
Open access to the Proceedings of the
2018 USENIX Annual Technical Conference

is sponsored by USENIX.

Varys: Protecting SGX enclaves from
practical side-channel attacks

Oleksii Oleksenko, Bohdan Trach, Robert Krahn, and André Martin, TU Dresden;
Mark Silberstein, Technion; Christof Fetzer, TU Dresden

https://www.usenix.org/conference/atc18/presentation/oleksenko

This paper is included in the Proceedings of the
2018 USENIX Annual Technical Conference (USENIX ATC ’18).

July 11–13, 2018 • Boston, MA, USA

ISBN 978-1-939133-02-1

Varys

Protecting SGX Enclaves From Practical Side-Channel Attacks

Oleksii Oleksenko†, Bohdan Trach†, Robert Krahn†, Andre Martin†,
Christof Fetzer†, Mark Silberstein‡

†TU Dresden, ‡Technion

Abstract

Numerous recent works have experimentally shown that
Intel Software Guard Extensions (SGX) are vulnerable to
cache timing and page table side-channel attacks which
could be used to circumvent the data confidentiality guar-
antees provided by SGX. Existing mechanisms that pro-
tect against these attacks either incur high execution costs,
are ineffective against certain attack variants, or require
significant code modifications.

We present Varys, a system that protects unmodified
programs running in SGX enclaves from cache timing
and page table side-channel attacks. Varys takes a prag-
matic approach of strict reservation of physical cores to
security-sensitive threads, thereby preventing the attacker
from accessing shared CPU resources during enclave exe-
cution. The key challenge that we are addressing is that
of maintaining the core reservation in the presence of an
untrusted OS.

Varys fully protects against all L1/L2 cache timing
attacks and significantly raises the bar for page table side-
channel attacks—all with only 15% overhead on average
for Phoenix and PARSEC benchmarks. Additionally, we
propose a set of minor hardware extensions that hold the
potential to extend Varys’ security guarantees to L3 cache
and further improve its performance.

1 Introduction

Intel Software Guard Extensions (SGX) enclaves provide
a shielded environment to securely execute sensitive pro-
grams on commodity CPUs in the presence of a privileged
adversary. So far, no successful direct attack on SGX
has been reported, i.e., none that compromises SGX’s
security guarantees. However, numerous works demon-
strate that SGX is vulnerable to several types of side
channel attacks (SCAs), in particular, traditional cache
timing and page table SCA that reveal page-level memory
accesses [9, 39, 21, 47, 43, 45, 24], as well as specula-
tive attacks [29, 12] that use the side channels as a way
of retrieving information. Although Intel explicitly ex-

cludes side channels from the SGX threat model, SCAs
effectively circumvent the SGX confidentiality guarantees
and impede SGX adoption in many real-world scenarios.
More crucially, a privileged adversary against SGX can
mount much more powerful SCAs compared to the un-
privileged one in canonical variants of the attacks. For ex-
ample, a malicious OS can dramatically reduce the noise
levels in cache timing attacks via single-stepping [24] or
by slowing down the victim.

In this paper, we investigate practical ways of protect-
ing SGX programs from page table and cache timing
SCAs. Specifically, we focus on the case where unmodi-
fied general-purpose applications are executed in enclaves
in order to protect their secrets, as it is the case with
Haven [4], Graphene-SGX [11], or SCONE [3].

We postulate that a practical solution should have
low performance overheads, require no modifications to
application source code, and impose no restrictions on
the application’s functionality (such as restricting multi-
threading). We assume that recompilation of source code
is acceptable as long as it does not require code changes.

Existing mitigation techniques, however, fall short of
satisfying our requirements. Traditional hardening tech-
niques against cache timing attacks [5, 23] require rewrit-
ing the application; recent defenses [22] based on Intel
TSX technology also require code changes; memory ac-
cesses obfuscation approaches, such as DR.SGX [8], in-
cur high performance cost (at least 3× and up to 20×);
T-SGX [40] prevents controlled OS attacks, but it is in-
effective against concurrent attacks on page tables and
caches. Déjà Vu [14] protects only against page table
attacks and is prone to false positives.

In Varys, we strive to achieve both application perfor-
mance and user convenience while making page table and
cache timing SCAs on enclaves much harder or entirely
impossible to mount. The basic idea behind Varys design
is trust but verify. A potentially malicious OS is requested

to execute the enclave in a protected environment that pre-
vents all known cache timing and page fault attacks on

USENIX Association 2018 USENIX Annual Technical Conference 227

SGX enclaves. However, the Varys trusted runtime inside
the enclave verifies that the OS fulfills the request.

