Varying-Coefficient Additive Models for Functional Data

XIAOKE ZHANG and JANE-LING WANG

Department of Statistics, University of California, Davis,
Davis, California 95616 U.S.A.

xkzhang@ucdavis.edu janelwang@ucdavis.edu

October 30, 2013

Abstract
Both varying-coefficient and additive models have been studied extensively in the literature

as extensions to linear models. They have also been extended to functional response data. How-
ever, existing extensions are still not sufficiently flexible to reflect the functional feature of the
responses. In this paper, we extend both varying-coefficient and additive models to a much more
flexible “varying-coefficient additive model” and propose a simple algorithm to estimate the non-
parametric additive and varying-coefficient components of this model. We establish the L2 rate
of convergence for each component function and demonstrate the applicability of the new model
through traffic data.

Key Words: B-splines, functional data, varying-coefficient models, additive structure.

1 INTRODUCTION

Varying-coefficient models are widely used in longitudinal data analysis due to their simplicity,
flexibility and interpretability. They provide a natural extension of the linear regression model to a
nonparametric setting and can easily incorporate multiple covariates. Let W(t) be a smooth random
response function, Z = (Z1, . . . ,Zd)> be a d-dimensional vector of covariates, and m be the regression
function m(t, z) = E{W(t) | Z = z}. The varying-coefficient model proposed by Hoover et al. (1998)
takes the form:

m(t, z) = β0(t) +

d∑
k=1

βk(t)zk. (1)

Model (1) assumes that at each time t, the relation between the covariate vector Z and the re-
sponse W(t) is linear but allows the regression coefficients to vary across time. However, the linear
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assumption may not hold or should at least be verified. This motivates us to consider a natural exten-
sion of model (1), the varying-coefficient additive model:

m(t, z) = β0(t) +

d∑
k=1

βk(t)φk(zk), (2)

where the relation between Z and W might be nonlinear and unknown. Here the βk, k = 1, . . . , d, are
varying-coefficient functions and φk, k = 1, . . . , d, the additive component functions.

An appealing feature of this model is that at any fixed time point t model (2) is additive with
respect to z. Hence model (2) is also an extension of the conventional additive model (Stone (1985)),
which avoids the curse of dimensionality through the additive structure. Model (2) is thus an ex-
tension of both the varying-coefficient and additive models. A key advantage of the model is the
multiplicative form βk(·)φk(·), which separates the joint influence of covariates and time and provides
easy interpretations. It also facilitates model checking for either the varying-coefficient model or
additive model.

Thanks to the dense design of the time points for functional data, we are able to separate the
estimation of the additive component functions from that of the varying-coefficient functions. A
two-step estimation procedure is proposed in Section 2. The proposed approach involves fitting an
additive model for independent data and then the fitting of a varying-coefficient model. The errors
induced in estimating the additive component functions φk complicate the asymptotic theory for the
coefficient function as errors are induced on the covariates in the regression models and need to be
handled carefully.

Algorithms to estimate component functions for additive models include ordinary backfitting
(Buja et al. (1989)), marginal integration (Linton & Nielsen (1995)), smooth backfitting (Mammen
et al. (1999)) and regression splines (Stone (1985), Wang & Yang (2007)). For varying-coefficient
models, the unknown coefficient functions can be estimated by smoothing splines (Brumback & Rice
(1998), Hoover et al. (1998)), local polynomial smoothing (Hoover et al. (1998), Fan & Zhang (1999))
and polynomial splines (Huang et al. (2002), Huang et al. (2004)). Due to computational efficiency
and stability, we employed the B-spline approach to fit both the additive component and coefficient
functions.

The rest of the paper proceeds as follows. The model and a two-step estimation approach are in-
troduced in Section 2. Section 3 gives the asymptotic properties of the functional estimators. Section 4
and 5, respectively, present a simulation study and a real data analysis. Conclusions and discussions
are in Section 6.
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2 METHODOLOGY

The varying-coefficient additive model (2) requires some identifiability conditions. Assume for
simplicity that the random function W(t) from a subject is an L2 stochastic process on the interval
[0, 1], and its covariate Z = (Z1, . . . ,Zd)>, also has the property that Zk ∈ [0, 1], for all k = 1, . . . , d.

PROPOSITION 1. The varying-coefficient additive model (2) is identifiable under the constraints

E{φk(Zk)} = 0 and
∫ 1

0
βk(t)dt = 1, k = 1, . . . , d. (3)

Then, β0(t) = E{W(t)}, the overall mean function.

2.1 Estimation

Under the above identifiability conditions, an alternative form of model (2) is:

W(t | Z = z) = β0(t) +

d∑
k=1

βk(t)φk(zk) + U(t), (4)

where U is the stochastic component of the process W, which is independent of Z, and E{U(t)} = 0,
E{φk(Zk)} = 0, and

∫
βk(t)dt = 1 for k = 1, · · · , d.

Due to the dense design at the time points of the functional data W(t | z), we are able to separate
the estimation of the additive component functions from that of the coefficient functions. To see this,
integrate both sides of (4) with respect to t, we get

∫
W(t | z)dt = β̃0 +

d∑
k=1

φk(zk) + Ũ, (5)

where β̃0 =
∫
β0(t)dt and Ũ =

∫
U(t)dt.

This leads to an additive model in Z, so the additive component functions φk can be estimated
through standard additive model approaches for independent data. Once the φk are estimated, we
can then employ any one of the several approaches for varying-coefficient models to estimate the βk.
We choose the B-spline smoother to estimate both φk and βk and develop asymptotic theory for both
estimators. A caveat is that the left-hand side of (5) involves integrating W over t but we do not
observe the entire process W, so there is an approximation error in the integration that needs to be
handled properly. This will be addressed technically later in the proofs.

Suppose that we have a sample of n independent subjects, i.e., (Wi,Zi)’s are independently and
identically distributed copies of (W,Z). The process Wi is not observed, but instead, measurements
are made densely at time points Ti j, j = 1, . . . ,Ni, for subject i, and the response at Ti j is contaminated
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with a random error ei j. These errors, across time and subjects, are assumed to be independent and
identical copies of e, where E(e) = 0 and var(e) = σ2. Thus we observe {(Yi j,Ti j,Zi), i = 1, . . . , n; j =

1, . . . ,Ni}, where Yi j = Wi(Ti j) + ei j. This means the observations can be written as

Yi j = β0(Ti j) +

d∑
k=1

βk(Ti j)φk(Zik) + Ui j + ei j, (6)

where Ui j = Ui(Ti j). For brevity of notation, hereafter we abbreviate δi j = Ui j + ei j.

