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Varying-coefficient Models

By TREVOR HASTIE and ROBERT TIBSHIRANIt
AT&T Bell Laboratories, Murray Hill, USA University of Toronto, Canada

[Read before The Royal Statistical Society at a meeting organized by the Research Section
on Wednesday, February 10th, 1993, Professor B. W. Silverman in the Chair]

SUMMARY

We explore a class of regression and generalized regression models in which the coefficients
are allowed to vary as smooth functions of other variables. General algorithms are presented
for estimating the models flexibly and some examples are given. This class of models ties
together generalized additive models and dynamic generalized linear models into one common
framework. When applied to the proportional hazards model for survival data, this
approach provides a new way of modelling departures from the proportional hazards
assumption.

Keywords: DYNAMIC GENERALIZED LINEAR MODELS; GENERALIZED ADDITIVE MODELS;
GENERALIZED LINEAR MODELS; REGRESSION; SMOOTHING; SPLINES; SURVIVAL
ANALYSIS

1. INTRODUCTION

In recent years, some progress has been made towards increasing the flexibility of
linear regression models. One focus has been to replace some or all of the linear and
parametric functions of regressors by smooth nonparametric functions—so called
generalized additive models; Hastie and Tibshirani (1990) give a survey of some of
this work.

Here we consider apparently different generalizations—models that are linear in
the regressors, but their coefficients are allowed to change smoothly with the value
of other variables, which we might call ‘effect modifiers’. Suppose that we have a
random variable Y whose distribution depends on a parameter 5, and we also have
predictors X;, X;, ..., X, and R,, R, . . ., R,. A varying-coefficients model has
the form

1=Bo+ XiB1(R)+. . . +X,B,(R,). M

Model (1) says that R, . . ., R, change the coefficients of the X;, X,, . . ., X,
through the (unspecified) functlons Bi(), . . ., B,(). The dependence of 3;( ) on R
implies a special kind of interaction between each R; and X;. In some cases, the
variables R; are indistinguishable from the variables X;; in other cases R; might be
a special variable such as ‘time’.

A common setting for the application of these ideas is the class of generalized linear
models (Nelder and Wedderburn, 1972; McCullagh and Nelder, 1989). In that case
7 is called the linear predictor and is related to the mean p= EY via the link function
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n=g(u). In the simplest case of the Gaussian model, g(u)=u and Y is normally
distributed with mean 7, and model (1) has the form

Y=X\6/(r)+...+X,8,(r,)+e )

where E(e) =0, var(e) = o%. Other common models are log-linear models, for which
n=logu and Y has a Poisson distribution, and the linear logistic model having
g(w)=log{u/(1—p)} and Y a binomial variate. Generalized additive models extend
generalized linear models by replacing the linear predictor by an additive sum of smooth
functions. We shall see that the generalized additive model is a special case of the
varying-coefficient model, as is the dynamic generalized linear model (West et al.,
1985). However, the approach to inference is quite different in the latter model.

1.1. IHlustration
To motivate the presentation, we begin with an example. Cleveland et a/l. (1991)
examine 88 observations on the exhaust from an engine fuelled by ethanol. The
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Fig. 1. (a) NO, versus E; (b) NO, versus C; (c) NO, versus E with some values of C coded as low
(1), medium (m) or high (h) (intermediate values are coded with x)
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Fig. 2. NO, versus C for (a) low, (b) medium, (c) high and (d) very high values of E: , fitted
lines from the varying-coefficient model, taken at the median value of E for the data in the panel;
- - -, fitted linear regression

response variable, denoted by NO, is the concentration of nitric oxide and nitrogen
dioxide, normalized by the workload of the engine. The two predictors are the
equivalence ratio E, a measure of the fuel-air mixture, and the compression ratio
C of the engine. The data are presented in Fig. 1. Figs 1(a) and 1(b) show NO,
plotted against E and C.

There is a strong quadratic-like effect of E and seemingly little effect of C, suggesting
the simple model NO, ~ E2. Fig. 1(c) shows NO, versus E, with the levels of C coded
as low, medium and high, and suggests that C might be interacting with E. Fig. 2
reveals the form of this interaction. The broken lines show the fitted linear regressions
of NO, on C in four non-overlapping ranges of E. Within each range of E, a linear
model in C seems to fit well. But, as E varies, both the intercept and the slope of
the line vary.

This leads us to consider a model of the form

NO, =By(E) + B (E)C +e. (3)
Whereas the plots suggest 3,(E) ~ E?, we shall leave both B,(E) and B,(E)

unspecified and fit them flexibly. This is the model considered by Cleveland et al.
(1991) and is an example of a varying-coefficient model.
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Fig. 3. (a) By(E) and (b) B, (E) with pointwise 90% standard error bands defined by + 1.645 times
an estimate of the standard error (-------- , regions of data used to construct the four conditioned plots
of Fig. 2; the four spikes at the base of the plots show the four values of E used in representing the
fit in Fig. 2); (c) fitted effects C §,(E) on the same scale as the plot for Bo(E) (the latter is clearly more
important); (d) perspective plot of the fitted (E, C)-surface

Using an estimation procedure described in this paper, we produced the curves
Bo(E) and B,(E) shown in Figs 3(a) and 3(b) (with 90% pointwise standard error
bands); these correspond to the full lines in Fig. 2.

The B,(E) and 3,(E) curves depend in a roughly parabolic fashion on E; the fitted
model has a residual sum of squares of 2.65 and explains about 97% of the variation
in the data. Roughly 8 degrees of freedom were used in estimating each of the curves;
Section 6 contains the details of how this number is obtained.

The corresponding surface is depicted in Fig. 3(d), and as shown by Cleveland et
al. (1991) it fits the data as well as a general two-dimensional surface smoother, using
fewer degrees of freedom. R .

Fig. 3(c) shows that the term (,(E)C is not as important as 3,(E), and the
perspective plot in Fig. 3(d) supports this claim.
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TABLE 1
Analysis-of-variance table for a hierarchy of models for the NO, data

Model Residual sum of squares Degrees of freedom F-ratio  Pr(F)
@i NO,=B,(E)+B,C+e 5.19 79 20.1 0.0
(i) NO,=B,(E)+B,CE+e¢ 6.33 79 24.5 0.0
(iii) NO,=B,(E)+B,C+B,CE+e 3.20 78 14.5 0.0
(iv) NO,=B,(E)+B,(E)C+e 2.65 72

Some simpler models are suggested by the perspective plot and allow us to test
for the interaction in model (3). Table 1 compares the various models with the
conditionally parametric model (numbered (iv) in Table 1). We use this model as the
basis for an F-test in the table. Our conclusion there is that an interaction term is
needed between £ and C, and a non-linear form for the coefficient of C is necessary.

In this paper we discuss many aspects of the varying-coefficient model (1), showing
connections to other published models and giving some general estimation procedures.
The paper is organized as follows. In Section 2 we give examples of the varying-
coefficient model in various settings. In Section 3 we describe some fitting procedures.
Models with a single effect modifying variable are somewhat simpler, as is their
interpretation. Section 3.4 is devoted to them, and they include the dynamic generalized
linear model. Section 4 illustrates the model in a generalized regression setting and
shows how the approach can be used to specify separate curves for one variable for
different levels of another. Section 5 discusses the proportional hazards model in which
time is the natural choice for the modifying variables R;; this provides a new way
of checking the proportional hazards assumption. Methods for inference are briefly
discussed in Section 6, and Section 7 contains discussion. The paper ends with a
technical appendix.

2. EXAMPLES OF VARYING-COEFFICIENT MODEL

Although the varying-coefficients model looks quite specific, it is rather general;
many of the instances of model (1) listed below will be familiar and have appeared
before. One purpose of this paper is to show the common structure of the various models.

(@) If B;(R;) =g, (the constant function), then that term is linear in X;. If all the
terms are linear, then model (1) is the usual linear model or generalized linear
model.

(b) If X;=c (say c=1), then the jth term is simply 8;(R;), an unspecified function
in R;. If all the terms have this form or are linear as in (a), then model (1)
has the form of a generalized additive model.

(©) A linear function 3;(R;)=0;R; leads to a product interaction of the form
B, XR;.

(d) Tjhere is a different way of thinking about a model term X 3(R) when X is a
binary (0-1) variable. Suppose that there is also a term 3,(R) in the model.
This amounts to having a separate curve corresponding to each of the two values
-of X. More generally such terms are generated by a factor variable F, and each
X, represents a coding for the levels of F. Binary coding (dummy variable) is
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not essential; other contrasts can also be used. Symbolically a collection of such
terms might be denoted by F % 3(R) and represents an interaction between the
factor F and the function 8(R). In fact, it is often useful to cut a quantitative
variable into a number of groups to explore interactions with another
quantitative variable in this way.

(e) Often the R;s will be the same variable, a factor such as time or age, that we

suspect could modify the effects of X, . . ., X,. Suppose, for example, that

the data consist of repeated measurements of the variables (Y, X, . . ., X}

over n time points t€(¢, . . ., t,). Then we might model this as
=B+ X, () B:(D+. . .+X,(D)B,() C))

over time. West ef al. (1985) call this a ‘dynamic generalized linear model’;
a comprehensive treatment is given in West and Harrison (1989). Cleveland
et al. (1991) call such models ‘conditionally parametric’ and allow conditioning
variables (possibly vector valued) other than time. As we shall see, Cleveland
treats the 5;(¢)s as nonparametric functions; given ¢, the model is parametric
and hence the name conditionally parametric.

(f) Suppose that the modifying variable R; is taken to be X, and for simplicity
suppose that the model is a normal linear model with only one term. Thus we
have

Y=XB(X)+e. %)

This is a common model for smoothing or nonparametric regression of Y versus
X and is discussed in various forms by Stone (1977), O’Hagan (1978) and
Cleveland (1979).

(g) Each R; can be scalar or vector valued. For most of the paper we shall assume
that the R; are scalar; extensions to the vector-valued case are mentioned in
Sections 3.4.1 and 7.

(h) In all the above cases, there are many ways to model the so far unspecified
functions 3,(R;). For example we could use flexible parametric representations
such as polynomials, Fourier series or piecewise polynomials, or otherwise and
more generally nonparametric functions. The last method can be approached
in a variety of ways, e.g. by using kernel methods, penalization or stochastic
Bayesian formulations.

As can be seen, there is a bewildering array of interesting special cases of the varying-
coefficients model, including generalized linear models, dynamic generalized linear
models and generalized additive models. Many of these have been thoroughly studied
and specific estimation procedures for them have been developed. Our second objective
is to present an estimation procedure that is applicable to the fully general model
(1). This procedure along with specialized procedures for particular models are
described in the next section.

3. ESTIMATION

Model (2) as it stands is too general for most applications, in that no restrictions
are imposed on the coefficient functions. Unrestricted nonparametric estimation of
these functions would probably not be possible except for special designs, and the
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problems encountered seem no different from those encountered in the nonparametric
estimation of a single regression function. For observational data we are likely to
see a different value for each R; in each sample, and thus without any further
assumptions it is not clear how to average.

For this reason we impose restrictions of one form or another on the coefficient
functions, e.g. piecewise constant, smooth with known parametric form, or else smooth
but nonparametric. One approach would be through parametric bases such as
polynomial or trigonometric functions. Typically these do not provide enough
flexibility and local adaptiveness, and a set of regression spline bases with a fixed
arrangement of knots is likely to be preferable. We then proceed exactly as for the
linear model, only with (many) more variables defined by the products of each X
and the bases for 3,(R;). With this approach, all the standard inferential tools can
be used to evaluate sets of coefficients, influential points, etc. In this regard they
are more convenient than the nonparametric procedures described in this section,
for which these tools are not nearly as well developed. Unfortunately the characteristics
of the fitted curves can be quite different with minor changes in the positions of the
knots, especially if only a few can be afforded.