Our main observation is that all published page table
and L1/L2 cache timing attacks on SGX require either
(1) a high rate of enclave exits, or (2) control of a sib-
ling hyperthread on the same CPU core with the victim.
Consequently, if an enclave is guarded against frequent
asynchronous exits and executes on a dedicated CPU core
without sharing it with untrusted threads, it would be pro-
tected against the attacks. The primary challenge that
Varys addresses is in maintaining such a protected envi-
ronment in face of a potentially malicious OS. It achieves
this goal via two mechanisms: asynchronous enclave exits

monitoring and trusted reservation.
First, Varys monitors when asynchronous enclave exits

(AEX) occur (e.g., for scheduling another process on the
core or handling an exception) and restricts the frequency
of such exits, terminating the enclave once the AEX fre-
quency bound is exceeded. Varys sets the bound to the
values that render all known attacks impossible. Notably,
the bound is much higher than the frequency of exits in
an attack-free execution, thereby minimizing the chances
of false positives as we explain in §4.

Second, Varys includes a mechanism for trusted core

reservation such that the attacker cannot access the core
resources shared with the enclave threads while they are
running, nor can it recover any secrets from the core’s
L1 and L2 caches afterward. For example, consider an
in-enclave execution of a multi-threaded application with
two threads. Assuming a standard processor with hyper-
threading (SMT), all it takes to prevent concurrent attacks
on L1/L2 caches is to guarantee that the two enclave
threads always run together on the same physical core.
As a result, the threads occupy both hardware threads of
the core, and the attacker cannot access the core’s caches.
Note that this simple idea prevents any concurrent attacks
on core’s resources shared between its hyperthreads, such
as branch predictor and floating point unit. It also prevents
exit-less SCAs on page table attributes [43] because they
require attacker’s access to the core’s TLB—available
only if the attacker thread is running on that core. Addi-
tionally, to ensure that the victim leaves no traces in the
caches when de-scheduled from the core, Varys explicitly
evicts the caches when enclave threads are preempted.

While conceptually simple, the implementation of the
trusted reservation mechanism is a significant challenge.
An untrusted OS may ignore the request to pin two en-
clave threads to the same physical core, may re-enable
CPU hyperthreading if disabled prior to enclave execution,
and may preempt each of the enclave threads separately
in an attempt to break Varys’s defense.

Our design offers a low-overhead mechanism for

trusted core reservation under an untrusted OS. Appli-
cation threads are grouped in pairs, and the OS is re-

quested to co-locate these pairs on the same physical CPU
core. The trusted application threads are instrumented
(via a compiler pass) to periodically verify that they are in-
deed co-scheduled and running together on the same core.
Varys terminates the enclave if co-scheduling is violated
or if any of the threads in the pair gets preempted too of-
ten. To reduce the frequency of legitimate exits and lower
the false positives, Varys uses exitless system calls [3]
and in-enclave thread scheduling such that multiple appli-
cation threads can share the same OS thread. Moreover,
Varys configures the OS to reduce the frequency of in-
terrupts routed to the core in order to avoid interference
with attack-free program execution. However, if the OS
ignores the request, this will effectively lead to denial of
service without compromising the enclave’s security.

Varys primarily aims to protect multi-threaded pro-
grams by reserving complete cores and scheduling the
application threads on them, i.e., protection against SCAs
translates into an allocation policy that allocates or frees
computing resource with a granularity of one core. We
believe that Varys exercises a reasonable trade-off be-
tween security and throughput for services that require
the computational power of one or more cores. For single-
threaded applications Varys pairs the application thread
with a service thread to reserve the complete core.

Due to the lack of appropriate hardware support in
today’s SGX hardware, Varys remains vulnerable to tim-
ing attacks on Last Level Cache (LLC) as we explain
in §8. We suggest a few minor hardware modifications
that hold the potential to solve this limitation and addi-
tionally, eliminate most of the runtime overhead. These
extensions allow the operating system to stay in control
of resource allocations but permit an enclave to determine
if its resource allocation has changed.

Our contributions include:

• Analysis of attack requirements.
• A set of measures that can be taken to protect against

these attacks using existing OS features.
• Varys, an approach to verifying that the OS correctly

serves our request for a protected environment.
• Implementation of Varys with 15% overhead across

PARSEC [7] and Phoenix [38] benchmark suites.
• Proposal for hardware extensions that improve

Varys’s security guarantees and performance.

2 Background

2.1 Intel SGX

Intel Software Guard Extensions is an ISA extension that
adds hardware support for Trusted Execution Environ-
ments. SGX offers creation of enclaves—isolated mem-
ory regions, with code running in a novel enclave execu-
tion mode. Also, Intel SGX provides a local and remote
attestation systems that is used to establish whether the

228 2018 USENIX Annual Technical Conference USENIX Association

software is running on an SGX-capable CPU.
SGX has hardware-protected memory called Enclave

Page Cache (EPC). Accesses to the EPC go through the
Memory Encryption Engine (MEE), which transparently
encrypts and applies MAC to cache lines on writes, and
decrypts and verifies cache lines on reads. Access permis-
sions of the pages inside an enclave are specified both in
page tables and in EPC Metadata, and permissions can
be only restricted via page tables. The enclave’s memory
contents in the caches are stored as plaintext.

Enclaves can use more virtual memory than can be
stored by the EPC. In this case, EPC paging will happen
when a page not backed by physical memory is accessed.
The CPU, in coordination with the OS kernel, can evict
a page to untrusted memory. Currently, the EPC size
available to user applications is around 94 MB.