Step I
Following (5), the first step is to construct an additive model with additive component functions

φk. For this, we sort the data within each subject in ascending order of time and denote by T ∗i1 ≤ T ∗i2 ≤
· · · ≤ T ∗i,Ni

the ordered Ti j with Y∗i j and δ∗i j as concomitants, i.e. Y∗i j = Yik when Tik = T ∗i j.
Applying the trapezoidal rule of integration, we define the integrated response for the ith subject

by

Ỹi =
1
2

Ni−1∑
j=1

(Y∗i j + Y∗i, j+1)(T ∗i, j+1 − T ∗i j) + Y∗i1T ∗i1 + Y∗i,Ni
(1 − T ∗i,Ni

). (7)

Then we fit an additive model on {(Ỹi,Zi), i = 1, . . . , n} to estimate the additive component functions
φk, k = 1, . . . , d, as follows:

Ỹi = β̃0 +

d∑
k=1

φk(Zik) + ηi, (8)

where ηi is defined in Eq. (16) in Appendix B.
To approximate φk by B-splines, we use basis functions of order pk,A ≥ 1 and Kk,A interior

knots, where the subscript A suggests that this is for the additive component function. Denote the
basis functions by {ψkl, l = 1, . . . , Jk,A}, where Jk,A = Kk,A + pk,A is the total number of bases to
fit φk. For each k = 1, . . . , d, we approximate φk(z) ≈

∑Jk,A
l=1 fklψkl(z) by suitable spline coefficients

fk = { fkl, l = 1, . . . , Jk,A}
>. Let f = (f1, . . . , fd)>. The initial estimate for f is

(β̌0, f̂) = argmin
β̃0,f

n∑
i=1

Ỹi − β̃0 −

d∑
k=1

Jk,A∑
l=1

fklψkl(Zik)


2

, (9)

which is then modified to satisfy the empirical version of the constraints (3), i.e., n−1 ∑n
i=1 φ̂k(Zik) = 0.

This leads to

φ̂k(z) =

Jk,A∑
l=1

f̂klψkl(z) −
1
n

n∑
i=1

Jk,A∑
l=1

f̂klψkl(Zik), k = 1, . . . , d. (10)

Step II
Once we have obtained the estimates φ̂k, k = 1, . . . , d, we can estimate βk, k = 0, . . . , d, by
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plugging the estimates φ̂k into (6), and this leads to

Yi j = β0(Ti j) +

d∑
k=1

βk(Ti j)φ̂k(Zik) + εi j, where εi j = δi j −

d∑
k=1

βk(Ti j){φ̂k(Zik) − φk(Zik)}. (11)

To estimate βk, we use basis functions of order pk,C ≥ 1 and Kk,C interior knots to approximate
them, where the subscript C suggests that this is for the varying-coefficient function. Denote the
basis functions by {θkl, l = 1, . . . , Jk,C}, where Jk,C = Kk,C + pk,C. Then for each k = 0, . . . , d, βk

is approximated by
∑Jk,C

l=1 gklθkl(t) with suitable spline coefficients gk = {gkl, l = 1, . . . , Jk,C}
>. Let

g = (g0, g1, . . . , gd)>, the estimate of g is

ĝ = argmin
g

n∑
i=1

Ni∑
j=1

Yi j −

J0,C∑
l=1

g0,lθ0,l(Ti j) −
d∑

k=1

φ̂k(Zik)
Jk,C∑
l=1

gklθkl(Ti j)




2

. (12)

Hence, the estimates of the overall mean function β0 is

β̂0(t) =

J0,C∑
l=1

ĝ0,lθ0,l(t), (13)

and the estimates of the coefficient functions βk, k = 1, . . . , d, subject to the constraints in (3), are

β̂k(t) = c−1
k

Jk,C∑
l=1

ĝklθkl(t), where ck =

∫ 
Jk,C∑
l=1

ĝklθkl(t)

 dt, k = 1, . . . , d. (14)

2.2 Remarks

The estimation of the additive component functions φk hinges on a reliable estimate of
∫
βk(t)dt,

which should be close to 1. This is guaranteed by the dense design of the time points. Details are
provided in Appendix B.

In Step I, after intra-subject integration as in (7), the subsequent procedures, including (8), (9)
and (10), are similar to fitting an additive model for independent data. In Step II, Eq. (11) can be
considered as a varying-coefficient model with vector covariates φ̂k(Zk), so Eq. (12) is similar to the
estimation procedure in Huang et al. (2002). However, the estimation errors in φ̂k(Zk) need to be
tracked as in the proof of Theorem 2 presented in Appendix B.

The two-step approach can be iterated to update the estimates, φ̂k and β̂k. However, numeri-
cal studies based on simulations not presented in the paper showed no improvements to iterate the
estimates.
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3 ASYMPTOTIC PROPERTIES

In this section we establish the L2 rates of convergence for φ̂k, k = 1, . . . , d and β̂k, k = 0, . . . , d.
For any two sequences a(n), b(n) > 0 we introduce the notation a(n) � b(n) to mean that
lim supn→∞ a(n)/b(n) < ∞, and a(n) � b(n) to mean that 0 < lim supn→∞ a(n)/b(n) < ∞. The L2 norm
of a univariate function η(·) ∈ [0, 1] is denoted by ‖η‖2 = {

∫ 1

0
η(s)2ds}1/2.

3.1 Component functions

Let Gn,k be the linear space spanned by {ψkl, l = 1, . . . , Jk,A}. Denote

KA = max
1≤k≤d

Kk,A and ρA =

d∑
k=1

inf
µk∈Gn,k

sup
zk∈[0,1]

|φk(zk) − µk(zk)|.

THEOREM 1. Under Assumptions 1–6, 8–9 in Appendix A, for any k = 1, . . . , d,

‖φ̂k(zk) − φk(zk)‖22 = Op

KA

n
+

1
n2 (

n∑
i=1

N−2
i )2 + ρ2

A

 .
Remark 1. Compared to the convergence for one-dimensional nonparametric smoothers, Theorem 1

has one additional term n−2(
∑n

i=1 N−2
i )2. This term comes from the intra-subject integration in Step I,

which reflects the approximation error of the trapezoid rule to the theoretical integral. The approxi-

mation becomes negligible when the relative magnitude of Ni to n is sufficiently large. In particular, if

min1≤i≤n Ni � n1/4, this additional term is dominated by KA/n and the rate of convergence in Theorem

1 is exactly the same as a one-dimensional nonparametric smoother. This phenomenon indicates that

for dense functional data, the estimated φk attain the same rate as those whose true βk are known.

Remark 2. We can obtain more accurate rates of convergence if specific smoothness conditions are

provided. For example, if for all k = 1, . . . , d, φk has bounded second derivatives and Gn,k is a cubic

spline space, that is, rk = 2 in Assumption 6 and pk,A = 4, then by Theorem 6.27 of Schumaker (2007)

and Assumption 9,

ρA �

d∑
k=1

K−2
k,A � K−2

A .

If we let KA � n1/5 and min1≤i≤n Ni � n1/4, we have the optimal rate of convergence n2/5 as in Stone

(1985).
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3.2 Coefficient functions

Let Ns =
∑n

i=1 Ni, N̄ = Ns/n, Nmax = max1≤i≤n Ni, and Hn,k be the linear space spanned by
{θkl, l = 1, . . . , Jk,C}. Denote

KC = max
0≤k≤d

Kk,C and ρC =

d∑
k=0

inf
νk∈Hn,k

sup
t∈[0,1]

|βk(t) − νk(t)|.