In this section we present a general nonparametric procedure for the varying-
coefficients model (1) based on a penalized least squares criterion that does not suffer
from the problems mentioned above. For simplicity, we give details of estimation
of the regression form (2) rather than the generalized regression form (1). Extensions
to the latter case usually involve embedding a procedure for model (1) into a Newton-
Raphson-type algorithm and is illustrated in Section 4.

Following that, we describe two other approaches for the nonparametric estimation
of the ;s that are applicable to the special case of a single effect modifying variable
as in model (4). One approach is local plane fitting, suggested by Cleveland ef al.
(1991); the other is the dynamic linear model (West et al., 1985; West and Harrison,
1989). We point out some interesting relationships between these approaches and the
general method described next.

3.1. Estimation in L,
Here we present a population version of an algorithm that forms the basis of
our nonparametric algorithms that follow. Suppose that we decide to estimate
B:i() . .. B,() in model (1) by minimizing

E{ Y- z‘:; X,ﬁ,(R,)}z.
Conditioning on each R;, a sufficient condition for the solutions is
E[X,{Y—ET] X,B,(Rj)} |R,}=o, j=1,2....p.
To find B;() say, we can rearrange the above equation and solve

E{X,[Y— 5 Xkek(Rk)} R,]

k#j
E(X}|R))

Bi(R)=
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E|XP[Y- T XiBu(RO|[XIR,

k#j
E(X}|R))

©)

Equation (6) is a ratio of two conditional expectations and can be viewed as a
conditional weighted mean, where the conditional weights are supplied by the term
X5s 2 the term in the denominator ensures that the weights integrate to 1. There is a
51m11ar equation for each function 8;, j=1, . . ., p, and the set of p equations must
be solved simultaneously for the 3;. Smce a scatterplot smoother can be viewed
as a flexible estimate of a conditional expectation, this suggests that each
function (; can be estimated in an iterative ‘one at a time’ manner by smoothing
{Y =2 Xt B(Ri)}/ X; on R;, with weights X7. 2, This emerges as the central idea
from the formal framework dlscussed next.

3.2. Penalized Least Squares
Suppose that we have observations y,, . . ., y, from the varying-coefficient model
(1) and denote by x; and r; the observed values of X; and R; for the ith case. Then
our model has the form

Yi=XuyB1(ra) + X B2(rp) +. .« . +X, B,(rp) + €.

For estimation of 3, . . ., 8, we propose to minimize the penalized least squares
criterion
n p p
JB1 - B)= 3 im 2 x| 2 [gera. @
i= j=1 j=

The first term measures the goodness of fit and the second term penalizes the
roughness of each 8, with a fixed parameter \; (to be chosen later).

Equation (7) is an example of an inverse problem, as discussed by O’Sullivan
(1986) or Wahba (1990). We observe neither the 3;s nor their sum, but the linear
functionals

(L;B)(ry)=x;B,(ry), Jj=12,..., p.

Alternatively, terms of this type can be viewed as a particular element in an expansion
of an interaction term by using tensor product splines; again see Wahba (1990),
chapter 10. In theorem 3.1 of Wahba (1990) a general result is given concerning
bounded linear functionals in reproducing kernel Hilbert spaces. As a consequence
of this result, the minimizers 8,, . . ., 8, of criterion (7) are natural cubic splines
with each §; having knots at the unique values of r,;, . . ., r,;. If the criterion has
a unique solution when each (3, is restricted to be linear, then a unique solution exists
in the unrestricted problem. In practice, this means that the model matrix

X Xura X2 Xl .o .. Xip Xiplp

Xo1 Xo1layr X Xppla - o o Xpp Xpplpp

®)

Xn1 Xn1ln1 Xn2 Xn2ln2 + « - xnp xnprnp
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must be of full rank. This will usually be the case; if not, the solution will not be unique.

3.3. Computational Details

For convenience we parameterize the problem in terms of the natural cubic spline
basis. To characterize the solution, we need some additional notation. Denote by
y the n observed values of Y, and let D; be a diagonal matrix with the n observed
values of X; on the diagonal. Denote the number of unique values of R; by n;, let
N 1(r )s - - ., Nj(r;) be the natural cubic spline basis functions for the jth variable,
and let the basrs matrix N; have ikth element N* 7 (ry). We can express each f3; in terms
of its basis functions

6,(rg)=lz' Vi N (ry).
=1

If we let B, denote the function @;(r;) evaluated at the n observed values of R;, we
can write B;=N;v;. The penalized least squares equation (7) can be written as in
terms of the finite dimensional parameters 7y,

p , P
G TP TR vp)=Hy—Z DNy + 2 Ml ©)
1 1

where the penalty seminorm || 'y,||ﬂ v/Qv;, and @ has ikth element
SNI u(r) Nk Il(r) dr.
T[he score equations are
aJ .
W=(N,TD,2Nj +N2)y =N/ D;(y— 2 D Nevi), Jj=1L...,p. (10
j kj

Direct solution of equation (10) involves solution of a X n; X X n, linear system, a
task requiring O{(Z n;)’} computations. A more efficient procedure can be derived
by writing

kj

=S,(\)D; (y— X DeNevi)s (11)

k#j

where the matrix operator

computes a weighted cubic smoothing spline with weights given by the diagonal
elements of D2 (see Silverman (1985) or Wahba (1990) for details of cubic smoothmg
splines). Hence the minimizers B, . . B can be found one at a time, by successive
smoothing operations applied to D (y Y x; Dy Nivy) with smoothers S;();).
Algorithms of this kind are known as Eackflttmg procedures (see Green ef al. (1985),
Breiman and Friedman (1985) and Buja ef al. (1989)). Since a weighted cubic smoothing
spline can be computed in O(n;) operations, this reduces the order of computations
to solve the estimation equations from O{(En )’} to O(En;)).

Appendix B gives a general result concerning the convergence of this procedure
and other related procedures. The results are a generalization of those given in Buja
et al. (1989).
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In expression (11) we have used the notation D to denote the generalized inverse
of D;; this handles the possibility that some of the x;s are 0. In fact, such points
drop out of the penalized likelihood and the solution for 8; has knots at only those
values of r;; for which x; #0. By using the weight matrix D? which ensures that these
observations are given 0 weight, we can use (for convenience) the full basis and obtain
an identical fit.

It may seem more natural to use the basis matrices N* = D;N; in equation (9), and
to side-step the need for weights entirely. Although this would be equivalent, it is
not convenient. Standard efficient software for fitting weighted cubic smoothing splines
can be used in our approach, whereas the alternative would require specialized software
which would be unlikely to achieve the same efficiency.

The smoothing parameters \; . . . \, used above are considered fixed. These
parameters control the amount of smoothing, and in practice we must choose or
estimate them in some fashion. One approach would be to use a criterion such as
cross-validation or generalized cross-validation for their estimation. In the examples
in this paper, we prefer to prespecify a target ‘degrees of freedom’ for a function
and then to find the value of \; that achieves this target. This strategy is used for
generalized additive models by Hastie and Tibshirani (1990). Some additional details
on degrees of freedom are given in Section 6.

One might consider the use of other smoothers in place of the weighted cubic
smoothing spline in the iterative procedure above. For example, we might use a kernel
or locally weighted running line smoother, or for time varying coefficients an
exponentially weighted moving average (Section 3.4.2). Convergence of the procedure
can only be guaranteed for certain smoothers, however, and we give details in
Appendix B. Although our solution fits the general problem (1), it is not difficult
to see that the algorithm reduces to those already developed for the special cases.
In particular, when the X; are all identically 1, we obtain the usual backfitting
algorithm using unweighted smoothing splines.

3.4. Models with Single Effect Modifying Variable
Consider a varying-coefficient model with a single effect modifying variable

Y=X,6/(R)+. . .+X,6,(R)+e. (12)

This model is a special case of model (1), and the general fitting method can be used
for its estimation. However, the presence of only one effect modifying variable suggests
that more specialized fitting procedures might be used. In this section we outline two
specialized approaches. The first involves plane fitting, and this bears close relation
to the work of Cleveland ef al. (1991). The second is based on the dynamic linear
model and the Kalman filter.

3.4.1. Conditionally parametric smoothing
For motivation let us look back at the first example and the model used there:

NOx=BO(E)+61(E)C+ €.

For each value of E, this model specifies a linear regression of NO, on C, with
the slope function varying (smoothly) with E. To fit the model, for each value E=E,
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we might fit a line (in C) to the data points having almost the same E-value. To achieve
this, we construct a neighbourhood in the (E, C)-plane that is an infinite strip in the
C-direction, and just sufficiently wide in the E-direction to capture a fraction or span
of the E-values around E,. We then fit a simple linear regression of NO, on C for
these data, giving us point estimates 3,(E,) and §,(E,), and this can be repeated for
different values Ej.

More generally, suppose that

Y=Z"B(R)+e

where Z=(X,, . . ., X,) and B(R)=(B:(R), . . ., B,(R)).
For the moment let us focus on estimation in L,, and therefore assume that Z,
R and Y are integrable random variables, and we wish to minimize

E{Y-Z"B(R)}.

A sufficient requirement for the solution is that it minimize E[{Y - ZTB(R)}|R=r]
for every r. This latter problem has solution

B(=E@ZZ"|r)"'E@Z"Y|r (13)

which is a linear regression of Y on Z for each value r. With observed data, we might
estimate B(r) by using a smoother to estimate each of the conditional expectations
in equation (13). Note that ZZ" is a matrix and we would require the conditional
expectation of each of its elements.

Equivalently, expression (13) suggests estimation of 8 by fitting a hyperplane to
Y as a function of Z in neighbourhoods of each r-value. This is an extension of the
local linear fits of the previous section.

The approach of Cleveland et al. (1991) makes at least two important enhancements
to this procedure.

(a) In addition to the restriction to the r-neighbourhoods, observations are assigned
weights from a tricube weight function based on their distance from r (the closer
to r the bigger the weight). In particular, the observation furthest from r receives
almost 0 weight. This ensures that as we move r smoothly over the range of
R the estimates change smoothly as well.

(b) R itself is used in the local hyperplane fit, and possibly bilinear terms are included
between R and the other predictors Z, i.e. the local model that is fitted might be

Y1Z+~v,R+vZR. (14)

The motivation for the last item is concerned with bias reduction. To understand
this, consider first the simple running mean of Y on R, ignoring Z. The local
neighbourhoods can be quite asymmetric at times, depending on the distribution of
R, and thus the target point r might be far from the mean or median of values of
R in its neighbourhood. This is specially true at the boundaries, where in the extreme
case all the values of R are to the right of r at say the left-hand boundary. For this
reason, Cleveland (1979) and others proposed the fitting of a local linear regression
in R rather than a constant, and then take the estimated conditional expectation of
Y given R =r to be the value from this regression line at R =r. The procedure here
is an extension of this idea. Our goal is the local hyperplane regression in Z,
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given R. Instead, we fit a hyperplane in Z and R (with bilinear cross-terms) and thereby
reduce the bias due to asymmetry in the neighbourhoods. The required hyperplane
is simply obtained by fixing the value of R =r in expression (14).

How does the procedure described by equation (13) relate to that of Section 3.3?
When Z is scalar, we have

a0y _EZY|r)

B(r) EZ|n

_E(/)2|r}
E(Z*|P)

This is estimated by smoothing Y/Z on R with weights Z2, in agreement with the
method proposed in Section 3.3.