2.2 Side-channel attacks

In this work, we focus mainly on cache timing and page
table attacks as they provide the widest channel and thus,
are the most practical to be used to attack enclaves.

Cache timing attacks [36, 32, 27, 25, 2, 48] infer the
memory contents or a control flow of a program by learn-
ing which memory locations are accessed at fine granu-
larity. The adversary uses the changes in the state of a
shared cache as a source of information. In particular, she
sets the cache to a predefined state, lets the victim interact
with the cache for some time, and then reads from the
cache again to determine which parts were used by the
victim. Accordingly, for this attack to work, the adversary
has to be able to access the victim’s cache.

Page table attacks reveal page-level access patterns of
a program. They are usually considered in the context
of trusted execution environments as they are possible
only if privileged software is compromised, hence they
are also called controlled-channel attacks [47].

These attacks can be classified into page-fault based

and page-bit based. Page-fault based attacks [47, 41]
intercept all page-level accesses in the enclave by evict-
ing the physical pages from the EPC. Page-bit based at-
tacks [45, 43] use the Accessed and Dirty page table bits
as an indication of access to the page, without page faults.
However, these bits are cached in a TLB, so to achieve
the required fidelity, the adversary has to do both, i.e., to
clear the flags and to flush the victim’s TLB.

3 Threat Model

We assume the standard SGX threat model. The adversary
is in complete control of privileged software, in particular,
the hypervisor and the operating system. She can spawn
and stop processes at any point, set their affinity and
modify it at runtime, arbitrarily manipulate the interrupt
frequency and cause page faults. The adversary can also
read and write to any memory region except the enclave

memory, map any virtual page to any physical one and
dynamically re-map pages. Together, it creates lab-like
conditions for an attack: it could be running in a virtually
noise-free environment.

4 System footprint of SGX SCAs

In this section we analyze the runtime conditions required
for the known SCAs to be successful. Varys mitigates the
SCAs by executing an enclave in a protected environment
and preventing these conditions from occurring.

Cache attacks [36, 42, 32, 2, 48, 50, 10, 17] can be
classified into either concurrent, i.e, running in parallel
with the victim, or time-sliced, i.e., time-sharing the core
(or a hyperthread) with the victim.

Time-sliced cache attacks =⇒ high AEX rate. For
a time-sliced attack to be successful, the runtime of the
victim in each time slice must be short; otherwise, the
cache noise will become too high to derive any mean-
ingful information. For example, the attack described by
Zhang et al. [49] can be prevented by enforcing minimal
runtime of 100us [44], which translates into 10kHz inter-
rupt rate. It is dramatically higher than the preemption
rate under normal conditions—below 100Hz (see §5.3).
If the victim is an enclave thread, its preemption implies
an asynchronous enclave exit (AEX).

Concurrent cache attacks =⇒ shared core. The ad-
versary running in parallel with the victim must be able to
access the cache level shared with it. Thus, L1/L2 cache
attacks are not possible unless the adversary controls a
sibling hyperthread.

We note that with the availability of the Cache Alloca-
tion Technology (CAT) [26], the share of the Last Level
Cache (LLC) can also be allocated to a hardware thread,
preventing any kind of concurrent LLC attacks [31]. How-
ever, this defense is ineffective for SGX because the allo-
cation is controlled by an untrusted OS. We suggest one
possible solution to this problem in §8.

Page-fault page table attacks =⇒ high AEX rate.

These attacks inherently increase the page fault rate, and
consequently AEX rate, as they induce page faults to infer
the accessed addresses. For example, as reported by Wang
et al. [45], a page table attack on EdDSA requires approx-
imately 11000 exits per second. In fact, high exit rates
have been already used as an attack indicator [40, 22].

Interrupt-driven page-bit attacks =⇒ high AEX rate.

If the attacker does not share a physical core with the
victim, these attacks incur a high exit rate because the
attacker must flush the TLB on a remote core via Inter-
Processor Interrupts (IPIs). The rate is cited to be around
5500Hz [43, 45]. While lower than other attacks, it is still
above 100Hz experienced in attack-free execution (§5.3).

Exit-less page-bit attacks =⇒ shared core. The only
way to force TLB flushes without IPIs is by running an

USENIX Association 2018 USENIX Annual Technical Conference 229

adversary sibling hyperthread on the same physical core to
force evictions from the shared TLB [45]. These attacks
involve no enclave exits, thus are called silent.

In summary, all the known page table and L1/L2 cache
timing SCAs on SGX rely on (i) an abnormally high rate
of asynchronous enclave exit, or/and (ii) an adversary-
controlled sibling hyperthread on the same physical core.
The only exception is the case when the victim has a
slowly-changing working set, which we discuss in §7.2.
These observations drive the design of the Varys system
we present next.

5 Design

Varys provides a side-channel protected execution envi-

ronment for SGX enclaves. This execution environment
ensures that neither time-sliced nor concurrent cache tim-
ing as well as page table attacks can succeed. To establish
such an environment, we (i) introduce a trusted reserva-
tion mechanism, (ii) combine it with a mechanism for
monitoring enclave exits, and (iii) present a set of tech-
niques for reducing the exit rate in an attack-free execu-
tion to avoid false positives.