THEOREM 2. Under Assumptions 1–10 in Appendix A, for any k = 0, . . . , d, if limn→∞ ρA = 0,

‖β̂k(t) − βk(t)‖22 = Op

KC

Ns
+

∑n
i=1 N2

i

N2
s

+
Nmax

N̄
ρ2

C +
KCNmax + (Nmax)2 + N̄Nmax

N̄2

KA

n
+

1
n2 (

n∑
i=1

N−2
i )2 + ρ2

A




Remark 3. Compared to the results for varying-coefficient models, the rate of convergence in Theo-

rem 2 has an additional term N̄−2{KCNmax + (Nmax)2 + N̄Nmax}{n−1KA + n−2(
∑n

i=1 N−2
i )2 + ρ2

A}, and the

term N̄−1Nmaxρ
2
C replaces the bias ρ2

C in varying-coefficient models. They both reflect the effects of

replacing the “true” covariate in a varying-coefficient model by an estimate of it, and underscore the

strong impact of error-in-variable in regression models.

Remark 4. More accurate rate of convergence can be obtained with more specific conditions on the

smoothness of the varying-coefficient functions βk and the additive component functions φk, and on

the number of observations Ni. For example, if for all k = 0, . . . , d, βk has bounded second derivatives

and Hn,k is a cubic spline space, i.e., sk = 2 in Assumption 4 and pk,C = 4, then by Theorem 6.27 of

Schumaker (2007) and Assumption 10,

ρC �

d∑
k=0

K−2
k,C � K−2

C .

Additionally, suppose that for k = 1, . . . , d, φk has bounded second derivatives and Gn,k is a cubic

spline space. If we let Nmax � min1≤i≤n Ni � n1/4, KC � n1/4 and KA � n1/5 , then we can achieve

the rate n2/5 for β̂k, which is the comparable rate for one-dimensional nonparametric smoother based

on independently and identically distributed data. In the special case when the additive component

functions falls in a known and finite dimensional spline spaces, i.e. φk ∈ Gn,k with Kk,A known for all

k, then ρA = 0 and we can obtain root-n rate for β̂k if we let Nmax � min1≤i≤n Ni � n1/4, KC � n1/4 and

KA � 1.
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4 SIMULATION

We generated Q = 500 samples with n = 100 subjects in each sample. The number of mea-
surements per subject is Ni = 40 and the time points Ti j, j = 1, . . . ,Ni are equidistant on [0, 1]. We
set d = 2 and the two covariates (Zi1,Zi2)>, i = 1, . . . , n are independently and identically distributed
copies generated from the MATLAB function copularnd using a Gaussian copula with linear correla-
tion parameter 0.6. Thus, marginally, Zi1 and Zi2 both have a uniform distribution on [0, 1].

The true functions were chosen as:

φ1(z1) = sin(2πz1), φ2(z2) = 4z3
2 − 1;

β0(t) = 1.5 sin{3π(t + 0.5)} + 4t3, β1(t) = 3(1 − t)2, β2(t) = 4t3.

It is obvious that φ1, φ2, β1 and β2 satisfy the constraints (3). We generated Ui j =
∑4

l=1 Ailγl(Ti j),
where Ail are independent from N(0, λl) with λl = 1/(l + 1)2, l = 1, . . . , 4, and

γ1(t) = 21/2 cos(2πt), γ2(t) = 21/2 sin(2πt),

γ3(t) = 21/2 cos(4πt), γ4(t) = 21/2 sin(4πt).

The random errors ei j are independently drawn from N(0, 0.01). Thus the observed response was
obtained by

Yi j = β0(Ti j) +

d∑
k=1

βk(Ti j)φk(Zik) + Ui j + ei j.

The evaluation criterion is the mean integrated squared error (mise) based on Q = 500 estimates
{φ̂k(·)[q], k = 1, . . . , d, q = 1, . . . ,Q} and {β̂k(·)[q], k = 0, . . . , d, q = 1, . . . ,Q} from the simulated
samples:

mise(φk) = Q−1
Q∑

q=1

∫
{φ̂k(zk)[q] − φk(zk)}2dzk, mise(βk) = Q−1

Q∑
q=1

∫
{β̂k(t)[q] − βk(t)}2dt.

We further define summary measures mise(φ) =
∑d

k=1 mise(φk), mise(β) =
∑d

k=0 mise(βk), and mise(φ, β) =

mise(φ) + mise(β).
aic or bic was used to select the number of knots for βk, k = 0, . . . , d and φk, k = 1, . . . , d. A

summary of the selected knots is shown in Table 1 together with the optimal number of knots in
the simulation setting. The corresponding mise values are presented in Table 2, where the preferred
choice is to use bic to select the knots for both φk’s and βk’s. This leads to mise values comparable to
the optimal ones, hence the proposed procedure seems to work well.

8



5 DATA APPLICATION

The methodology in Section 2 was implemented to a traffic dataset from the Freeway Perfor-
mance Measurement System (PeMS, http://pems.eecs.berkeley.edu). The dataset is available
at the University of California, Irvine machine learning repository. It was collected from a loop sen-
sor at an on-ramp for the 101 North freeway in Los Angeles located near Dodger Stadium, which
is the home stadium of the Los Angeles Dodgers baseball team. The sensor would detect the traffic
volume after a Dodgers game. The period of data we used spanned from April 2005 to October 2005.
Measurements were taken every five minutes and the total number of cars in this five-minutes interval
were recorded as one measurement. On a day when the Dodgers had a home game, additional infor-
mation is available, including the time when the game started and ended, game attendance and final
scores of the two teams.

Different from Ihler et al. (2006) whose objective was to predict the occurrence of a baseball
game at Dodgers stadium, we focused on game days and investigated how car counts around the end
of the game are related to game attendance and score difference (home score minus away score). The
motivation of our study is to check whether people are likely to leave before the game ends when the
attendance is large or when the home team falls behind. We regarded the end time of each game as
the onset time 0 and focused on the car counts between 30 minutes before the end (t = −30) and 120
minutes after the game (time t = 120). The car counts on the 78 game days during April 2005 to
October 2005 are shown in Fig. 1, which reveals that 30 minutes before the game ends, the number
of cars gradually increases and reaches the peak around 20 minutes after the game and then decreases
throughout afterwards.

We fitted this data with the varying-coefficient additive model. For both the additive component
and coefficient functions, we used cubic splines and equidistant interior knots, and the number of
knots were selected via the bic method based on our experience in the simulation study. The results
were (K1,A,K2,A) = (1, 2) and (K0,C,K1,C,K2,C) = (2, 5, 1). The estimated additive component and
coefficient functions are shown in Fig. 2 and Fig. 3 together with their 95% simultaneous confidence
bands. The simultaneous confidence bands for the additive component functions were constructed
through the Scheffé’s method based on the estimated spline coefficients, f̂ in equation (9). This is a
simple and practical way to approximate the simultaneous confidence bands because only the subject
specific integrated responses, which are independent, were used to estimate the additive component
functions. As for the coefficient functions, we used the bootstrap method to construct the simulta-
neous confidence band, because the coefficient functions were estimated from all Yi j, which are not
independent, so the method is not applicable for such dependent data.