3.4.2. Bayesian perspective: dynamic linear model

Consider the simple varying-coefficient model Y =X 3(r) + ¢ where ¢ is normally
distributed with mean 0 and variance ¢2. One way to impose some structure on the
process ((r) is to assume an appropriate prior. The dynamic linear model has such
a formulation, where the modifying variable is typically time. One version (West and
Harrison (1989), p. 108) is defined by the equations

Y =X:+v,  »~N(QO, V),

(15)
6;=Gtt81—1+t0’n w, ~N(O, VVt)

where ¢ refers to time. The first expression in equations (15) is called the observation
equation whereas the second is called the evolution equation. The evolution equation
specifies a Markov process for the regression parameter, which can be viewed as a
function of time ¢. Formally, this differs from the approach above only in the choice
of prior for @y, . . ., 8,. The Markov assumption makes it convenient to carry out
inference sequentially. Simple updating formulae are available for the mean and
variance of 3, and also for the mean and variance of the predictive distribution of
Y,, based on the Kalman filter.

In equation (15) X, and S, can be vectors or scalars; for simplicity we focus on
the scalar case. When G,=1 and the variance V, is constant, West and Harrison
(1989) show that the mean of 3, is approximately an exponentially weighted moving
average of Y;/Xj, 0<j<t— 1. The weight assigned to Y,_;/X,_; is of the form & X f.,
where 0<6<1 is called a discount factor. Notice that this has the same form as the
nonparametric regression method of Section 3.3. The smoother used is an exponentially
weighted average, with an asymmetric window that uses only past observations. When
X, and B, are vectors, a similar correspondence exists between the Kalman filter
approach and that of Cleveland et al. (1991) described in the previous section. Other
related approaches have been published. Brown ef al. (1975) propose tests for constancy
of regression effects over time. Another approach is the ‘flexible least squares’ method
of Kalaba and Tesfatsion (1989). They minimize the residual sum of squares plus
the squared first difference of the regression coefficient by sequential updating.

One advantage of the dynamic linear model is its rich Bayesian structure. This
facilitates not only an estimation of the mean vector but also forecasting of the process.
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This is especially useful when the data arrive sequentially as in the monitoring of
clinical measurements of patients. However, the Markov assumption in equations
(15) may not always be reasonable, and the inferences might also be heavily dependent
on the normality assumptions in the model.

Smoothing splines also have a Bayesian interpretation (Kimeldorf and Wahba, 1970;
Wahba, 1990). The prior process is assumed to be twice-integrated Brownian motion
plus a deterministic linear trend, and the sampling distribution is assumed to be
Gaussian. The smoothing spline estimate emerges as the mean of the posterior
distribution for 8. This framework can be extended straightforwardly to the varying-
coefficients models, with the penalized least-squares estimate (3; of Section 3.2
representing the mean of the posterior distribution for g;.

In related work, Priestley (1980) discusses state-dependent models for time series,
in which the coefficients of an autoregressive moving average model for Y, can
depend on the previous state of the system Y, ;. This would correspond to a
varying-coefficient model in which Y played the roles of response, regressor and effect
modifier. It is analogous to a locally parametric model for smoothing (see for example
Cleveland (1979)).

4, SECOND EXAMPLE: HEART DISEASE DATA

In this example we illustrate the use of a varying-coefficient model in a generalized
regression setting, specifically a logistic model for binary data. The example also
illustrates the use of a varying-coefficient model to specify separate curves in one
variable for different levels of another. The estimation procedure is Newton-Raphson
in the iteratively reweighted form used in generalized linear models (McCullagh and
Nelder (1989), chapter 2) and generalized additive models (Hastie and Tibshirani (1990),
chapter 6). The difference here is that the inner loop consists of the generalized
backfitting algorithm of Section 3.3.

In this particular example we investigate the interaction of a continuous variable
with a binary treatment variable. The data come from a study of myocardial infarction
(MI) and are described in detail in Hastie and Tibshirani (1987). The risk factors under
study here are systolic blood pressure S and cholesterol ratio C and treatment for
high blood pressure T (T=0 denotes treatment absent; 7=1 denotes treatment
present). In addition, there are confounding variables family history, age and type
A behaviour; we shall denote these collectively by X. This is a retrospective study;
all the measurements were taken at a particular time period which was after the MIs
had occurred for the cases. This limits the interpretations dramatically, and the
interactions shown here are in fact a demonstration of the pitfalls of a naive
investigation of such data. A larger set of risk factors is described in Hastie and
Tibshirani (1987).

Figs 4(a) and 4(b) show the fit of the generalized additive model

logit{pr(MI)}=X 8+ B5(S) +Bc(C) (16)

to these data, ignoring the treatment 7. The ‘U’-shape blood pressure curve is
suggestive, and this shape persists even when an additive treatment effect for the
dummy variable T is present.
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(a) Fitted curve for S and (b) fitted curve for C in a generalized additive model, ignoring the

treatment variable T (c) pairs of functions Bs,(S) and Bg,(S) + B, (S) for S (—, no treatment (7 =0);
+, treatment); (d) plot equivalent to (c) for C

To investigate how the effects of S and C might differ whether or not the person
was treated for high blood pressure, we fit the model

logit{prMI)}= X8+ Bs(S) + T Bs1(S) + Bco(C)+ T - Bc1 (C).

(17

The functions Bg,(S) and B, (C) represent the effect of the treatment on the curves
for § and C. Figs_4(c) and 4(d) show the estimated functions B (S) and
Bso(S) +Bs1(S), and By (C) and Beo(C) + Bci (C) respectively.

As mentioned, the interpretation of these interactions is tricky, since the data were
collected retrospectively and the treatment was given after the heart attack. They
probably suggest that people who had heart attacks were more likely to receive
treatment for high systolic blood pressure and cholesterol ratio, and the treatment
successfully reduced both of those measures.



1993] VARYING-COEFFICIENT MODELS 771

Hastie and Tibshirani (1990), section 9.5.2, describe a procedure for fitting a separate
curve to each level of a group variable, in a generalized additive model. The method
inserts a separate term for the risk factor (say S) for each group, and when the curve
for group J is estimated in the backfitting procedure the smoother uses only the data
for that group. If the groups are coded by a set of dummy variables X, that procedure
can easily be shown to be equivalent to the procedure described in the present paper
and used in this example.

5. MODELS FOR SURVIVAL DATA

In problems involving a possibly censored lifetime, the available data are of the
form (¥, X115 - - - X1p> 61)s - « o5 (Pns Xn1s « + +» Xnp, 6,). The survival time y; is
complete if ;=1 and censored if §;=0, and (x;;, . . ., X;,) denotes the usual vector
of predictors for the ith individual. The distinct failure times are denoted by
ty<...<lg), with di individuals failing at ), k=1, . . ., d.

The proportional hazards (or ‘Cox’) model assumes that

X Xp)=)\0(t)exp<§] Xij> (18)

where N(#| X . . . X)) is the hazard at time ¢ given predictor values X, . . ., X, and
Mo(?) is an arbitrary base-line hazard function.

The methods of the previous sections could be applied here to make the model
more flexible. In particular, we could allow the coefficients 3; to depend on a
variable R;, e.g. a disease severity score.

However, time is a more compelling choice for r;. Consider a model of the form

NI X, . .Xp)=)\o(t)exp{z Xj,Bj(t)K. (19)
J

Unless each §8;(f) is a constant, this model represents non-proportional hazards.
Hence it provides a way of assessing the proportional hazards assumption and
describing any departures that are present.

In the special case of a single group variable (X=0 or X = 1), model (19) reduces to

M0 =No(0);  M2[1) =No(?) exp B(2).

Thus B(f) measures the difference in log(relative risk) between the two groups. In
this case it might seem equivalent and simpler to model the hazard separately in each
group. There is a difference, however, in the approach outlined here. The base-line
hazard \,(?) is estimated with the usual minimal restrictions and is thus piecewise
constant and monotone, with jumps at the observed death times. The curve 3(?) in
contrast is modelled smoothly and measures the difference between the hazards for
the two groups.

Goodness-of-fit and diagnostic tests for proportional hazards model (18) are difficult
to develop because of the arbitrary base-line function; Cox and Oakes (1984) contains
a fairly recent survey of some proposed approaches. Gore ef al. (1984) present a simple
exploratory method that uses a discretization of the time axis.

Gamerman (1991) describes the dynamic linear model approach to estimation of
model (19). He assumes that \,(#) and the 3;(f)s are piecewise constant functions,
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constant between the distinct failure times. He uses the full likelihood for estimation,
updating the terms sequentially in time. Here we instead use the partial likelihood
for estimation, leaving N\y(#) unspecified but modelling the 8;(f)s smoothly.

The partial likelihood for model (19) is given by

exp Lé Skj Bj(t(k))}
LB, ... By Y)—IEI { . exp{i xijﬁj(t(k))} rk .

i€ % Jj=1

(20)

In this expression, Z, is the set of indices of the individuals at risk at time 7 —0
and s;; is sum of the values of the jth covariate for the individuals failing at #,.
One approach to estimation would be to use a parametric basis set for each of the
B;(»)s; this leads to a time-dependent covariate model, for which numerical
algorithms are available. In keeping with the approach of this paper, we focus on
a penalized partial likelihood method.
Denoting the logarithm of L by /, we estimate the §,, . . ., 8, by maximization of

J@Br. - Bp)=IBr - .. By V) i ngﬁj”(r)zdh @1

j=1

D=

Zucker and Karr (1990) study the mathematical properties of this model. They show
that the solution is a cubic spline with knots at the unique failure times. They also
study the general case of equation (21) in which the squared mth derivative of f3; is
penalized. Their results require m >3 for consistency of the maximizer of the penalized
log-partial-likelihood and m >4 for asymptotic normality. However, their conditions
are sufficient (not necessary) and it is plausible that consistency and asymptotic
normality also hold for the case m =2 (given the success of squared derivative penalties
in other settings).

Since the modifying variable (time) changes for each individual as the risk set
changes, we cannot apply the method of the previous sections directly. A specialized
algorithm for this problem is developed in Appendix A. The form of the score
equations is interesting and has the appearance of a ridge regression style of
modification to the usual partial likelihood score equations.

5.1. Third Example: Lung Cancer Data

Kalbfleisch and Prentice (1980) examined some data from a Veteran’s
Administration lung cancer trial. The outcome is survival time; the regressors are
performance status, disease duration, age, prior therapy (yes or no), cell type
(squamous, small, adeno, large) and treatment (yes or no). A fit of the proportional
hazards model (Table 2) indicates that performance status and cell type are highly
related to survival, whereas treatment is marginally significant. The maximized value
of the likelihood is —475.2.

We tried to add a term of the form x 8(f) for performance status to this model,
choosing the target degrees of freedom to be 5. The resulting estimate 3(¢) is shown
in Fig. 5(a) and indicates a decreasing then increasing advantage with time. The decrease
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Fig. 5. Plots of 3(¢) for the third example: (a) with all the data the plot is markedly quadratic; (b)
effect of removing the two values of time on the extreme right-hand side and refitting the model—the
tail of the function increases rather than decreases

TABLE 2
Proportional hazards fit for the third example

Variable Coefficient Standard error
Treatment 0.289 0.207
Cell type—squamous 0.400 0.282
Cell type—small cell 0.457 0.266
Cell type—adeno 0.788 0.303
Months from diagnosis -9.2x107° 0.009
Age —0.009 0.009
Prior therapy 0.007 0.023
Performance status -0.032 0.006

after about 400 days is quite surprising but is based on relatively few observations.
The log-likelihood increased to —467.7, corresponding to a change in twice the log-
likelihood ratio of 15.0 on about 4 degrees of freedom.

The inclusion of terms x 3(#) for other covariates did not significantly improve the
fit; hence we conclude that these effects are well described by proportional hazards.