5.1 Trusted reservation

The simplest way to ensure that an adversarial hyperthread
cannot perform concurrent attacks on the same physical
core would be to disable hyperthreading [33]. However,
doing so not only hampers application performance but
may not be reliably verified by the enclave: One can
neither trust the operating system information nor can one
execute the CPUID instruction inside of enclaves.

An alternative approach is to allow sharing of a core
only by benign threads. Considering that in our threat
model only the enclave is trusted, we allow core sharing
only among the threads from the same enclave. We can
achieve this goal by dividing the application threads in
pairs (if the number of threads is odd, we spawn a dummy
thread) and requesting the OS to schedule the pairs on
the same cores. Since we do not trust the OS, we ensure
collocation by establishing a covert channel in the L1
cache as follows.

The idea is to determine whether the threads share L1
cache or only last level cache. The later would imply
the threads are on different physical cores. We refer to
the procedure that determines the threads co-location on
the core as handshake. To perform the handshake, we
establish a simple covert channel between the threads via
L1: One of the two threads writes a dummy value to a
shared memory location, thus, forcing it to L1. Then,
the sibling thread reads the same memory location and
measures the timing. If the reading is fast (up to 10 cycles
per read), both threads use the same L1 cache, otherwise
(more than 40 cycles) they share only LLC, implying
they are on different cores. If the threads indeed run

on different cores, the OS did not satisfy the scheduling
request made by Varys. We conclude that the enclave is
under attack and terminate it. Since the current version of
SGX does not provide trusted fine-grain time source, we
implement our own as we explain in §6.2.

Of course, immediately after we established that the
two threads are executing on the same core, the operating
system could reschedule these threads on different cores.
However, this rescheduling would cause an asynchronous
enclave exit (AEX), which we detect via AEX monitoring
as we discuss next.

5.2 AEX monitoring

To detect an asynchronous enclave exit, we monitor the
SGX State Save Area (SSA). The SSA is used to store the
execution state of an enclave upon an AEX. Since some
parts of the enclave execution state are deterministic, we
can detect an AEX by overwriting one of the SSA fields
with an invalid value and monitoring it for changes.

For example, in the current implementation of SGX,
the EXIT_TYPE field of an SSA frame is restricted to
values 011b and 110b [26]. Thus, if we write 000b to
EXIT_TYPE, SGX will overwrite it with another, prede-
fined value at the next AEX. To detect an AEX, we peri-
odically read and compare this field with the predefined
value. Note that it is not the only SSA field that we could
use for this purpose; many other registers, such as Pro-
gram Counter, could be used too.

Now that we have a detection mechanism, it is suffi-
cient to count the AEX events and abort the application if
they are too frequent. Yet, to calculate the frequency, we
need a trusted time source which is not available inside
an enclave. Fortunately, precise timing is not necessary
for this particular purpose as we would only use the time
to estimate the number of instructions executed between
AEXs. It is possible to estimate it through the AEX moni-
toring routine that our compiler pass adds to the applica-
tion. Since it adds the routine every few hundred LLVM
IR instructions, counting the number of times it is called
serves a natural counter of LLVM IR instructions. In
Varys, we define the AEX rate as number of AEXs per
number of executed IR instructions.

Even though IR instructions do not correspond to ma-
chine instructions, one IR instruction maps on average
to less than one x86-64 machine instruction1. Thus, we
overestimate the AEX rate, which is safe from the security
perspective.

Originally, we considered using TSX (Transactional
Synchronization Extensions) to detect AEXs—similar to
the approach proposed by Gruss et al. [22]. The main
limitation of TSX is, however, that it does not permit

1In our experience with Phoenix and PARSEC benchmark suites,
calling the monitoring routine every 100 IR instructions resulted in the
polling period of 70–150 cycles.

230 2018 USENIX Annual Technical Conference USENIX Association

non-transactional memory accesses within transactions.
Hence, a) handshaking is not possible within a TSX
transaction—this would lead to a transaction abort, and b)
the maximum transaction length is limited and we would
need to split executions in multiple transactions.

5.3 Restricting Enclave Exit Frequency

Ensuring that protected applications exit as rarely as pos-
sible is imperative for our approach. If the application has
a high exit rate under normal conditions, not only does it
increase the overhead of the protection, but also makes it
harder to distinguish an attack from the attack-free exe-
cution. In the worst case, if the application’s normal exit
rate is sufficiently high (i.e., more than 5500 exits/second,
see below), the adversary does not have to introduce any
additional exits and can abuse the existing ones to retrieve
information. Therefore, we have to analyze the sources
of exits and the ways of eliminating or reducing them.