Fig. 2 and Fig. 3 reveal that at the 5% level, both functions φ̂1 and β̂1 for attendance are sig-
nificantly different, respectively, from 0 and the constant function 1 but φ̂2 and β̂2 corresponding to
the score difference are not significant. Therefore, game attendance can be considered a significant
covariate for car traffic counts and the traditional additive model may not fit this data well. The addi-
tive component function became positive when the attendance exceeded approximately 45, 000. This
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and β̂1 in Fig. 3 suggest two additional smaller peaks, one slightly before time 0 and the other around
time 50, in addition to the primary peak traffic around time 20 depicted by the mean curve in Fig. 1.
This seems reasonable as in order to avoid the primary traffic peak, some people may leave shortly
before the game ends, while others who took longer time to leave (could be by choice to avoid the
peak traffic) created the peak at time 50.

For attendance less than 45, 000, the additive component function is negative and there is no
additional peak traffic near the end of the game. This could be explained as most people would like to
stay until the end of the game, if the attendance is relatively small. An interesting finding is that the
primary peak size at time 20 is offset by a trough in β̂1 in Fig. 3. This is reasonable and underscores
the advantage of the proposed varying-coefficient additive model.

6 DISCUSSIONS

The varying-coefficient additive model proposed in this paper alleviates the curse of dimen-
sionality, maintains modeling flexibility, and captures the time dynamic characteristics of functional
data. Densely sampled functional responses facilitate separate estimation of the additive component
functions and the varying-coefficient functions by respectively fitting an additive model and a varying-
coefficient model. If the data is sufficiently dense in the sense that max1≤i≤n Ni � min1≤i≤n Ni � n1/4,
we can achieve the optimal L2 rate of convergence for one-dimensional nonparametric smoothing for
both the additive component function and the coefficient function estimates. The estimators perform
satisfactorily in the simulation study.

The varying-coefficient additive model (2) can also be used for model checking for two sub-
models: if each φk(zk) is a linear function of zk, model (2) becomes the varying-coefficient model (1);
if all βk(t) = 1, k = 1, . . . , d, then model (2) becomes the additive model (5). For the analysis of
traffic data, we demonstrate how simultaneous confidence band can be obtained by bootstrapping and
it suggests a lack of fit of the traditional additive model. Model checking for the varying-coefficient
model is more complicated and will be a future project.
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APPENDIX A: Assumptions

We first list the assumptions needed to prove the asymptotic properties.
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Assumption 1. {Ti j, i = 1, . . . , n, j = 1, . . . ,Ni} are independent and identical copies of T whose

density function fT is bounded from below and above, i.e., mT ≤ fT (t) ≤ MT , for all t ∈ [0, 1].

Assumption 2. The joint density of Z, p(z) is bounded below and above on its domain [0, 1]d:

mp ≤ inf
z∈[0,1]d

p(z) ≤ sup
z∈[0,1]d

p(z) ≤ Mp.

Assumption 3. Ni → ∞ as n→ ∞ for all i = 1, . . . , n.

Assumption 4. βk(t) has bounded skth derivatives, where sk ≥ 2 for all k = 0, . . . , d.

Assumption 5. sups,t∈[0,1] |cov{U(s),U(t)}| ≤ G < ∞.

Assumption 6. φk has bounded rkth derivatives, for k = 1, . . . , d., where rk ≥ 0.

Assumption 7. Let Φ(z) = (1, φ1(z1), . . . , φd(zd))>. The eigenvalues of
∫

Φ(z)Φ(z)>p(z)dz are bounded

away from 0 and∞.

Assumption 8. The knots for φk, k = 1, . . . , d

0 = τk,1−pk,A = · · · = τk,0 < τk,1 < · · · < τk,Kk,A < τk,Kk,A+1 = · · · = τk,Kk,A+pk,A = 1,

and the knots for βk, k = 0, . . . , d

0 = ζk,1−pk,C = · · · = ζk,0 < ζk,1 < · · · < ζk,Kk,C < ζk,Kk,C+1 = · · · = ζk,Kk,C+pk,C = 1,

have bounded mesh ratio:

lim sup
n→∞

max
1≤k≤d

max1≤l≤Kk,A+1{τk,l − τk,l−1}

min1≤l≤Kk,A+1{τk,l − τk,l−1}
< ∞, lim sup

n→∞
max
0≤k≤d

max1≤l≤Kk,C+1{ζk,l − ζk,l−1}

min1≤l≤Kk,C+1{ζk,l − ζk,l−1}
< ∞.

Assumption 9. lim supn→∞(KA/min1≤k≤d Kk,A) < ∞ and KA log(KA)/n→ 0 as n→ ∞.

Assumption 10. lim supn→∞(KC/min0≤k≤d Kk,C) < ∞ and n (Nmax)2KC log(KC)/N2
s → 0 as n→ ∞.

Assumptions 1 and 2 are standard assumptions for the measurement schedule and covariates
in the literature of varying-coefficient models. The postulated dense designs and the smoothness
assumption with sk = 2 in Assumption 3 and 4 are used in Lemma 1 below to control the precision
in the approximation of the trapezoid integral in (7). Higher order of smoothness coupled with higher
order splines lead to better orders for the bias term in the spline method. Assumptions 5 and 6 on the
covariance and additive component functions are fairly standard. Assumption 7, which is used in the
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proof of Theorem 2, is very similar to Assumption 2 in Huang et al. (2002) and Assumption (C2) in
Huang et al. (2004). Assumption 8 is standard for spline regression methods. Assumptions 9 and 10
are similar to Assumption (C5) and the assumptions used in Lemma A.2 of Huang et al. (2004).

APPENDIX B: Proofs

Identifiability

Proof of Proposition 1. Since β0(t) = E{W(t)}, it suffices to prove that βk and φk are identifiable from

(3), for k = 1, . . . , d. Suppose that there exist {βk, φk, k = 1, . . . , d} and {β̌k, φ̌k, k = 1, . . . , d} such that

d∑
k=1

βk(t)φk(zk) =

d∑
k=1

β̌k(t)φ̌k(zk), (15)

for all t and z = (z1, . . . , zd)>. To identify β j and φ j, multiply both sides of (15) by the joint density of

z− j, which represents all zk but z j. Next, integrate both sides with respect to z− j and we have

β j(t)φ j(z j) = β̌ j(t)φ̌ j(z j).

Integrating with respect to t then leads to φ j(·) = φ̌ j(·) and thus β j(·) = β̌ j(·). �

Errors from numerical integration

We can rewrite Ỹi in (7) as

Ỹi = β̃0 +

d∑
k=1

φk(Zik) + ηi, where ηi = δ̃i − ∆i
0 −

d∑
k=1

∆i
kφk(Zik),

δ̃i =
1
2

Ni−1∑
j=1

(δ∗i j + δ∗i, j+1)(T ∗i, j+1 − T ∗i j) + δ∗i1T ∗i1 + δ∗i,Ni
(1 − T ∗i,Ni

), (16)

and ∆i
k, for any k = 0, . . . , d, is the error when using the trapezoid rule to approximate the integral∫ 1

0
βk(t)dt for subject i:

∆i
k =

∫ 1

0
βk(t)dt −

1
2

Ni−1∑
j=1

{βk(T ∗i j) + βk(T ∗i, j+1)}(T ∗i, j+1 − T ∗i j) − βk(T ∗i1)T ∗i1 − βk(T ∗i,Ni
)(1 − T ∗i,Ni

). (17)

12



The following lemma gives the properties of ∆i
k which is used to prove Theorem 1.