6. INFERENCE FOR THE MODEL

Having estimated a curve 3(r), we would like to be able to test whether 8(r) is well
approximated by a constant or linear function of r. The test of constant 3(r) is of
particular interest because it indicates whether the simple linear model is adequate.
Furthermore it is often of interest to include standard error curves about a fitted curve,
to obtain an idea of which features are estimated with precision.

For a broad class of smoothers, including kernels and nearest neighbours, as well
as splines, we can use the approximate methods described in Hastie and Tibshirani
(1990). These rely on the unifying concept of the ‘approximate degrees of freedom’
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of a smooth term, which depends in turn monotonically on the smoothing parameter.
For a simple smooth fit § = Sy, Hastie and Tibshirani (1990) argue that the appropriate
degrees of freedom for the fit is » = tr(2S — SST) and that the distribution of the test
statistic is roughly F, ,_, (more refined approximations can be found in Cleveland
and Devlin (1988)). In the present case, the operator S that produces the fitted term
xB(R) is DN(NTD>N + \Q)~'ND (in the notation of Section 3.3). It can be seen that

tr(2S—SST)=tr(2S’ —S'S'T)

where S’ =N(NTD?N + AD)” IND? is the weighted cubic spline smoother that is used
in the algorithm described in Section 3.3. Conveniently, then, the degrees of freedom
of a term xB(R) is simply that of the smoother used in computing it.

Whereas tr(S') is easy to compute, tr(S’'S’T) is not, and for this reason Hastie
and Tibshirani (1990), appendix B, develop the approximation tr(2S—SST)
~1.25tr(S) — 0.5. We have made use of this approximation in the present work
as well.

Finally, predictions from the model outside the range of the observed R,
R,, . . ., R, will sometimes be of interest. The straightforward approach would be
to extrapolate each estimate B,(R ) linearly (see for example Hastie and Tibshirani
(1990), chapter 2). The resulting estimates may be quite unstable, and a reasonable
estimate of its accuracy would be difficult to obtain. If extrapolation is the main
objective, the dynamic linear model with its richer probabilistic structure is likely
to be more useful.

7. DISCUSSION

The varying-coefficient model described in this paper is a potentially useful extension
of regression and generalized regression models. It allows the coefficients that describe
the effect of a regressor to vary as a function of another factor.

There are some directions in which this work could be extended. The effect modifier
R might be vector valued, in which case a multidimensional smoother would be used
in the estimation procedure for the function 3(R). The conditionally parametric models
of Cleveland ef al. (1991) automatically allow for this case when all the terms are
modelled conditionally on the same R.

Extensions to non-linear regression models could also be explored. Another extension
(suggested by Mike Leblanc) would be to allow terms of the form X 3(y'r) where
v is an unknown unit vector; this would be a generalization of projection pursuit
regression (Friedman and Stuetzle, 1981). Hence one would look for directions in
the effect—-modifier space that result in large changes in the coefficients.
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APPENDIX A

In this appendix we derive an algorithm for solving the penalized partial likelihood problem
for the varying-coefficient Cox model. The notation is described in Section 3.

Denote the vector of natural spline basis functions with knots at the unique failure times
by n(9)=(n;(9), . . ., ng(?) and let my=n(t;), Q;= {n/@ n/(f)dt. Then we can express
Bi(tw), the jth function evaluated at #,, as n,f'yj. The score equations for the unknown
parameters vy, . . ., v, are

> x;n; exp(Z xijn{—yj>

aJ & i€, Jj .
T= skjnk_dk z _)\jﬂ'Yj:O’ j=1,2, N /5
s % exo( Layaty)
i€ R, J
These score equations can be written in a more appealing form. Let
exp <Z X;j n}y,-)
J
DPii=
2 exp( 2 ij“}‘)‘j)
i€, J

and py;=dy L c @ Prix;;- 1gnoring the di which account for ties, we can think of u; as the
mean of the jth regressor in the risk set %, with respect to the model probabilities py;. Then
the score equations can be expressed as

aJ .
—=NT(Sj—ﬂj)—)\jQ‘Yj=O, j=1, 2, [ /8 (22)

d;

where s;= (s}, . . ., $4)T, pi=(uy), - - ., pgj) and the matrix N has rows nj =1, 2, . . ., d.
Now if N consisted only of a column of 1s and the penalty \;Q+; were absent, equation (22)
would simply require that the sum over the risk sets of the ‘residuals’ (s;— u;) be 0, the usual
stationary conditions for the proportional hazards model. The generalized score (22) has the
form of a ridge regression: it measures the inner product of the residuals with the column
space of N, with a penalty for smoothness subtracted.

If we compute the second-derivative matrix d2J/9 waﬁ and work out the Newton-
Raphson correction (A, . . ., Ap)T for solving equation (22) we obtain the pd X pd system

NTE N+M2  NTIL,N ... NTZ)N A NT(s;—p) - M QY0
NTEZIN NT222N+)\29 o e NTEZPN A2 NT(Sz—[tz)—)\zn‘yg

. . . . .= . (23)
NTE, N NTL,N ... NTE, N+M0/ 14, NT(s,— ) =\, Q79

where L is a diagonal matrix with diagonal elements the covariances of (x;;, x;) in the risk
set '@k: Ej,=diag(aj,1, e ey Ujld) where

o=d /2([ Z PriXijXi— < Z pkixij>< Z Pkixilﬂ .
i€ %, i€ %, i€ %,

Direct solution of this system requires O{(pd)} computations, a formidable number in large
samples since typically d is a significant fraction of n.
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Here is an efficient computational strategy for solution of the system. Let
;=L (5;—p)+X < il ):,,ﬂ}’).
i=
Then we can write each line of the system (23) as
B;j=8,(z,—X; § ;8
=]

where as before 8;=N+v;, and S;=N(NTZ;N+X\Q2)"INTL; computes a weighted cubic
smoothing spline.
This suggests the following iterative strategy similar to that for generalized regression models:

(a) an inner backfitting loop that successively smooths z; on the time variable, to obtain
new values of §;; R R
(b) an outer loop that updates z;, j=1, . . ., p, by using the current values of 8, . . ., Bp-

Step (a) solves the linear system (23) in O(kn) computations, where k is the number of
iterations (typically fewer than 10). Step (a) differs from the usual backfitting-type procedure
in that the ‘dependent’ variable z ; and the terms subtracted from the dependent variable are
different for each j. However, the results of Buja ef al. (1989) can still be applied to establish
convergence. Details are given in Appendix B.

APPENDIX B

In this appendix we study the system of equations

NIEIIN1+)‘IQI N’lrEuNz e NTEIPNP Al NT“I_)‘IQI‘Y({M
NIZ,uN,  NIZLN, 400, . .. N;Z,N, A, NJu, — M 2,45 b
NJZ,N; NJZoNy ... NIZT,N,+M,Q,/ |4, NTu, -\, Q2,754

where each N; has columns that are evaluated natural spline basis functions for a set of n;
unique real values, Q; has ikth element | N/(r) N{(r)dr, L; are all submatrices of the
L n;x En; symmetric non-negative definite matrix £ and Aj=y"" - 'y;"d. This system is quite
general and special cases of it arise in the estimation of the models of this paper, and also
in additive and generalized additive models. Specifically:

(2) if w;=y, nj=n for all j, ;=1 (the identity matrix) for all i, j, and 'yj‘."d=0, then
equations (24) are the score equations for an additive model fitted by cubic smoothing
splines (this is described in Buja et al. (1989));

(b) if u;=u is the derivative of the log-likelihood and L;=A, the matrix with the Fisher
information components on its diagonal, then system (24) represents the Newton—
Raphson update from 94 to 4™V for a generalized additive model (this is the ‘local
scoring’ procedure of Hastie and Tibshirani (1990), chapter 6; see also Green (1987));

(c) asin (a) but with L;=D;D; (D; is defined in Section 3.3), and u,=D,y—then system
(24) represents the score equations for the varying-coefficient model described in Section
3.2;

(d) as in (b), but with L;;=D;AD;,—then system (24) represents the Newton-Raphson
update from 'y;’ld to 'y}‘e“’ for the varying-coefficient model in the generalized regression
setting;
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(e) if N;=N,j=1, ..., p, the evaluated natural spline bases for the unique failure times,
and I; are the risk set covariances defined in Section 5, then system (24) represents
the Newton-Raphson update from v{* to 7" for the survival model of Section 5;

(f) a more general version of the Cox model arises if we have different effect modifiers,
other than time ¢, or simply other additive smooth terms in the model—then the matrices
L, are typically full and unstructured, but the results described below still carry
through; other models involving dependent contributions to the likelihood would also
result in non-diagonal matrices L.

The following system of equations is equivalent to system (24):

I SiZi'Li SiIZi'Zis ... SiIZH'Ig, BrY Si1zy
S, 5Ty I S$Tn'Tyn ... S$IR'T, Brev S,z,

. . . . . .=, (25)
SpEp_plEpl S)Zm e SpTp'Zps - .- I By Spzp

where Bj=Nij’ »
- - 1d
2;=L;y;j+¥Xj (leﬁ 7 )
i=

and S;=N J(NEE GN;ENQ j)‘lNEE jj» @ weighted smoothing spline operator. In this form,
we can see how other smoothers different from smoothing splines might be substituted for
the S;. It is also easy to write down the form of the Gauss-Seidel iterations for solving the
system:

B;=S;@z;,— X' 2 L;iB). (26)
i#j
We extend the results of Buja ef al. (1989) concerning the existence of solutions to systems
(24) or (25) and convergence of the Gauss-Seidel algorithm.

Theorem. If ¥ is symmetric and non-negative definite, then the system of equations (24)
(or system (25)) is consistent and the Gauss-Seidel iteration (26) converges to a solution for
any starting values.

Proof: consistency. Let z* =X "z where z=(z,,. . ., Z,)T. Then the solutions to equations
(25) can be expressed as the minimizers of the quadratic function

(z* —Ny)TZ(z* - Ny) + v Qy 27

where @ =diag(Qy, . . ., Q,) and N=(V,,. . ., N,,). Since both £ and @ are non-negative
definite, expression (27) is non-negative. A real-valued multivariate function bounded below
must have a minimum and therefore system (25) is consistent.

Proof: convergence of Gauss—Seidel iteration. (Typical convergence results for the Gauss—
Seidel procedure require that the system matrix be symmetric and positive definite. The left-hand
matrix in system (24) is symmetric but not necessarily positive definite; the matrix may possess
a non-trivial null space, a phenomenon called ‘concurvity’ by Buja ef al. (1989) who proved
the convergence of the Gauss-Seidel procedure through a ‘seminorm descent principle’. We
make use of this principle here to establish convergence.)

Without loss of generality we may consider the homogeneous version of function (27) (i.e.
take z* =0):

O()=7"(NTEN + Q)y.
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The function Q(y) is a non-negative quadratic form and |y| =~/Q(y) defines a complex
seminorm. To prove consistency, we use the following lemma.

Lemma: seminorm descent principle (Buja et al., 1989). If |f| is a complex seminorm and T
a linear mapping on £"” satisfying |Tf| <|f| unless |f| =0, and Tf=f for |f| =0, then T7
converges to a limit T® with the properties |T*f|=0 for all f, (T*)2=T* and TT>=
T T=T®.