Under SGX, an application may exit the enclave for
one of the following reasons: when the application needs
to invoke a system call; to handle system timer interrupts,
with up to 1000 AEX/s, depending on the kernel config-
uration; to handle other interrupts, which could happen
especially frequently if Varys runs with a noisy neigh-
bor (e.g., a web server); to perform EPC paging when
the memory footprint exceeds the EPC size; to handle
minor page faults, which could happen frequently if the
application works with large files.

We strive to reduce the number of exits as follows. We
use asynchronous exit-less system calls implemented, for
example, in Eleos [35] and SCONE [3] (which we use in
our implementation). Further, we combine asynchronous
system calls with user-level thread scheduling inside the
enclave to avoid reliance on the OS scheduling. We avoid
the timer interrupt by setting the timer frequency to the
lowest available —100 Hz—and enabling the DynTicks
feature. Regular interrupts are re-routed to non-enclave
cores. Last, we prevent minor page faults when accessing
untrusted memory via MAP_POPULATE flag to mmap calls.

To evaluate the overall impact of these changes, we
measure the exit frequencies of the applications used in
our evaluation (see §7 for the benchmarks’ description).
The results are shown in Figure 1.

As we see, the rate is (i) relatively stable across the
benchmarks and (ii) much lower than the potential attack
rate of more than 1000 exits per second. Specifically,
the attack presented by Van Bulck et al. [43] has one
of the lowest interrupt rates among the published time-
sliced attacks. We ran the open-sourced version of the
attack and observed the rate of at least 5500 exits per
second, which is in line with the rate presented in the
paper. Correspondingly, if we detect (see §6.2) that the
AEX rate is getting above 100 Hz, we can consider it a
potential attack and take appropriate measures. To avoid

pc
a

sm
at

ch

m
m

ul
t

km
ea

ns

w
co

un
t

lin
re

g

bt
ra

ck

bs
ch

ol
es

ca
nn

ea
l

de
du

p
x2

64

sc
lu
st
er

flu
id

sw
ap

vi
ps

m
ea

n
8

32

128

512

2048

A
E

X
 r

a
te

 (
A

E
X

/s
e

c
o

n
d

) AEX-restricting configuration Default configuration

Figure 1: AEX rates under normal system configuration
and with re-configured system.

while(true):
wait_for_request()
if (secret == 0): response = ∗a
else: response = ∗b

Figure 2: An example of code leaking information in
cache side-channel even with low frequency of enclave
exits. If a and b are on different cache lines and the
requests are coming infrequently, it is sufficient to probe
the cache at the default frequency of OS timer interrupts.

false positives, we could set the threshold even higher—
around 2kHz—without compromising security (see §7.2).

5.4 Removing residual cache leakage

As we explained in §4, even with low frequency of en-
clave exits some leakage will persist if the victim has a
slowly changing working set. Consider the example in
Figure 2: the replies to user requests depend on the value
of a secret. If requests arrive infrequently (e.g., 1 per
second), restricting the exit frequency would not be suffi-
cient; even if we set the bar as low as 10 exits per second
(the rate we achieved in §5.3), the victim will touch only
one cache line and thus, will reveal the secret.

To completely remove the leakage at AEX, we should
flush the cache before we exit the enclave. This would
remove any residual cache traces that an adversary could
use to learn whether the enclave has accessed certain
cache lines. Unfortunately, this operation is not avail-
able at user-space on Intel CPUs [26] nor do we have the
possibility to request a cache flush at each AEX. More-
over, Ge et al. [18] have proven that the kernel-space flush
commands do not flush the caches completely. CLFUSH
instruction does not help either as it flushes a memory
address, not the whole cache set. Thus, it cannot flush
the adversary’s eviction set residing in a different virtual
address space, as it is the case in Prime+Probe attacks.

Instead, on each enclave entry, we write a dummy value
to all cache lines in a continuous cache-sized memory
region (e.g., 32KB for L1), further called eviction region.
In case of L1, for which instruction and data are disjoint,
we also execute a 32KB dummy piece of code to evict the
instruction cache. This way, regardless of what the victim

USENIX Association 2018 USENIX Annual Technical Conference 231

EENTER

Thread reads SSA
and detects exit

TERMINATE Frequent
exits

Both threads are
ready for handshake

Handshake fails

S0: Normal
execution

S1: Stopped, not
detected

Enclave exit

S2: Stopped,
detected

S3: Handshake S4: Cache eviction Handshake
succeeds

Figure 3: State diagram of a Varys-protected application.

does in between the exits, external observer will see that
all the cache sets and all the cache ways were accessed
and no information will be leaked.

6 Implementation

We implement Varys as an LLVM compiler pass that
inserts periodic calls to a runtime library. We use SCONE
to provide us with asynchronous system calls as well as
in-enclave threading such that we minimize the need for
an application to exit the enclave.

6.1 LLVM compiler pass

The cornerstone of Varys is the enclave exit detection.
As discussed in §5.2, it requires all application threads to
periodically poll the SSA region. Although we implement
the checks as a part of a runtime library (§6.2), calls to the
library have to be inserted directly into the application. To
do this, we instrument the application using LLVM [30].