LEMMA 1. Under Assumptions 1 and 4, there exits a constant 0 < B1 < ∞ such that for any

i = 1, . . . , n and k = 0, . . . , d,

E(|∆i
k|) ≤ B1{(Ni + 1)(Ni + 2)}−1, E(|∆i

k|
2) ≤ B1.

Proof. We can decompose ∆i
k in (17) into ∆i

k = Ii
k + IIi

k + IIIi
k where

Ii
k =

∫ T ∗i1

0

{
βk(t) − βk(T ∗i1)

}
dt; IIi

k =

∫ 1

T ∗i,Ni

{
βk(t) − βk(T ∗i,Ni

)
}

dt;

IIIi
k =

∫ T ∗i,Ni

T ∗i1

βk(t)dt −
1
2

Ni−1∑
j=1

{βk(T ∗i j) + βk(T ∗i, j+1)}(T ∗i, j+1 − T ∗i j).

The proof of this lemma uses the following three properties related to Ii
k, IIi

k and IIIi
k:

Property 1. E{(T ∗i1)2} ≤ 2{m2
T (Ni + 1)(Ni + 2)}−1 and E{(1 − T ∗i,Ni

)2} ≤ 2{m2
T (Ni + 1)(Ni + 2)}−1.

Property 2. There exists C1 > 0 such that for all k = 0, . . . , d, E(|Ii
k|) ≤ C1{(Ni + 1)(Ni + 2)}−1,

E(|IIi
k|) ≤ C1{(Ni + 1)(Ni + 2)}−1 and E(|IIIi

k|) ≤ C1(Ni − 1){(Ni + 1)(Ni + 2)(Ni + 3)}−1.

Property 3. E(|Ii
k|

2), E(|IIi
k|

2) and E(|IIIi
k|

2) are bounded by a constant 0 < C2 < ∞.

The proofs of the three properties are as follows:

Proof of Property 1: Note that T ∗i1 ≥ 0 and

E{(T ∗i1)2} = 2
∫ 1

0
t{pr

(
T ∗i1 > t

)
}dt = 2

∫ 1

0
t {1 − F(t)}Ni dt ≤

2
mT

∫ 1

0
t{1 − F(t)}NidF(t)

=
2

mT (Ni + 1)

∫ 1

0
{1 − F(t)}Ni+1dt ≤

2
m2

T (Ni + 1)(Ni + 2)
.

Similarly E{(1 − T ∗i,Ni
)2} ≤ 2{m2

T (Ni + 1)(Ni + 2)}−1.

Proof of Property 2: By Assumption 4, there exists C̃1 > 0 such that the derivative |βk(t)(1)| ≤ C̃1

for t ∈ [0, 1] and all k = 0, . . . , d. Therefore E(|Ii
k|) ≤ C̃1E{(T ∗i1)2} ≤ 2C̃1{m2

T (Ni + 1)(Ni + 2)}−1 and

E(|IIi
k|) ≤ C̃1E{(1 − T ∗i,Ni

)2} ≤ 2C̃1{m2
T (Ni + 1)(Ni + 2)}−1. By Dragomir et al. (2000), E(|IIIi

k|) ≤

C̃2
∑Ni−1

j=1 E(h3
i j)/12, where supt∈[0,1] |β

(2)
k (t)| ≤ C̃2 by Assumption 4 and hi j = T ∗i, j+1 − T ∗i j. By Corollary

1 of Jones & Balakrishnan (2002), E(h3
i j) ≤ 6{m3

T (Ni + 1)(Ni + 2)(Ni + 3)}−1, so E(|IIIi
k|) ≤ C̃2(Ni −

1){2m3
T (Ni + 1)(Ni + 2)(Ni + 3)}−1. Let C1 = max{2C̃1/m2

T , C̃2/2m3
T }.

13



Proof of Property 3: E(|Ii
k|

2) ≤ C̃2
1E{(T ∗i1)4} ≤ C̃2

1. Similarly E(|IIi
k|

2) ≤ C̃2
1.

E(|IIIi
k|

2) ≤ C̃2
2E{(

Ni−1∑
j=1

hi j)2}/122 ≤ C̃2
2/122.

Let C2 = max{C̃2
1, C̃

2
2/122}.

The lemma now follows by letting B1 = max{3C1, 9C2}. �

Random error δ̃i in Eq. (16)

LEMMA 2. Under Assumption 5, we have, for any i = 1, . . . , n,

E(δ̃i) = 0, E(δ̃2
i ) ≤ G + σ2.

Proof. Note δi j = Ui(Ti j) + ei j. It is obvious that E(δ̃i) = 0 since E(δi j) = 0. For E(δ̃2
i ), note that

δ̃i =
1
2

Ni−1∑
j=1

(δ∗i j + δ∗i, j+1)(T ∗i, j+1 − T ∗i j) + δ∗i1T ∗i1 + δ∗i,Ni
(1 − T ∗i,Ni

)

=
1
2
δ∗i1(T ∗i1 + T ∗i2) + δ∗i,Ni

(1 −
1
2

T ∗i,Ni
−

1
2

T ∗i,Ni−1) +
1
2

Ni−1∑
j=2

δ∗i j(hi j + hi, j−1),

where hi j = T ∗i, j+1 − T ∗i j. Since E{(δ∗i j)
2 | {T ∗i j, j = 1, . . . ,Ni}} ≤ G + σ2 and E(δ∗i jδ

∗
il | {T

∗
i j, j =

1, . . . ,Ni}) ≤ G + σ2 by Cauchy–Schwartz inequality, we have

E
(
δ̃2

i | {T
∗
i j, j = 1, . . . ,Ni}

)
≤ (G + σ2)

1
2

(T ∗i1 + T ∗i2) + (1 −
1
2

T ∗i,Ni
−

1
2

T ∗i,Ni−1) +
1
2

Ni−1∑
j=2

(hi j + hi, j−1)


2

= G + σ2.

Thus E(δ̃2
i ) ≤ G + σ2. �

Theorem 1

We first introduce the notations needed to prove Theorem 1. For each k = 1, . . . , d, let Ψk(·) =

(ψk,1(·), . . . , ψk,Jk,A(·))> and ψkl = J1/2
k,A Bkl, where {Bkl, l = 1, . . . , Jk,A} are B-splines defined in de Boor

(2001). The properties of B-splines imply that ψkl(·) ≥ 0,
∑Jk,A

l=1 ψkl(z) = J1/2
k,A ,

∫
ψkl(z)dz ≤ M1J−1/2

k,A ,
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and for any vector α = (α1, . . . , αJk,A)>,

M2‖α‖
2 ≤

∫  Jk,A∑
l=1

αlψkl(z)


2

dz ≤ M3‖α‖
2 (18)

where M1,M2,M3 are positive constants and ‖α‖ represents the Euclidean norm of a vector α.
Let w(z) = β̃0 +

∑d
k=1 φk(zk) be the true regression function in equation (5) and ŵ(z) = β̌0 +∑d

k=1 φ̂k(zk), where β̌0 and φ̂k are the spline estimator obtained from (9) and (10). Denote α̂ = (β̌0, f̂)>,
V(Z) = (1,Ψ1(Z1)>, . . . ,Ψd(Zd)>)>, and Vi = V(Zi), then α̂ = (

∑n
i=1 ViV>i )−1(

∑n
i=1 ViỸi) and φ̂k(zk) =

φ̌k(zk)−n−1 ∑n
i=1 φ̌k(Zik) where φ̌k(zk) = Ψk(zk)>f̂k. Also define α̃ = (β∗0, f̃)> = (

∑n
i=1 ViV>i )−1(

∑n
i=1 Viwi),

where wi = w(Zi) and φ̃k(zk) = Ψk(zk)>f̃k.
We next provide a lemma which will be repeatedly used in the subsequent proof.