In the present problem, the Gauss-Seidel iterations are defined by T=T pXTp_1. . . T where
T leaves «; unchanged for i, and maps v; according to system (26). To apply the lemma,
we need to show that |Ty| <|y| unless |y| =0, and Ty=+ for |y| =0. The first fact follows
since the iteration (26) minimizes Q( ) along the jth co-ordinate, and at the global minimum
Q(y)=0. The second fact is verified by checking directly that if |y|=0 then T,y =+ for all
J. Hence convergence is established. 0

To apply the theorem we require that £ be symmetric and non-negative definite. This is
immediate in all the cases listed at the beginning of the appendix, except the survival model
(case (¢)). For that model, let & be the permutation matrix that sorts the columns of £ by
failure time and regressor within failure time. Then the matrix #TL & is block diagonal,
with ith block the covariance matrix of x, . . ., x, at time t)- Hence #TEL & is non-negative
definite and it follows that I is also non-negative definite.

These results have the following practical implications. If the matrix (NTEN + Q) is of full
rank, the solution to system (24) is unique and the Gauss-Seidel method converges to that
solution for any set of starting values. If (NTEN + Q) is not of full rank, the final iterate
depends on the starting values.

It is interesting to examine the null space of matrix U=NTEN +Q, i.e.

null(U)={y: (NTEN +Q)y=0}.

For the additive model (case (a) above), Buja et al. (1989) call null(U) the concurvity space
(expressed in terms of 8=Nv). In general, elements of null(U) must satisfy

Qy=0, YNy =0.

The first equation, which by construction is the same as Q ;v;=0,V j, defines the null space
of the penalty functionals, and for the second-derivative penalties these correspond to functions
B1s- . ., Bp that are linear in their arguments. The interpretation of the second equation is
simplest for the cases (a) and (c) listed above, and implies that =8 =0. So in this case the
concurvity space corresponds to exact collinearities among the regressors. For cases (b) and
(d), a similar situation occurs: the 8 ;s are linear and D ;8;=0, which also means that the
model matrix (8) in Section 3.2 will not have full rank. In the general case the concurvity
space is more difficult to interpret, but irrespectively the ; are linear and so the
interpretation is the same as for the corresponding (bi)linear model.
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DISCUSSION OF THE PAPER BY HASTIE AND TIBSHIRANI

P. J. Green (University of Bristol): There is nothing very hard conceptually in inventing methodology
for nonparametric multiple regression, but to do this usefully means insisting on some structure in the
modelling. That structure can build on substantive theory and the elicitation of prior belief, it
automatically controls the expenditure of degrees of freedom, and its exploitation facilitates computation,
presentation and interpretation. In a long series of papers running forwards from 1984 and in their
book, the authors have made many contributions to good structured nonparametric regression
methodology, much of it in the framework of generalized additive models. It is a great pleasure to welcome
the authors’ latest work on this theme to the Society’s proceedings.

Nonparametric regression does not always mean smoothing, but when it does there is a rich variety
of basic methods to choose from. These fall into two groups: those specified operationally, by the
algorithms by which they are implemented—running means, kernel methods, etc.—and those defined
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by the objective function that they optimize. Methods in the former group are perhaps more easily
understood, and their performance in simple situations more readily assessed, but the second group
of methods has other attractions. Such methods, based on penalized least squares or likelihood, are
unambiguously characterized, without reference to algorithmic details, and are straightforwardly adapted
to novel situations to build more flexible methodology. The resulting smoothing operators, being
symmetric and non-negative definite, have convenient theoretical properties, that account for the large
part they play in the present paper.

Varying-coefficient models, in the form of equations (1) or (2), are examples of structured non-
parametric regression and thus offer all the benefits that I mention above. The examples in the paper
are quite convincing examples of the application of such models. However, they use only very special
cases of models (1) and (2), and my main criticism of this class as a whole is that it emphasizes coefficients
rather than fitted values. One consequence is a lack of invariance to transformations of the variables.
Invariance to rotations (of the space of Xs, for example) is not always important, but it seems to me
that effective invariance to translations is usually needed. The model

Y=8,(R))+B,(Ry)) X +¢,

in which the intercept and slope of regression on X have different effect modifiers R, and R,, can only
make sense when the origin for X is physically meaningful. Otherwise, I would want to allow a shift
in this origin, leading to

Y=B1(R))+B,(R)(X+v)+e
={B1(R)) + 7 B(R)}+ B2 (R) X + ¢,

a model of different structure.

Having done so, procedures familiar to the authors can be used to fit the model. Using backfitting
with a three-part cycle, the estimates of the curves 3, (R,) and 3,(R,) are updated by weighted cubic
spline smoothing, while v is updated using a calculation by regression through the origin. This is no
longer an additive model and perhaps in consequence convergence is slow. As applied to an artificial
data set (see Fig. 6) contrived to have structure similar to that of the example in Section 1.1, the resulting
fitted curves 8, and B, are displayed in Figs 7(a) and 7(b), superimposed on the dotted curves
representing the true values used in the simulation. For comparison, Figs 7(c) and 7(d) are the
corresponding results with v fixed at 0: the form of 3, is completely lost.

The moral that I draw from this is that some considerable discipline is needed in writing down varying-
coefficient models. I would welcome further work which will produce exploratory and diagnostic methods
for selecting such models.

Turning now to purely computational matters, I hope that Sections 3.2 and 3.3 will not be read as
implying that backfitting is a universal solution. As Appendix B shows, full rank of the matrix in equation
(8) is sufficient to ensure mathematical convergence of backfitting, but unfortunately this does not
guarantee convergence in practical terms. Pathological counter-examples can always be constructed,
but problems can occur with genuine data sets too. A reanalysis of the price-volume study described
in Daniel and Wood (1980) using, very naturally, a partially linear model in which price, price differential
and day of week appear linearly, and date nonparametrically, is a case in point. The spectral radius
of the convergence matrix for the iteration turns out to be 0.9992 for this example, using an appropriate
degree of smoothing for the cubic spline, and a backfitting alternation between date and the linear
variables. This is impossibly slow for any practical purpose. Consideration of equation (8), or even
of the corresponding iteration in which date is fitted linearly, provides no warning: the spectral radius
here is only 0.8838. With quadratic dependence on date, this rises to 0.9815, and alarms begin to ring.

General purpose alternatives to backfitting, or perhaps modifications that increase orthogonality,
would be desirable. A modest step in this direction is the observation that the non-iterative method
in Green et al. (1985) generalizes somewhat to certain other varying-coefficient models. Consider model
(2), in which only one of the 8s is not constant: it is convenient to rewrite this as

Y=xTB+zg() +e.
Then the appropriate penalized sum of squares
|Y-XB-2Z¢g ||2+)\ S g"(N*dr,

(where Z is the diagonal matrix of zs), is minimized by
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B=(XT(I-8$*)X)"'XTA-S$*)Y,
£=SZ-(Y-X}p)
where
S*=28Z"!

and S is the usual weighted cubic spline smoother. This solution can be computed, without iteration,
in O(n) steps for fixed p.

I hope that it is evident that I have been greatly interested by this paper, and I have much pleasure
in proposing a warm vote of thanks to the authors.

J. Cuzick (Imperial Cancer Research Fund, London): What we have been offered here is a family
of models for studying interactions. Additive models offer an important extension of multivariate linear
regression for studying main effects, and the present approach offers a structured but flexible approach
for interactions which avoids the abyss of general nonparametric multivariate models. However, the
choice of what structure to impose is much wider here. The most natural generalization of additive
models are models of the form

k
Ep|X, .o x)=a+ 2 i)+ 2 8 (x;5 X;)
i=1

1<i<jgk

where E f;(X;)=E{g;(X;, Xj)|Xj}=0 for all 1<i<j<k. This is already problematic because of the
difficulties in fitting two-dimensional functions nonparametrically. An alternative is to replace g;(x;, x;)
by g,;(x;) h;(x;) leading to the need to fit k? one-dimensional functions, compared with the k required
in additive regression. The authors stop short of this and propose models in which only one factor of
a quadratic form is nonparametric. Theoretical analysis of their model is not particularly enlightening
and its utility can only be judged by its value in specific applications.

One area where these sorts of model have application is survival analysis. Although the proportional
hazards model has become standard for these problems, in very many cases it is found that differences
between hazards attributed to covariates tend to converge as follow-up time elapses. This can be accounted
for by postulating the existence of unobserved covariates or frailties with prognostic value. Thus the
survival model can be written as

Nt|z, §) =N () exp(B2) ¢

where z are the observed covariates with coefficients 3 and £ is an unobserved frailty or random effect.
If ¢ is assumed independent of z and is normalized so that E(£) = 1, then the observed marginal hazard
takes the form

Nt | 2) =N () exp(B2) v(t, 2)
where
v(t, D=0 A (D)=E(|z, T>1)
_E[£exp{=A¢(1) 6¢}]
 E[exp{—Ao(t) 0]

where Ay ()= [§ Ny (s) ds, 6=exp(Bz) and T is the survival time. Taking another derivative of (¢, 2)
with respect to ¢ yields

j—j= N (Bbvar(E]z, T><0,

so that an independent frailty always leads to converging hazards. This leads to a specialization related
to the authors’ form (12) where only one interaction function is introduced, but it now depends on
0 Ag(?). When the range of variation of 6 is small compared with A,(¢), this might usefully be

approximated by a function of ¢ alone.
If a measurement error model is considered,

z;=2" ¢, ¢; independent, i=1, . . ., k,
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with N(#]| z7¢) = N\o (#) exp(Bz'™¢) then

M) =N @ exp{B1 (¢, 21)z +. . .+ Bl 2) 2]
where

Bi(t, z)=z; ' log E{exp(8;2i")|z;, T>1}

which is more like model (4) or (12).
When frailty interacts with treatment, models of the form

N[z, =N (Dexp(Bz§)

are more appropriate and lead to crossing or diverging hazards (Cuzick and Trejo, 1992). When covariates
exert their effects at different times of the disease process, then additive hazard models (Aalen, 1980;
Huffer and McKeague, 1991; McKeague and Sasieni, 1993), i.e.

k
M| 2) =N () + 20 N(0) exp(B;z;)

i=1

are probably more relevant, since factors affecting different mechanisms are more likely to add and
not to multiply on the hazard scale.

A perplexing example where flexible models of interaction are needed is the modelling of serum
$,-microglobulin, which is the major prognostic factor for myelomatosis. Previous analyses (Cuzick
et al., 1990) have shown that its prognostic value diminishes rapidly with follow-up time and have also
suggested that the relative risk function is not log-linear. Today’s paper suggests that we try flexible
interaction models and an interesting possibility is

Nt[2)=X (D) exp{gz) B(D)},  BO)=1, g(0)=0

where g(z) and 8(¢) are modelled nonparametrically. Preliminary estimates for g and 8 using regression
splines on 1072 patients in the Medical Research Council’s fourth and fifth trials are shown in Fig. 8.
A steady decline in prognostic value is seen for the first 4 years of follow-up, at which time all prognostic
value has disappeared. After that time the curve became unstable, which was also true in the author’s
Fig. 5. The log(relative hazard) for serum @,-microglobulin appears to have a flat spot in the middle
of its range after a preliminary logarithmic transformation. This can be explained by its dependence
on two separate mechanisms—myeloma cell tumour and renal failure. However, the detailed shape of
the curve is dependent on the location of the knots for both z and ¢, and use of smoothing splines as
suggested by the authors may help to stabilize things.

The choice of models for interaction is vast and knowledge of the subject-matter at hand can help
to focus on the appropriate class for particular application. The models discussed in this paper are best
considered as illustrative examples of what might be attempted. Nevertheless, the need for structured
but flexible models of interaction is great and the authors do us a great service by bringing the issues
to our attention and by providing a general method for fitting them. I am very pleased to second the
vote of thanks.

The vote of thanks was passed by acclamation.