The goal of the instrumentation pass is to call the li-
brary and do the SSA polling with a predictable and con-
figurable frequency. We achieve it by inserting the fol-
lowing sequence before every basic block: We increment
a counter by the length of the basic block (in LLVM
IR instructions), call the library if the counter reached a
threshold, and skip the call otherwise. If the basic block is
longer than the threshold, we add several calls. This way,
the checks will be performed each time the application
executes a given (configurable) number of IR instructions.
We also reserve one of the CPU registers for the counter,
as it is manipulated every few instructions and having the
counter in memory would cause much higher overheads.

A drawback of SSA polling is that it has a blind zone. If
a malicious OS preempts a thread multiple times in a very
short period of time, they may happen before the counter
reaches the threshold and the thread checks the SSA value.
Hence, they will be all counted as a single enclave exit.
This allows an adversary to launch stealthy cache attacks
on small pieces of code by issuing occasional series of fre-
quent preemptions. Yet, this vulnerability would be hard
to exploit because the blind zone is narrow—on the order
of dozens of cycles, depending on the configuration—and
the adversary must run in tight synchronization with the

victim to retrieve any meaningful information.

Optimization. Adding even a small piece of code to
every basic block could be expensive as the blocks them-
selves are often only 4–5 instructions long. We try to
avoid this by applying the following optimization.

Consider a basic block B0 with two successors, B1
and B2. In a naive version, in the beginning of each
basic block we increment the IR instruction counter
by the length of the corresponding basic block. How-
ever, if B0 cannot jump into itself, it will always pro-
ceed to a successor. Therefore, it is sufficient to in-
crement the counters only in the beginnings of B1
and B2 by, accordingly, length(B0)+length(B1) and
length(B0)+length(B2). If B1 or B2 have more than
one predecessor, it could lead to overestimation and more
frequent SSA polling, which only reduces the blind zone.

6.2 Runtime library

Most of Varys’ functionality is contained in a runtime
library implementing the state machine in Figure 3.

When a program starts, it begins normal execution (S0).
As long as the program is in this state, it counts executed
instructions thus simulating a timer.

When one of the threads is interrupted, the CPU exe-
cutes an AEX and overwrites the corresponding SSA (S1).
As its sibling thread periodically polls the SSA, it eventu-
ally detects the exit. Then, if the program has managed
to make sufficient progress since the last AEX (i.e., if the
IR instruction counter has a large enough value), it trans-
fers to the detected state (S2). Otherwise, the program
terminates. To avoid false positives, we could terminate
the program only if it happens several times in a row.

In S2, the sibling declares that the handshake is pending
and starts busy-waiting. When the first thread resumes, it
detects the pending handshake, and the pair enters state
S3. If the handshake fails, the program is terminated1.
Otherwise, one of the threads evicts L1 and L2 caches,
and the pair continues normal execution.

Software timer. To perform cache measurements dur-
ing the handshake phase, we need a trusted fine-grained
source of time. Since the hardware time counter is not
available in the current version of SGX, we implement it
in software (similar to Schwarz et al. [39]). We spawn an
enclave thread incrementing a global variable in a tight
loop, giving us approximately one tick per cycle.

However, the frequency of the software timer is not
reliable. An adversary can abuse the power management
features of modern Intel CPUs and reduce the timer tick
frequency by reducing the operational frequency of the
underlying core. If the timer becomes slow enough, the
handshake will be always succeeding. To protect against

1In practice, timing measurements are noisy and the handshake may
fail for benign reasons. Therefore, we retry it several times and consider
it failed only if the timing is persistently high.

232 2018 USENIX Annual Technical Conference USENIX Association

.align 64
label1: jump label2 // jump to the next cache line

.align 64
label2: jump label3

Figure 4: A code snippet evicting cache lines in the L1
instruction cache. For evicting a 32 KB cache, the pattern
is repeated 512 times.

it, we measure the timing of a constant-time operation
(e.g., a series of in-register additions). Then, we exe-
cute the handshake only if the measurement matches the
expected value.

Instruction cache eviction. Writing to a large memory
region is not sufficient for evicting L1 or L2 caches. L1
has distinct caches for data (L1d) and instructions (L1i),
and L2 is non-inclusive, which means that evicting L2
does not imply evicting L1i. Hence, the attacks targeting
execution path are still possible.

To evict L1i, we have to execute a large piece of code.
The fastest way of doing so is depicted in Figure 4. The
code goes over a 32 KB region and executes a jump for
each cache line thus forcing it into L1i.

L2 cache eviction. Evicting L2 cache is not as straightfor-
ward as L1 as it is physically-indexed physically-tagged
(PIPT) [46]. For the L2 cache, allocating and iterating
over a continuous virtual memory region does not imply
access to continuous physical memory, and therefore does
not guarantee cache eviction. A malicious OS could apply
cache colouring [6, 28] to allocate physical pages in a way
that the vulnerable memory locations map to one part of
the cache and the rest of the address space—to another.
This way, the vulnerable cache sets would not be evicted,
and the leakage would persist.