LEMMA 3. Under the assumptions in Theorem 1, both n−1 ∑n
i=1 ViV>i and n−1 ∑n

i=1 Ψk(Zik)Ψk(Zik)>

have eigenvalues bounded away from 0 and∞, with probability tending to one as n→ ∞.

Proof. The proof can follow similar arguments in Lemma A.2 of Huang et al. (2004) and thus is

omitted. �

Proof of Theorem 1. By Cauchy–Schwartz inequality,

‖φ̂k(zk) − φk(zk)‖2 ≤ 5‖φ̌k(zk) − φ̃k(zk)‖2 +
5
n

n∑
i=1

{φ̌k(Zik) − φ̃k(Zik)}2

+5‖φ̃k(zk) − φk(zk)‖2 +
5
n

n∑
i=1

{φ̃k(Zik) − φk(Zik)}2 + 5
∣∣∣∣∣1n

n∑
i=1

φk(Zik)
∣∣∣∣∣2.

Since E{φk(Zik)} = 0, |n−1 ∑n
i=1 φk(Zik)|2 = Op(n−1). It suffices to handle the approximation error

terms ‖φ̃k(zk)−φk(zk)‖2 and n−1 ∑n
i=1{φ̃k(Zik)−φk(Zik)}2, and the stochastic error terms ‖φ̌k(zk)− φ̃k(zk)‖2

and n−1 ∑n
i=1{φ̌k(Zik) − φ̃k(Zik)}2.

Approximation errors: We show below the following rate of approximation errors:

‖φ̃k(zk) − φk(zk)‖2 = Op

(
ρ2

A

)
, and

1
n

n∑
i=1

{φ̃k(Zik) − φk(Zik)}2 = Op

(
ρ2

A

)
. (19)

By the definition of ρA, we can find α∗ = (β̃0, f∗)> and φk(zk)∗ = Ψk(zk)>f∗k such that supzk∈[0,1] |φk(zk)∗−

φk(zk)| = O(ρA). Thus ‖φ∗k − φk‖
2 = O(ρ2

A) and n−1 ∑n
i=1{φk(Zik)∗ − φk(Zik)}2 = O(ρ2

A). Now it suffices to

prove ‖φ̃k(zk) − φk(zk)∗‖2 = Op(ρ2
A) and n−1 ∑n

i=1{φ̃k(Zik) − φk(Zik)∗}2 = Op

(
ρ2

A

)
.
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By Assumption 2 and (18), ‖φ̃k(zk)− φk(zk)∗‖2 = ‖Ψk(zk)>(f̃k − f∗k )‖2 � ‖f̃k − f∗k‖
2 � ‖α̃−α∗‖2. By

Lemma 3, n−1 ∑n
i=1{φ̃k(Zik) − φk(Zik)∗}2 = (f̃k − f∗k )>{n−1 ∑n

i=1 Ψk(Zik)Ψk(Zik)>}(f̃k − f∗k ) � ‖f̃k − f∗k‖
2 �

‖α̃ − α∗‖2. Therefore we only need to show ‖α̃ − α∗‖2 = Op(ρ2
A).

Since n−1 ∑n
i=1 Vi(wi − V>i α̃) = 0, Lemma 3 implies, with probability approaching one,

‖α̃ − α∗‖2 �
1
n

n∑
i=1

{V>i (α̃ − α∗)}2 ≤
1
n

n∑
i=1

(wi − V>i α
∗)2 =

1
n

n∑
i=1

 d∑
k=1

{φk(Zik) − φk(Zik)∗}

2

= O(ρ2
A).

Therefore, (19) is proved.

Stochastic error: We next show the following rate of stochastic errors:

‖φ̌k(zk) − φ̃k(zk)‖2 = Op

KA

n
+

1
n2 (

n∑
i=1

N−2
i )2

 ,
1
n

n∑
i=1

{φ̌k(Zik) − φ̃k(Zik)}2 = Op

KA

n
+

1
n2 (

n∑
i=1

N−2
i )2

 . (20)

By (18) and Lemma 3, ‖φ̌k(zk)− φ̃k(zk)‖2 � ‖α̂− α̃‖2 and n−1 ∑n
i=1{φ̌k(Zik)− φ̃k(Zik)}2 � ‖α̂− α̃‖2,

so it suffices to handle ‖α̂ − α̃‖2. Since ‖α̂ − α̃‖2 = ‖(
∑n

i=1 ViV>i )−1(
∑n

i=1 Viηi)‖2 � ‖n−1 ∑n
i=1 Viηi‖

2 by

Lemma 3, we only need to focus on ‖n−1 ∑n
i=1 Viηi‖

2.

The rest of the proof can mostly follow standard procedure in tracking the order for the variance

of the stochastic error term for spline methods, except that ηi in (8) does not have zero conditional

mean given the value of Zi due to the integration error associated with Ỹi. So we need to track

E(ηi | Zi) carefully. From the expression of ηi in (16),

ηi = δ̃i − ∆i
0 −

d∑
k=1

∆i
kφk(Zik).

By Assumption 6, Lemmas 1 and 2, there exists 0 < B2 < ∞ such that, for all i = 1, . . . , n,

∣∣∣E(ηi | Zi)
∣∣∣ ≤ B2N−2

i , E(η2
i | Zi) ≤ B2.

By (18) and Assumption 2, EV>i Vi = 1 +
∑d

k=1
∑Jk,A

l=1 Eψ2
kl(Zik) = O(KA) and EV>i V j = 1 +

16



∑d
k=1

∑Jk,A
l=1 Eψkl(Zik)Eψkl(Z jk) = O(1). Therefore,

E

∥∥∥∥∥1
n

n∑
i=1

Viηi

∥∥∥∥∥2
 =

1
n2

 n∑
i=1

E
{
V>i ViE(η2

i | Zi)
}

+
∑
i, j

E
{
V>i V jE(ηi | Zi)E(η j | Z j)

}
≤

1
n2

B2

n∑
i=1

E(V>i Vi) + B2
2

∑
i, j

1
N2

i

1
N2

j

E(V>i V j)

 = O

KA

n
+

1
n2

 n∑
i=1

1
N2

i

2 ,
and thus

‖α̂ − α̃‖2 = Op

KA

n
+

1
n2

 n∑
i=1

1
N2

i

2 ,
which completes the proof for (20).