R. A. Rigby and D. M. Stasinopoulos (University of North London): We wish to draw attention
to an important subclass of varying-coefficient models: ‘break point’ models where a sudden change
occurs in the dependence of 5 on one of the predictor variables. Specifically in model (1), a 8;(R) can
be modelled by

B;(R)=8; (R) IF(R<v) + B, (R) IF(R>7) @8)

where 3;, and 8;, may be parametric or nonparametric functions in R, and the value y of R at which
the break point occurs may be unknown and need to be estimated. Models with break points are, generally,
not smooth and consequently may provide better fits than smooth functions.

Consider two specific cases.

(a) If X=1 then equation (28) models a break in the dependence of  on R, using piecewise parametric
(e.g. piecewise polynomial; Stasinopoulos and Rigby (1992)) or piecewise nonparametric models
in R.
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Fig. 8. Plots of 3(¢) and §(z) estimated from the myelomatosis data using the model \(¢|z) =\, (¢) exp{g(z) B(?)}
(b) If both X and R are variables, then equation (28) models a break, at R =4, in the dependence
of 7 on the interaction between X and R.

In the authors’ example in Section 1.1, we were interested in whether there was a break point in the
dependence of coefficient 8, (E) on E. We fitted

NO, =By(E)+ 8, IFE<7) (C-C) +¢, 29
NO, =By(E) +(B1o+ B E+ B2 (E—7) IFE>NIC—-C) +e (30

where 3,(E) is a smoothing function with 8 degrees of freedom and C is the mean of C.

Hence model (29) uses a piecewise constant model for §8,(E), and implies that C has no effect on
NO, if E is greater than the break point v, and was suggested by the exploratory plots such as
Fig. 1(c). Model (30) uses a piecewise linear model for 38, (E), with continuity at the break point, and
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was suggested by the smooth 3, (E) function in Fig. 3(b). The fitted break points in models (29) and
(30) were obtained from their profile deviance (e.g. Fig. 9 for model (29)). The fitted models for 3, (E)
corresponding to models (29), (30) and the linear model (iii) from Table 1 (with their residual sum of
squares RSS and degrees of freedom DF) were

B1(E)=0.10IF(E<1), RSS=2.84, DF =78,
B (E)= —0.059 +0.234E — 0.528(E — 0.765) IF(E>0.765), RSS=2.74, DF =176,
B,(E)=0.253 - 0.208E, RSS=3.20, DF=78.

The fitted break point models for 3, (E) were superimposed on Fig. 3(b) giving Fig. 10. The break point
models for 8, (E) fit ‘significantly better’ than the linear model (iii) and provide an adequate fit to the
data when compared with the smooth model (iv).

How well can smoothing functions detect break points? Our experience with generalized linear models
(Rigby and Stasinopoulos, 1992; Stasinopoulos and Rigby, 1992) suggests that break points, including
discontinuities, may be successfully detected by using smoothing functions in an exploratory fashion,
provided that the smoothing parameter is sufficiently relaxed (i.e. using high degrees of freedom).

DEVIANCE

BREAKPT

Fig. 9. Profile deviance plot for the break point v in model (29)
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Beta1(E)

Fig. 10. Fitted break point models for 8,(E) from models (29) and (30)

Stasinopoulos and Francis (1993) have adapted programs of the authors so that generalized additive
models can be fitted very easily in GLIM4 by using a GLIM library macro. A macro to fit varying-
coefficient models may be obtained from us.

Stuart Young and Adrian Bowman (University of Glasgow): The authors are to be congratulated
on proposing a class of models which is an attractive extension of additive and other models, with a
potentially wide area of application. We see a need to develop the important subject of inference, which
is mentioned briefly in Section 6.

With the exhaust data from Section 1.1, the eventual model fitted is

NO, =8,(E)+ B, C+B,CE+e.

This is chosen through a series of approximate F-tests in an analysis-of-variance table. Where comparison
is to be made with a fully parametric model, an alternative model of inference is provided by Azzalini
and Bowman’s (1993) residual smoothing approach. In this, the residuals from a parametric regression
(the null model) are taken as a response variable and smoothed against an explanatory variable of interest.
Evidence of a relationship suggests the null model to be inadequate. A test statistic based on residual
sums of squares can be formulated and, with an assumption of normally distributed errors, a highly
accurate moment-based approximation to the null distribution can be used. With the exhaust data,
Fig. 1(a) suggested a quadratic effect of E. If we wish to test this, we can obtain the residuals from
the regression,

NO,=a+8,C+B,CE+B,E+B,E>+e¢,

and proceed as above. In this example, the simple plot of the residuals against F gives a clear indication
that the quadratic model is unsatisfactory; nevertheless, it serves as an illustration of the method. The
residual smoothing approach returns p-values of less than 0.0001 for all plausible choices of smoothing
parameter, suggesting, as we expected, that a simple quadratic term in E is insufficient, and agreeing
with the authors’ choice of the more general form.

Point (d) in Section 2 mentions analysis of covariance. Consider the simple case where there is one
continuous and one discrete covariate, and we wish to test whether a single (nonparametric) curve is
sufficient. We can obtain a test statistic based on individual estimates of each curve contrasted with
a common curve. Judicious choice of smoothing method can, at least asymptotically, eliminate bias,
and we can again use a moment-based approach to approximating the distribution under the null
hypothesis. This method can be extended to test parallelism, where the shift parameter is estimated
parametrically. We are currently investigating how this approach might extend to more general models.

Ian McKeague (Florida State University, Tallahassee) and Peter Sasieni (Imperial Cancer Research
Fund, London): The authors propose a flexible family of models for regression with interactions between
covariates. In survival analysis the interactions may be with time, which is neither an ‘independent’
nor the ‘dependent’ variable. The general algorithm provided enables one to use structured models that
are far from parametric.
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Attention should be paid to the interpretation and to the prospects of inference in such models. The
rest of these comments cover time-varying-coefficient models for conditional hazard functions.

In the time-dependent proportional hazards model (19), the ‘parameters’ can be interpreted in terms
of instantaneous relative risks. The following points arise naturally.

(a) The model does not fit the structure of model (1). An equivalent form is given by ‘the
transformation

T
SOCXP{X' BN (1) dt

is exponentially distributed’.

(b) Can a particular component 3;() be approximated by a time-independent term? See Murphy
(1993).

(c) Even with prognostic index X' 8(f)+Z'+, it seems necessary to smooth 8 to estimate ~. This
makes inference about +y difficult. One would not smooth the base-line hazard to make inference
about the regression parameters in the Cox model.

The additive risk model (Aalen, 1980), or more generally A\(¢| X, Z)=N\o(#)+ X' B(t)+Z'v, can be
viewed as an alternative to model (19). The additive structure is natural for competing risks with unknown
failure type, or whenever failure arises from the cumulative damage to several components. Interestingly,
estimation and inference in this model can be carried out without smoothing: the estimators are even
unbiased. Efficient estimation is possible with weights obtained from a consistent preliminary estimator
(McKeague and Sasieni, 1993). Thus the degree of smoothing is of little importance.

More generally consider

N X) =) r(X, B)=a, () ri (X{ B))+. . .+0a,(O)r,(X,B,),
where the functions r; are known, but o( ) and 8 are unknown. Special cases include

(a) proportional hazards (p=1),

(b) excess (additive) hazards (r;=identity, dim(X;)=1, j=1, . . ., p) and

(c) additive hazards with blocked covariates (r;=identity), as might arise when using dummy
variables for categorical factors.

Such models provide a rich family for testing the fit of proportional hazards and can be used to investigate
departures. Recent study of the efficient estimating equations for this model suggests that 8 can be
estimated non-iteratively at a Jn-rate without smoothing or explicitly estimating «. Efficient estimation
may then follow by using weights based on consistent preliminary estimates of 8 and «.

Another approach is to estimate the {; iteratively ‘one at a time’ (cf. Section 3.1) using the partial
likelihood corresponding to r; in a competing risks model, estimating the jth cause-specific counting
process by the residual

- t

N@O=N®O- 2] Sork(xmo Y(s) dA, (s)

k#j

where N(¢) counts uncensored failures, Y(¢) is the at-risk indicator and
t

Ak(t)= SO ak(s) ds.

The cumulative functions A4, can be estimated, without smoothing, by Aalen’s (1980) least squares
estimator in the full model with the unknown 3, replaced by their current estimates.

A. O’Hagan (University of Nottingham): I join with other speakers in congratulating the authors
on presenting a stimulating paper of impressive scope. The variety of applications that they have outlined
shows how general and practically useful the varying-coefficient models are. The authors kindly mention
O’Hagan (1978). They will, I hope, forgive me for pointing out that their model (2) is a special case
of mine. I wrote

y=h@p@+...+h,2) B, +e,

where the #;(z) are known functions and the §,(z) are unknown. The underlying variable z can be
anything at all and could certainly be z=(x;, . . ., X,, 71, . . ., I',). Then making the 4;(z) depend only
onx, ..., x, and the 3;(z) depend only on ry, . . ., r, gives the authors’ model (2). Of course, they
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have gone further in two respects. First they embed such a relationship within generalized linear models,
and second they give some enlightening examples of the model’s versatility.

I am struck, as I always am when I see sensible and elegant statistics being done from a non-Bayesian
standpoint, by the authors’ ingenuity, and also by the arbitrariness of their approach. Maximizing a
penalized likelihood is, of course, analogous to finding the mode of a posterior distribution when the
prior is proportional to the penalty function. But the Bayesian approach leads one to think about the
prior, and to try to represent realistic prior information about the 8;s. Apparently, a classical statistician
can pick an arbitrary penalty function. Bayesians are not allowed to be ingenious in this way; they have
to think about what is right for the problem at hand.

The techniques presented here have some restrictions. Hypothesis tests and other inferences are
asymptotic and approximate. The authors say in Section 6 that one would like to have standard errors
about the curve, but they do not say how this could be done or give any examples. And there remain
restrictions on how the model might be generalized.

Bayesian methods, with modern computational techniques like Gibbs sampling, can overcome these
difficulties with relative ease. Posterior inferences can be computed to any desired accuracy, rather than
relying on approximations. Almost any kind of inference could be computed, such as bounds on the
curve, or the probability that it is positive over some range. As an example of a generalization that
is easy within a Bayesian framework, but probably much more difficult for a non-Bayesian because
it departs from the exponential family, we could allow Cauchy-distributed errors. This would have the
result (see, for example, O’Hagan (1988)) of effectively rejecting outliers and could produce interesting
answers to the questions posed by Fig. 5.

M. J. R. Healy (London University Institute of Education): Singularity of the coefficient matrix does
not preclude convergence of the Gauss-Seidel iteration, at least in the linear case. In the days before
computers, Gauss-Seidel iteration was the method of choice for solving the large sets of simultaneous
equations arising from the least-squares analysis of non-orthogonal many way tables. Since the nature
of the singularity was known, it was possible to utilize it to good effect in the iteration (Yates, 1934;
Healy and Dyke, 1952), a fact known to Gauss himself (Forsythe, 1951). If exact singularity can be
harmless or even useful, it may be advantageous to replace ‘small’ eigenvalues by 0, after the manner
of principal component regression.

R. J. Verrall (City University, London): I would like to make some comments on the connection
between generalized additive models and dynamic generalized linear models.
Consider first equation (2), with one parameter which depends on a single predictor, i.e.

Y=XB(r)+e.

Assuming that the predictor r is equally spaced, we may index this by / and write the model for the
ith observation as

Yi=X;B() +¢

corresponding to the first equation in Section 3.2. The penalized least squares criterion (equation (7))
now becomes

J@)= 2 =X BOP+X 2 (A2 AP
i=1 i=3

where AB() =63 —-B3GE—-1).
This is equivalent to the following Bayesian model:
Y;|B() ~ Nix; B, o2},
B —BUE—1)=~(),
v(@) | v(i = 1)~ Ni{y(i— 1), 0*/\}.
This can be seen since the prior distribution implies that
A2B()=Av(@) ~N(0, 02/\)

which gives the second term in J(3).
As a dynamic generalized linear model this would be written as
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This is the familiar straight line model for the parameter with a stochastic gradient.