With L2 cache, we do two passes over the eviction
region. The first time, we read the region to evict the L2
cache. The second time, we read and measure the timing
of this read. If the region is continuous, the first read
completely fills the cache and the second read should be
relatively fast as all the data is in the cache. However,
if it is not the case, some pages of the eviction region
would be competing for cache lines and evicting each
other, thus making the second read slower. We use this as
an indicator that L2 eviction is not reliable and we should
try to allocate another region. If the OS keeps serving us
non-continuous memory, we terminate the application as
the execution cannot be considered reliable anymore.

6.3 SCONE

We base our implementation on SCONE [3], a shield-
ing framework for running unmodified application inside
SGX enclaves. Among other benefits, SCONE provides
two features that make our implementation more efficient
and compact. First, it implements user-level threading,

which significantly simplifies thread pairing. As the num-
ber of enclave threads is independent of the number of
application threads and fixed, it suffices to allocate and ini-
tialize thread pairs at program startup. Second, it provides
asynchronous system calls. They not only significantly
reduce the rate of enclave exits but also make this rate
more predictable and application agnostic.

We should note, that Varys is not conceptually linked
to SCONE. We could have avoided user-level threading
by modifying the standard library to dynamically assign
thread pairs. The synchronous system calls are also not
an obstacle, but they require a mechanism to distinguish
different kinds of enclave exits.

7 Evaluation

In this section, we measure the performance impact of
Varys, the efficiency of attack detection and prevention,
as well as the rate of false positives.

Applications. We base our evaluation on the
Fex [34] evaluation framework, with PARSEC [7] and
Phoenix [38] benchmark suites as workloads. The follow-
ing benchmarks were excluded: raytrace depends on the
dynamic X Window System libraries not shipped together
with the benchmark; freqmine is based on OpenMP;
facesim and ferret fail to compile under SCONE due
to position-independent code issues. Together with the
benchmarks, we recompile and instrument all the libraries
they depend upon. We also manually instrument the most
frequently used libc functions so that at least 90% of the
execution time is spend in a protected code. We used the
largest inputs that do not cause intensive EPC paging as
otherwise, they could lead to frequent false positives.

Methodology. All overheads were calculated over the
native SGX versions build with SCONE. The reported
results are averaged over 10 runs and the “mean” value is
a geomean across all the benchmarks.

Testbed. We ran all the experiments on a 4-core (8 hyper-
threads) Intel Xeon CPU operating at 3.6 GHz (Skylake
microarchitecture) with 32 KB L1 and 256 KB L2 pri-
vate caches, an 8 MB L3 shared cache, 64 GB of RAM,
and a 1TB SATA-based SSD. The machine was running
Linux kernel 4.14. To reduce the rate of enclave exits, we
configure the system as discussed in §5.3.

7.1 Performance Evaluation

Runtime. Figure 5 presents runtime overheads of differ-
ent Varys security features. On average, the overhead is
~15%, but it varies significantly among benchmarks.

A major part of the overhead comes from the AEX
detection, which we implement as a compiler pass. Since
the instrumentation adds instructions that are not data
dependent on the application’s data flow, they can run in
parallel. Therefore, they highly benefit from instruction

USENIX Association 2018 USENIX Annual Technical Conference 233

pca

smatch
mmult

kmeans

wcount
lin

reg
btra

ck

bscholes

canneal

dedup
x264

scluster
flu

id
swap

vips
mean

1.0

1.1

1.2

1.3

1.4

1.5

1.6
N

o
rm

a
liz

e
d
 r

u
n
ti
m

e
(w

.r
.t

.
n
a
ti
v
e
)

AEX detection + Handshake + Cache eviction

Figure 5: Performance impact of Varys security features with respect to native SGX version. Each next bar includes all
the previous features. (Lower is better.)

pca

smatch
mmult

kmeans

wcount
lin

reg
btra

ck

bscholes

canneal

dedup
x264

scluster
flu

id
swap

vips
mean

1

2

3

4

5

P
ro

c
e
s
s
o
r

IP
C

(i
n

s
tr

u
c
ti
o
n
s
/c

y
c
le

)

Native (SCONE) AEX detection

Figure 6: IPC (instructions/cycle) numbers for native and protected versions.

level parallelism (ILP), which we illustrate with Figure 6.
The applications that have lower ILP utilization in the
native version (e.g., canneal and stream cluster) can run
a larger part of the instrumentation in parallel, thus amor-
tizing the overhead.

Since we apply instrumentation per basic block, an-
other factor that influences the overhead is the average
size of basic blocks. The applications dominated by long
sequences of arithmetic operations (e.g., linear regres-

sion) tend to have longer basic blocks and lower number
of additional instructions (53% in this case), hence the
lower overhead. At the same time, the applications with
tight loops on the hot path cause higher overhead. There-
fore, string match has higher overhead than kmeans, even
though they have approximately the same level of IPC.

The second source of overhead is trusted reservation. It
does not cause a significant slowdown because the hand-
shake protocol is relatively small, including ten memory
accesses for the covert channel and the surrounding code
for the measurement. The overhead could be higher as
the headshake is synchronized, i.e., two threads in a pair
can make progress only if both are running. Otherwise, if
one thread is descheduled, the second one has to stop and
wait. Yet, as we see in Figure 5, it happens infrequently.