Therefore, Theorem 1 holds by (19) and (20). �

Theorem 2

We first introduce the notations to prove Theorem 2. Let θkl = J1/2
k,C Bkl, where {Bkl, l = 1, . . . , Jk,C}

are B-splines defined in de Boor (2001). Similar to (18), θkl(·) ≥ 0,
∑Jk,C

l=1 θkl(t) = J1/2
k,C ,

∫
θkl(t)dt ≤

M4J−1/2
k,C , and for any vector γ = (γ1, . . . , γJk,C )>,

M5‖γ‖
2 ≤

∫  Jk,C∑
l=1

γlθkl(t)


2

dt ≤ M6‖γ‖
2, (21)

where M4,M5,M6 are positive constants and ‖γ‖ represents the Euclidean norm of a vector γ.
Define Θk(t) = {θk,1(t), . . . , θk,Jk,C (t)}> for all k = 0, . . . , d and also define

Θ(t) =


Θ0(t)> 0 · · · 0

. . .
. . .

0 · · · 0 Θd(t)>

 ,

Φ(z) = {1, φ1(z1), . . . , φd(zd)}>, Φ̂(z) = {1, φ̂1(z1), . . . , φ̂d(zd)}>, Di j =
{
Φ(Zi)>Θ(Ti j)

}>
, D̃i j =

{
Φ̂(Zi)>Θ(Ti j)

}>
,

Di = (Di1, . . . ,Di,Ni)
>, D̃i = (D̃i1, . . . , D̃i,Ni)

>, and Yi = (Yi1, . . . ,Yi,Ni)
>. Then ĝ in (12) can be ex-

pressed as

ĝ =

 1
Ns

n∑
i=1

D̃>i D̃i

−1  1
Ns

n∑
i=1

D̃>i Yi

 .
Let m(t, z) = β0(t) +

∑d
k=1 βk(t)φk(zk), mi = {m(Ti1,Zi), . . . ,m(Ti,Ni ,Zi)}>, m̃(t, z) = β0(t) +∑d

k=1 βk(t)φ̂k(zk), and m̃i = {m̃(Ti1,Zi), . . . , m̃(Ti,Ni ,Zi)}>. Define g̃ = (N−1
s

∑n
i=1 D̃>i D̃i)−1(N−1

s
∑n

i=1 D̃>i mi),
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β̌k(t) = Θk(t)>ĝk and β̃k(t) = Θk(t)>g̃k for k = 0, . . . , d. Thus β̂k(t) = β̌k(t)/
∫
β̌k(t)dt.

The next lemma will be repeatedly used in the subsequent proof.

LEMMA 4. Under the assumptions in Theorem 2, the eigenvalues of N−1
s

∑n
i=1 D̃>i D̃i are bounded

away from 0 and∞, with probability tending to one as n→ ∞.

Proof. By Theorem 1 and the fact limn→∞ ρA = 0, ‖φ̂k(zk)−φk(zk)‖2 = op(1) and thus by Assumption 7,

the eigenvalues of
∫

Φ̂(z)Φ̂(z)>p(z)dz are bounded away from 0 and∞ with probability approaching

one as n → ∞. The rest of the proof can follow similar arguments in Lemma A.2 of Huang et al.

(2004) and thus is omitted. �

Proof of Theorem 2. By
∫
βk(t)dt = 1 in (3) and Cauchy–Schwartz inequality,

‖β̂k(t) − βk(t)‖2 =

∥∥∥∥∥ β̌k(t)∫
β̌k(t)dt

− βk(t)
∥∥∥∥∥2
≤ 2‖β̌k(t) − βk(t)‖2 + 2

∥∥∥∥∥ β̌k(t)∫
β̌k(t)dt

− β̌k(t)
∥∥∥∥∥2

≤ 2‖β̌k(t) − βk(t)‖2 + 4‖β̌k(t) − βk(t)‖2
∣∣∣∣∣

∫ {
β̌k(t) − βk(t)

}
dt∫ {

β̌k(t) − βk(t)
}

dt + 1

∣∣∣∣∣2 + 4‖βk(t)‖2
∣∣∣∣∣

∫ {
β̌k(t) − βk(t)

}
dt∫ {

β̌k(t) − βk(t)
}

dt + 1

∣∣∣∣∣2,
it thus suffices to prove the convergence of ‖β̌k(t)−βk(t)‖2. Moreover, since ‖β̌k(t)−βk(t)‖2 ≤ 2‖β̌k(t)−

β̃k(t)‖2 + 2‖β̃k(t)−βk(t)‖2, we only need to handle the approximation error term ‖β̃k(t)−βk(t)‖2 and the

stochastic error term ‖β̌k(t) − β̃k(t)‖2.

Approximation error: There are two sources of approximation error, one attributed to the spline ap-

proximation of the coefficient function βk and the other induced by estimating the additive component

function φk in (11). The combined approximation error is shown below to have the following rate:

‖β̃k(t) − βk(t)‖2 = Op

Nmax

N̄
ρ2

C +
Nmax

N̄

KA

n
+

1
n2 (

n∑
i=1

N−2
i )2 + ρ2

A


 . (22)

By the definition of ρC, there exists g∗ and βk(t)∗ = Θk(t)>g∗k such that supt∈[0,1] |βk(t)∗ − βk(t)| =

O(ρC) for k = 0, . . . , d. Therefore ‖βk(t)∗ − βk(t)‖2 = Op(ρ2
C) and it suffices to prove ‖β̃k(t)− βk(t)∗‖2 =

Op[N̄−1(Nmax){ρ2
C +n−1KA+n−2(

∑n
i=1 N−2

i )2+ρ2
A}]. By (21), ‖β̃k(t)−βk(t)∗‖2 = ‖Θk(t)>(g̃k−g∗k)‖2 � ‖g̃k−

g∗k‖
2 � ‖g̃−g∗‖2, so we only need to show ‖g̃−g∗‖2 = Op[N̄−1(Nmax){ρ2

C +n−1KA+n−2(
∑n

i=1 N−2
i )2+ρ2

A}].

Since N−1
s

∑n
i=1 D̃>i (mi − D̃ig̃) = 0, Lemma 4 implies, with probability approaching one

‖g̃ − g∗‖2 �
1
Ns

n∑
i=1

‖D̃>i (g̃ − g∗)‖2 ≤
1
Ns

n∑
i=1

‖mi − D̃ig∗‖2 ≤
2
Ns

n∑
i=1

‖mi − m̃i‖
2 +

2
Ns

n∑
i=1

‖m̃i − D̃ig∗‖2.
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Now it suffices to focus on N−1
s

∑n
i=1 ‖mi − m̃i‖

2 and N−1
s

∑n
i=1 ‖m̃i − D̃ig∗‖2.

Note that by (19) and (20),

1
n

n∑
i=1

{φ̂k(Zik) − φk(Zik)}2 = Op

KA

n
+

1
n2 (

n∑
i=1

N−2
i )2 + ρ2

A

 = op(1), k = 1, . . . , d. (23)

Thus by Assumption 4 and Cauchy–Schwartz inequality,

1
Ns

n∑
i=1

‖mi − m̃i‖
2 =

1
Ns

n∑
i=1

Ni∑
j=1

 d∑
k=1

βk(Ti j){φ̂k(Zik) − φk(Zik)}

2

�
1
Ns

n∑
i=1

Ni∑
j=1

d∑
k=1

{φ̂k(Zik) − φk(Zik)}2 =
1
Ns

d∑
k=1

n∑
i=1

[
Ni{φ̂k(Zik) − φk(Zik)}2

]
≤

Nmax

Ns

d∑
k=1

n∑
i=1

{φ̂k(Zik) − φk(Zik)}2 = Op

Nmax

N̄

KA

n
+

1
n2 (

n∑
i=1

N−2
i )2 + ρ2

A


 .