Important and very useful generalizations include the use of variance terms for w; which depend on
i allowing changes in the form of the model to be incorporated. I do not see how it would be possible
to generalize the N in equation (7) in this way.

Also, the state equation can be generalized to the perhaps more familiar form

wi "’N(O, W)

where F=(1, 0),

where W contains variances for both (i) and 3(i). This is equivalent to including the first differential
in the penalized likelihood. Also, higher differentials can be included in a similar way.

A. C. Davison (University of Oxford): I congratulate the authors on yet another important and
stimulating contribution to nonparametric modelling.

My question relates to the combination of information from different sets of data that bear on the
same substantive phenomenon, a procedure sometimes rather grandly called meta-analysis. In medical
contexts, for example, the presence of important treatment effects may only be settled by the very large
effective sample size obtained by combining suitably weighted estimates from many smaller data sets.

In the golden future when methods such as those described are available on the meanest laptop
computer, and are widely used by practitioners, one might envisage the need to combine many
nonparametric curves. Do the authors think that this might be a worthwhile activity, and, if so, how
might it be done? Some sort of analysis of variance for curves, such as mentioned in the verbal presentation
or along the lines of Rice and Silverman (1991), would be one way to proceed, but what do the authors
suggest, if anything? This is of course tied to the question of how to produce standard errors and other
measures of accuracy for these curves.

More fundamentally, and perhaps more provocatively, are these methods anything more than a form
of elegant and computer-intensive—and undoubtedly very useful—exploratory data analysis?

The following contributions were received in writing after the meeting.

William S. Cleveland (AT&T Bell Laboratories, Murray Hill): A nonparametric regression surface
is conditionally parametric with parametric family % if we can divide the factors into two subsets A
and B with the following property: given any value of the factors in B, the surface is a member of &
as a function of the factors in 4 (Cleveland et al., 1991). We say that the surface is conditionally parametric
in A.

Luckily, conditionally parametric surfaces are easy to fit; they require only small modifications to
existing nonparametric methods. For example, for local fitting methods, one way to produce a
conditionally parametric surface is simply to ignore A in computing distance in the space of the factors.
Furthermore, co-plots, which are a particularly useful graphical method for regression studies, provide
a diagnostic for determining when a conditionally parametric surface is likely to provide a good fit
to the data. In such a case, using conditionally parametric modelling in place of fully nonparametric
modelling provides a more parsimonious fit that saves degrees of freedom.
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Conditionally parametric fits can be written as varying-coefficient models, and varying-coefficient
models are conditionally parametric. One of the results of the authors’ energetic and important paper
is that there are many cases where intuition is better served by addressing the varying-coefficient
formulation.

There are also many cases where intuition is better served by the conditionally parametric formulation.
The reason involves one of the common ways in which conditionally parametric surfaces arise in practice
(Cleveland, 1993). Suppose that a subset A of the factors has a limited effect on the response, and the
other factors B have a substantial effect. Taylor series arguments suggest that it is reasonable to expect
that the surface will be well approximated by terms involving only low powers, say 1 and 2, of the
factors in A, and thus be amenable to modelling as conditionally parametric in 4. After all, if the effect
of the factors in 4 were so limited as to be non-existent, the approximation would involve terms with
factors of A to 0 powers. The next step beyond this extreme case is powers of 1 and 2.

Dani Gamerman (Universidade Federal do Rio de Janeiro): I would like to make three brief comments.

Hastie and Tibshirani comment in Section 5 on the work of Gamerman (1991) where use of the full
likelihood coupled with a dynamic model for regression coefficients and base-line hazard led to smooth
estimates of both. That approach is in line with the methodology proposed by them but instead they
only allowed regression coefficients to be smooth. No reason was put forward for not having a smooth
base-line hazard.

The data set of Section 5.1 was analysed with the models of Gamerman (1991). Information from
previous analyses suggests the removal of disease duration, age and prior therapy indicator as covariates.
The model was specified with a grid determined by every other survival time (61 time intervals), a vague
prior, fixed regression coefficients (proportional hazards (PH)) and a discounted base-line hazard. The
posterior estimates are given in Table 3.

Apart from the negative sign for the squamous-type cell, the results are similar to Table 2 of Section
5.1. I then proceeded as the authors did to check for time variation of the effect of performance status.
The dynamic model with this variation has Bayes factor of 1.36, only slightly preferable to the PH model.

TABLE 3
Summary of estimation

Variable Posterior mean Posterior standard deviation
Treatment 0.236 0.192
Cell type—squamous —0.451 0.284
Cell type—small cell 0.332 0.277
Cell type—adeno 0.442 0.303
Performance status -0.023 0.006

0.020

0.010

0.000

Fig. 11. Estimated trajectory of the performance status coefficient: , smoothed mean; - - - - - , 1.645 standard

deviations limits
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The estimated mean trajectory of the coefficient (shown in Fig. 11) varies smoothly from —0.028 in
early stages to —0.017 at about 1 year. After that, it stabilizes at that value but its uncertainty increases
with time. Similar results are obtained after removing the two extremely large survival times confirming
lack of information in later periods. On comparison with Figs 5(a) and 5(b), there may be an indication
of a larger reaction of Hastie and Tibshirani’s estimates in the presence of little information (confidence
limits are not provided there).

Another modelling approach related to varying-coefficient models is hierarchical modelling (Lindley
and Smith, 1972). The richness of the Bayesian structure, mentioned in Section 3.4.2, allows here the
explanation of regression coefficients by additional covariates through stochastic relations. Dynamic
hierarchical models (Gamerman and Migon, 1993) allow, in addition, coefficient variation with time.
However, parametric relationships are an integral part of hierarchical (or dynamic) models and have
a strong effect on the results even when the prior for the higher stage (or initial) parameter is vague.
Smoothness in the appropriate direction is a consequence of the model.

Wolfgang Hiirdle and Marlene Miiller (Humboldt University, Berlin): We would like to congratulate
the authors for an excellent and interesting paper which gives a framework for a wide range of flexible
regression models. The varying-coefficient model as presented in this paper is very powerful indeed.
Its application in the examples in Sections 4 and S speak for the method proposed.

Our comment will address some aspects of inference for the estimation method described. Once the
varying-coefficient regression model has been estimated it is natural to compare it with competing fits.
Since the coefficients of the model are functions 3;( ) the comparison could be based on confidence
bands for the coefficient functions. Another proposal would be a squared distance between competing
coefficient functions. Suppose that the nonparametric 3 has to be tested against a parametric fit §. Hardle
and Mammen (1993) have derived the distribution of

nh'’2 S (- ey

where A denotes the kernel bandwidth and #¥% denotes the smoothed parametric model. Simulations
suggest that this test (based on the quantile of the asymptotic normal distribution) is not very powerful.
The correct bootstrap (the so-called ‘wild bootstrap’) yields much better results. Have the authors similar
experiences for their test based on the ‘approximate degrees of freedom’? The same comment applies
to uniform confidence bands.

M. C. Jones (The Open University, Milton Keynes): My remarks concern only a rather technical point
which may be of little practical consequence. Consider, for simplicity, model (5) with univariate X.
Write V'=Y/X so that V=3(X) + ¢/ X. One might, appropriately, fit a parametric 8 to (X, V) by weighted
least squares using weights proportional to X2. This global experience does not, it seems to me,
necessarily carry over immediately to /ocal nonparametric regression. In Jones (1993), I show how
weighting affects Nadaraya-Watson estimators, in particular, and the answer (asymptotically) is only
in terms of bias and not at all in terms of variance. Moreover, there is no argument for choosing weights
inversely proportional to error variance. In fact, swift calculations involving (preferable) local linear
fitting suggest no effect of weights whatsoever (asymptotically), and that the bias effect is one of
Nadaraya-Watson’s peculiarities. It seems, however, that there may be some sense in inverse variance
weighting for splines (essentially as used by the authors), but only because of splines’ effective local
bandwidth choice. This appears to involve weight(x) X f(x) (Silverman, 1984); since variance of smoothers
depends inversely on o2(x)/ f(x), inverse variance weighting is suggested.

All that I am trying to say is that the authors’ weighting, which is applied to general versions of their
methodology, is not quite that obviously appropriate, and that it is an issue that might repay further
investigation; for example, perhaps it can be done without, although I would not expect great differences
to result.

I do not mean to detract in the slightest from a most interesting and worthwhile further contribution
to an important area of the subject, one to which the current authors continue to contribute enormously.

Charles Kooperberg (University of Washington, Seattle) and Charles J. Stone (University of California,
Berkeley): It is implicit in the discussion in Section 5 of the application of varying-coefficient models
to survival data that the penalized partial likelihood estimate for 3; is a natural cubic spline and hence
linear in the right-hand tail. When there are scant data in this tail, and especially when there is a substantial
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amount of censoring, the methodology could be improved by incorporating the extra constraint that
B; be constant in the tail. In particular, this should prevent anomalies such as that displayed in
Fig. 5. Alternatively, as in Gray (1992), m=1 could be used in equation (21) instead of m=2.

The authors mention regression spline bases with a fixed arrangement of knots. Recently, we have
been working on hazards regression (HARE), which involves a MARS-like methodology (Friedman,
1991) for coming up with a model for the conditional log-hazard function having the form log M| X,
<o X,)=X;B;8(t, Xy, . . ., X,); each g; involves at most two of the variables ¢, X, . . ., X, and
has the form of a linear spline or tensor product of two linear splines with the linear splines in t being
constant in the right-hand tail and the knots selected by stepwise addition—deletion and the B information
criterion (Kooperberg et al., 1993). This methodology is combined with hazard estimation with flexible
tails (HEFT), which similarly uses adaptive cubic splines that are constant in the right-hand tail possibly
together with one or two log-terms to model the logarithm of the unconditional hazard function
(Kooperberg and Stone, 1993). Specifically, HEFT is used to transform time so that the transformed
unconditional hazard function is approximately equal to 1. In this manner we obtain a fitted model
having the form

lOgX(”Xl’ AR Xp)=EO(t)+Zngj(qo(t)9 Xl, e ey Xp)
J

for the conditional log-hazard function, where ﬁo is the HEFT fit to the logarithm of the unconditional
hazard function and g,= —log(1 - ;) with F, being the distribution function corresponding to #,.
We applied our methodology to the lung cancer data discussed in Section 5.1, choosing the options
to obtain a model similar to that of the authors. In our fit, A,(f)= — 1.667—0.579 log(t+ 144) (144 is
the upper quartile of the survival times), whereas the basis functions 8; and their coefficients B; are
shown in Table 4 with r, =max(r, 0).
In Fig. 12(a) we show the fitted coefficient —0.003 —0.043(1.229—Go(9)) , of performance status

TABLE 4
HARE fit to the transformed lung cancer data

Basis function Coefficient Standard error

1 -0.106 0.662
Cell type—small cell 0.756 0.224
Cell type—adeno 0.993 0.259
Performance status —0.003 0.009
(1.229-4,()), 1.884 0.672
(Performance
status) (1.229 — G, (9). —0.043 0.011
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Fig. 12. (a) Fitted coefficient of performance status as a function of time; (b) fitted hazard function for a person
with cell type squamous and performance status 60
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as a function of time, which should be compared with the authors’ Fig. S, and in Fig. 12(b) we show
the fitted hazard function for a person with specified values of the relevant variables.

Susan A. Murphy (Pennsylvania State University, University Park): The following comments concern
Section 6, ‘Inference for the model’. It is important to realize the disadvantages of the statistical tests
in this section. These tests are usually used to detect a large variety of alternatives. However, higher
priority should be placed on how to order the alternatives of interest carefully. Because the alternative
space (3(r) non-constant) is very large and because the true parameter may not be of a form that is
easily approximated by the chosen class of smoothers, the test statistic for constant 3(r) can have very
low power. Even the asymptotic analysis suffers from the large dimensionality of the alternative space.
When the alternative space is finite dimensional, we can expect that a likelihood ratio test will be consistent
against local alternatives of order 1 over the square root of the sample size. However, in the regression
setting, Eubank and Spiegelman (1990) and in the proportional hazards setting with time varying
coefficient Murphy (1993) find that only local alternatives of lower order can be detected. These results
point to a need to prioritize the alternatives of interest and to choose the class of smoothers to contain
the higher priority alternatives. It would be of interest to have the authors address this issue.

Grace Wahba (University of Wisconsin, Madison): We thank the authors for telling us interesting
things about the class of ‘varying-coefficient models’. Since we now have such a wealth of possible
semiparametric models in several variables it becomes more important to have subclasses of such models
that have an easily interpretable structure, so that possible models can be sensibly matched to the
application at hand. These models are surely such a subclass. I found it interesting that the penalized
least squares model (7) can be viewed both as an example of an inverse problem and as a particular
element in a tensor product spline expansion. Gu and Wahba (1993a, b) and Wahba et al. (1993) generalize
the tensor product spline expansions to smoothing spline analysis of variance in function spaces, which
among other things allow the r; to be spatial variables, extend the Bayesian ‘confidence intervals’ to
the components of these models and consider binomial responses in the context of penalized generalized
linear models. The results in each case would specialize to this very interesting class of varying-coefficient
models. The interesting computational procedures provided by the authors should generalize to the spatial
data case.

The issue of testing whether 3(r) is well approximated by a constant or linear function of r raises
some philosophical questions in this context. The authors note that the tests they propose involve the
degrees of freedom for signal and that this depends monotonically on the smoothing parameter(s). Should
we think of these tests differently according to whether the smoothing parameter(s) are chosen

(a) by eyeball,
(b) by a rule of thumb based on experience or
(c) by some data-based method such as generalized cross-validation or C, in the case o2 is known?

To continue in a philosophical vein, to what extent would we use different tests if our goal is to test
the null hypothesis of the parametric model (8 linear), or, to build the best model we can for prediction,
under the assumption that no parametric model is exactly true?

The authors replied later, in writing, as follows.

An objective of this work was to extend the class of generalized additive models, and in doing so
to reveal some interesting relationships that exist between various classes of models that have been
proposed. We had hoped that this would generate discussion that would help to clarify these relationships.
The excellent contributions of the discussants suggest that we have been successful. We thank them
and the Editors for their interest and efforts.

In the limited space provided, we would like to reply briefly to some of the issues that have been raised.

Professor Green shows that the varying-coefficient model, with more than one effect modifying variable
R;, is not invariant to translations of the variables X. This is an important practical point, and
Professor Green proposes an alternative model that is invariant.

Another solution is to require an intercept term Bo(R;) for every term X §8;(R;) that appears in the
model, thus making the model equivariant under location changes to X. Unfortunately, if we estimate
this model by penalized least squares, the equivariance is lost. Consider the simpler example
B (R)+ X B,(R), and suppose that we have penalized least squares estimates 8, (R) and B,(R). If X is
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replaced by X* = X +c, we would expect our estimates to be modified accordingly: 8% =3,(R) and
B =8,(R)—cB,(R). But, if both 3, (R) and §,(R) are ‘smooth’, then §# as prescribed above could be
arbitrarily ‘rough’ depending on the size of c. Another way of saying this is that the penalty functionals
in criterion (7) are not linear in their arguments. For similar reasons, estimates using other ‘shrinking’
smoothers (Buja et al., 1989) would also lack equivariance. These problems disappear as the smoothers
approach consistency (conditional expectations), and indeed the L,-estimates in Section 3.2 are
equivariant. Interestingly, for a single effect modifier, estimates produced by the conditionally parametric
approach in Section 3.4.1 are equivariant. As a practical solution to the problem, we propose that,
in addition to including an intercept coefficient as above, the X-variables are centred to have overall
mean 0; this helps with convergence of the backfitting algorithm as well. In the more general model
with different modifying variables, there is a further lack of equivariance and it may make sense to
orthogonalize the variables as well as to centre them.

Professor Green also shows how the model containing only a single non-constant B(r) can be estimated
non-iteratively, a fact he originally discovered for the additive model. In both settings, this provides
a useful simplification.

Dr Cuzick wonders about our particular choice for representing interactions. We do not find terms
such as g;;(x;, x;)=h;(x;) k;(x;) easy to interpret. The varying-coefficient formulation allows at least
two different and interpretable versions:

(@) g;(x;, x;)=h;(x;)x; or g;(x;, ;)= k;(x;)x;, whichever is more appropriate; here we can see how
the slopes change as a function of Xx; or x; respectively, as in Fig. 2 in the text;

®) g;(x;, x;)= M_ I(x€1l,) k;m(x;) which assumes that the surface is piecewise constant over M
non-overlapping intervals in x;, as in Fig. 4 in the text; in this case x; is replaced by several
‘dummy’ versions I(x; €1,,) that define the intervals.

In the survival analysis setting, Dr Cuzick, and Dr McKeague and Dr Sasieni explore the underlying
processes that might lead to the varying-coefficient model of Section 5. This is an important area to
understand. We took an empirical view of this model, thinking simply that non-constant parameter
functions would be a useful alternative to proportional hazards. It would be interesting to examine whether
those models could be estimated in a manner similar to the approach in our paper. A general question
for Dr Cuzick, and Dr McKeague and Dr Sasieni is how far can partial likelihood estimation be pushed?
The model of Section 5 is quite far away from Cox’s original proportional hazards model, yet partial
likelihood can still be useful for estimation. There might be some point at which the loss of information
in partial likelihood relative to full likelihood becomes unacceptably large.

Dr Gamerman asks why we do not model the base-line hazards smoothly. We see no reason for doing
this (other than the potential information loss mentioned above), if interest lies in the regression effects.
The use of partial rather than full likelihood alleviates the need for smoothness assumptions about the
base-line hazard and also makes possible the inclusion of time-dependent covariates. This is not something
that we have tried, but in principle it should work.

Dr Kooperberg and Dr Stone outline their interesting new work on MARS-type models for log-hazard
functions. An appealing aspect of their approach is the joint modelling of time and the covariates of
interest. When there are no time X covariate interactions (but main effects in both), their model becomes
a proportional hazards model. In this case the main effect for time allows one to model the base-line
hazard with splines, thus giving a compromise between the fully nonparametric Cox model and the
parametric exponential model. When these interactions are present, their model has varying coefficients
in the sense of Section 5, with a more parametric approach to estimation (via the full likelihood).

Dr Rigby and Dr Stasinopoulos suggest break point models as an alternative to those in the paper.
Smoothing splines are not well suited to detecting break points: better choices would be the split linear
smoother of McDonald and Owen (1986) and wavelet smoothing (Donoho and Johnstone, 1992). Because
our algorithm is modular, we could just ‘plug in’ either one of these smoothers for any variable for
which a break point model is desired.

Mr Young and Dr Bowman having been making progress in the important area of inference, in particular
the comparison of parametric submodels with a larger nonparametric model. Inference tools are vital
if these methods are to gain practical acceptance. The advantage of residual smoothing is not clear to
us: why not fit models with and without a nonparametric term for E and compare the quality of the fits?

We thank Professor O’Hagan for pointing out the full generality of the models suggested in O’Hagan
(1978). With regard to his other points, we can compute standard error curves, as shown in Fig. 3 of
the paper. There is not space here to delve into the multifaceted issue of Bayes versus non-Bayes inference
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in this setting: some of our recent views on this issue appear in the reply to the discussants in Buja
et al. (1989). However, we would like to point out that whatever Gibbs sampling can do for the Bayesian
the bootstrap can do for the non-Bayesian!

We thank Dr Verrall for further clarifying the connection between the varying-coefficient model and
the dynamic generalized linear model. As stated in our paper, the dynamic generalized linear model
has more rich probabilistic structure, and hence in some ways it offers more flexibility. However, our
paper shows that time varying or more general varying-coefficient models can be estimated in a static,
non-sequential and modular way. This offers both conceptual and practical advantages. On a technical
note, although we cannot vary \ in equation (7), we can vary o2 and often do via observation weights.

Dr Davison raises the interesting question about meta-analysis and the more specific question of analysis
of variance applied to curves. We have explored the latter in informal ways, and Professor Wahba reports
on a formal approach via tensor product splines. On the bigger issue of exploratory data analysis versus
inference: we have used generalized additive models, for both purposes (see Hastie and Tibshirani (1990))
and expect that the same will be true for the varying-coefficient model. Some care is clearly needed
when flexible adaptive methods are used for inference, and further work along the lines of that reported
by Young and Bowman is necessary.

Dr Cleveland reminds us of his definition of conditionally parametric models but then goes on to
say that varying-coefficient models are also conditionally parametric. For example X, 8, (R,) + X, 3,(R,)
is linear, conditioned on (R,, R,); we can stretch this even further and argue that any regression model
is conditionally constant given the entire predictor set! Although strictly correct, we do not feel that
this interpretation captures the essence of models such as those above, and hence we prefer to call these
models varying coefficient. For us the name conditionally parametric suggests models of the form (4)
in the paper, and connects strongly with Dr Cleveland’s local regression approach to fitting such models.

The issue of smoothing weights raised by Dr Jones is interesting, and we look forward to seeing his
1993 paper. It seems that weights serve two purposes in models such as these (and generalized additive
models):

(a) efficiency weights—if we are smoothing against R and we know that the response variance is a
function o2(R), the Gauss-Markov theorem tells us to use weights o ~2(R); it is also intuitively
clear that the benefit is asymptotically negligible;

(b) model weights—even in the L,-case in equation (6), where we are computing conditional
expectations, the weights are needed (and indeed we can view the ratio as a weighted conditional
expectation); we doubt whether these weights can be ignored.

Professor Hirdle and Professor Miiller suggest a new way of testing parametric versus nonparametric
fits: their suggestion looks especially useful in non-nested comparisons. Qur approximate degrees of
freedom test, based on asymptotic x2- or F-distributions, seems to perform reasonably well. Use of
the bootstrap might provide better accuracy but we have not investigated this.

Professor Wahba enquires about the choice of smoothing parameters when testing 3(r), or when
prediction is the goal. Although we do not put a great emphasis on formal testing in this setting, we
currently favour the use of fixed degrees of freedom tests to reduce the adaptivity factor. When our
goal is prediction, we currently use an adaptive backfitting algorithm, BRUTO, driven by a global
generalized cross-validation criterion (Hastie and Tibshirani, 1990). For each term BRUTO selects whether
it should be included, linear or non-linear, and if non-linear how smooth.

Professor Murphy warns that omnibus tests will have low power against specific alternatives. We
would like to read her paper on this subject and to learn the specifics of her argument. At present,
it is not clear to us that the dimensionality of the alternative space is that high when say 5 degrees of
freedom are used to estimate G(r).

Professor Healy points us to his 1952 paper on Gauss-Seidel iteration. We obtained the paper from
the library and déja vu—the computational problems in fitting unbalanced main effects models in the
1950s scale up to the problems in fitting nonparametric additive models in the 1980s. We recommend
this interesting paper on the early use of computers and wish that we had been aware of it when writing
Buja et al. (1989).
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