Similarly by (23) and Cauchy–Schwartz inequality,

1
Ns

n∑
i=1

‖m̃i − D̃ig∗‖2 =
1
Ns

n∑
i=1

Ni∑
j=1

{β0(Ti j) − β0(Ti j)∗} +
d∑

k=1

φ̂k(Zik){βk(Ti j) − βk(Ti j)∗}

2

�
1
Ns

n∑
i=1

Ni∑
j=1

{β0(Ti j) − β0(Ti j)∗}2 +

d∑
k=1

φ̂k(Zik)2{βk(Ti j) − βk(Ti j)∗}2
 � ρ2

C +
ρ2

C

Ns

d∑
k=1

n∑
i=1

{Niφ̂k(Zik)2}

� ρ2
C +

ρ2
CNmax

Ns

d∑
k=1

 n∑
i=1

{φ̂k(Zik) − φk(Zik)}2 +

n∑
i=1

φk(Zik)2

 = Op

(Nmax

N̄
ρ2

C

)
.

Thus (22) is proved.

Stochastic error: The stochastic error here is attributed to the usual stochastic error in spline smooth-

ing plus the error induced by φ̂k in estimating βk in (11). We show below that the rate of the combined

stochastic error is:

‖β̌k(t) − β̃k(t)‖2 = Op

KC

Ns
+

∑n
i=1 N2

i

N2
s

+
KCNmax + (Nmax)2

N̄2

KA

n
+

1
n2 (

n∑
i=1

N−2
i )2 + ρ2

A


 . (24)

19



By (21), Lemma 4, and Cauchy–Schwartz inequality, with probability approaching one we have

‖β̌k(t) − β̃k(t)‖2 � ‖ĝk − g̃k‖
2 � ‖ĝ − g̃‖2 = ‖(

1
Ns

n∑
i=1

D̃>i D̃i)−1 1
Ns

n∑
i=1

D̃>i δi‖
2

� ‖
1
Ns

n∑
i=1

D̃>i δi‖
2 ≤ 2‖

1
Ns

n∑
i=1

D>i δi‖
2 + 2‖

1
Ns

n∑
i=1

(D̃i − Di)>δi‖
2.

Now we only need to focus on ‖N−1
s

∑n
i=1 D>i δi‖

2 and ‖N−1
s

∑n
i=1(D̃i − Di)>δi‖

2.

By Assumption 1, 5, 6 and (21), for any k = 0, . . . , d, E[
∑Jk,C

l=1 {
∑Ni

j=1 θkl(Ti j)δi j}
2] = O(KCNi +

N2
i ) = O(KCNmax + N2

max). Therefore

E

‖ 1
Ns

n∑
i=1

D>i δi‖
2

 =
1

N2
s

n∑
i=1

E

 J0,C∑
l=1

 Ni∑
j=1

θ0,l(Ti j)δi j


2

+

d∑
k=1

E{φk(Zik)2}E

 Jk,C∑
l=1

 Ni∑
j=1

θkl(Ti j)δi j


2
 = O

(
KC

Ns
+

∑n
i=1 N2

i

N2
s

)
,

and thus by Markov inequality

‖
1
Ns

n∑
i=1

D>i δi‖
2 = Op

(
KC

Ns
+

∑n
i=1 N2

i

N2
s

)
.

Moreover by Cauchy–Schwartz inequality,

‖
1
Ns

n∑
i=1

(D̃i − Di)>δi‖
2 =

1
N2

s

d∑
k=1

Jk,C∑
l=1

 n∑
i=1

Ni∑
j=1

{φ̂k(Zik) − φk(Zik)}θkl(Ti j)δi j


2

≤
n

N2
s

d∑
k=1

Jk,C∑
l=1

n∑
i=1

{φ̂k(Zik) − φk(Zik)}2{
Ni∑
j=1

θkl(Ti j)δi j}
2


=

n
N2

s

d∑
k=1

n∑
i=1

{φ̂k(Zik) − φk(Zik)}2
 Jk,C∑

l=1

{

Ni∑
j=1

θkl(Ti j)δi j}
2




�
n(KCNmax + N2

max)
N2

s

d∑
k=1

n∑
i=1

{φ̂k(Zik) − φk(Zik)}2

= Op

KCNmax + (Nmax)2

N̄2

KA

n
+

1
n2 (

n∑
i=1

N−2
i )2 + ρ2

A


 .

Now the proof for (24) is complete. Therefore Theorem 2 holds by (22) and (24). �
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Table 1: Basic summary statistics of number of knots selected by aic and bic. The mean, median and
standard deviation of the selected knots are shown. The optimal number of knots resulted from the
simulation is shown in the last column.

φ
aic bic optimal

mean med std mean med std
K1,A 5.14 5 1.17 4.13 4 0.86 5
K2,A 2.42 1 2.11 1.11 1 0.45 2

β
aic bic aic bic optimal

mean med std mean med std mean med std mean med std
K0,C 2.38 2 1.00 2 2 0 2.38 2 1.00 2 2 0 2
K1,C 1.63 1 0.78 1.08 1 0.28 1.63 1 0.78 1.08 1 0.28 1
K2,C 1.63 1 0.78 1.08 1 0.30 1.63 1 0.78 1.08 1 0.30 1

Table 2: mise values of additive component function estimates and coefficient function estimates with
the number of knots selected by aic and bic. The mise corresponding to the optimal number of knots
is shown in the last column.

Component functions (10−2)
aic bic optimal

MISE(φ1) 0.5176 0.5174 0.5171
MISE(φ2) 1.2545 1.2532 1.2528

MISE(φ)=MISE(φ1)+MISE(φ2) 1.7721 1.7711 1.7699
Coefficient functions (10−2)

aic bic aic bic optimal

MISE(β0) 4.1412 4.1252 4.1412 4.1252 4.1323
MISE(β1) 1.0632 0.9954 1.0625 0.9949 0.9734
MISE(β2) 0.4499 0.4236 0.4498 0.4235 0.4148

MISE(β)=MISE(β0)+MISE(β1)+MISE(β2) 5.6529 5.5427 5.6520 5.5421 5.5205
MISE(φ, β)=MISE(φ)+ MISE(β) 7.4250 7.3148 7.4231 7.3132 7.2904
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Fig. 1: Car counts on 78 game days over 30 minutes before the end of a game until two hours after
the game. The bold line is the estimated β0(t).
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SCB for component functions: α=0.05
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Fig. 2: Fitted additive component functions and 95% simultaneous confidence bands using Scheffé’s
method. In each panel, the solid line corresponds to the function estimate and the dashed lines repre-
sent the upper and lower bounds. A reference dash-and-dot line is also given for constant 0.
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Fig. 3: Fitted coefficient functions and 95% bootstrap simultaneous confidence bands. In each panel,
the solid line corresponds to the function estimate and the dashed lines represent the upper and lower
bounds. A reference dash-and-dot line is also given for constant 1.
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