Finally, cache eviction involves writing to a 256 KB
data region and executing a 32 KB code block. Due to
the pseudo-LRU eviction policy of Intel caches, we have
to repeat the writing several times (three, in our case).
Together, it takes dozens of microseconds to execute, de-
pending on the number of cache misses. Fortunately, we
evict only after enclave exits, which are infrequent under

normal conditions (§5.3) and the overhead is low.

Multithreading. As Varys is primarily targeted at multi-
threaded applications, it is crucial to understand its impact
on multithreaded performance. To evaluate this parameter,
we measured the execution time of all benchmarks with
2, 4, and 8 threads with respect to native versions with
the same number of threads. Mind that these are user-
level threads; the number of underlying enclave threads
is always 4. The results are presented in Figure 7.

Generally, Varys does not have a significant impact
on multithreaded scaling. However, there are a few ex-
ceptions. First, larger memory consumption required for
multithreading causes EPC paging, thus increasing the
AEX rate and sometimes even causing false positives. We
can see this effect in dedup and x264: the higher AEX rate
makes the flushing more expensive and eventually leads
to false positives with higher numbers of threads. For the
same reason, we excluded linear regression, string match,
and word count from the experiment.

Another interesting effect happens in multithreaded
kmeans. The implementation of kmeans that we
use frequently creates and joins threads. Internally,
pthread_join invokes memory unmapping, which in
turn causes a TLB flush and an enclave exit. Correspond-
ingly, the more threads kmeans uses, the more AEXs
appear and the higher is the overhead.

Case Study: Nginx. To illustrate the impact of Varys
on a real-world application, we measured throughput and
latency of Nginx v1.13.9 [1] using ab benchmark. Nginx
was running on the same machine as previous experiments

234 2018 USENIX Annual Technical Conference USENIX Association

pca
mmult

kmeans
btra

ck

bscholes

canneal

dedup
x264

scluster
flu

id
swap

vips
mean

1.0

1.1

1.2

1.3

1.4

1.5

N
o

rm
a

liz
e

d
 r

u
n

ti
m

e
(w

.r
.t
.
n

a
ti
v
e

)

1.87

1.692 threads 4 threads 8 threads

Figure 7: Runtime overhead with different number of threads. (Lower is better.)

0 10 20 30 40 50 60 70

Throughput (×103 msg/s)

0.2

0.3

0.4

0.5

0.6

0.7

L
a
te

n
c
y
 (

m
s
)

SCONE

Varys

Default config.

Over-assign.

Figure 8: Throughput-latency plots of Nginx. Varys:
low-exit system configuration, Default conf.: default con-
figuration of Linux, Over-assign.: another process is com-
peting for a core with Nginx.

and the load generator was connected via a 10Gb network.
The results are presented in Figure 8.

In line with the previous measurements, Varys reduces
the maximum throughput by 19% if the system is con-
figured for a low AEX rate. Otherwise, the AEX rate
becomes higher, cache flushing has to happen more fre-
quently and the overhead increases. The higher rate comes
from two sources: disabling DynTicks increases the fre-
quency of timer interrupts and disabling interrupt redi-
rection adds exits caused by network interrupts. Finally,
the “Over-assignment” line is the throughput of Nginx
in the scenario, when we do not dedicate a core exclu-
sively to Nginx and assign another application that com-
petes for the core (in our case, we use word_count from
Phoenix). Since the Nginx threads are periodically sus-
pended, the cost of the handshake becomes much higher
as both threads in a pair have to wait while one of them is
suspended.

7.2 Security Evaluation

Violation of trusted reservation. To evaluate how ef-
fective Varys is at ensuring trusted reservation (i.e., if
a pair of threads is running on the same physical core),
we performed an experiment that emulates a time-sliced
attack. We launch a dummy Varys-protected application
in normal configuration (all threads are correctly paired)

Time threshold,
SW timer ticks

False positives,

%

False negatives,

%

140 4.0 0.0
160 0.0 0.0
250 0.0 0.1

Table 1: Rate of false positives and false negatives depend-
ing on the value of handshake threshold. The threshold is
presented for 10 memory accesses.

and then, at runtime, change affinity of one of the threads.
Additionally, to evaluate the rate of false positives, we
run the application without the attack. As trusted reserva-
tion is implemented via a periodic handshake, the main
configuration parameter is the time limit distinguishing
cache hits from cache misses.

The results are presented in Table 1. False negatives
represent the undetected attacks and false positives—the
cases when there was no attack, but a handshake still
failed. The results are aggregated over 1000 runs.

As we see, trusted reservation can be considered reli-
able if the limit is set to 160 ticks of the software timer
(§6.2). The fact that we neither have false positives nor
false negatives is caused by the difference in timing of
L1 and a LLC cache hits. If the threads are on the same
core, the handshake will have timing of 10 L1 cache hits.
Yet, if they are on different cores, the only shared cache
is LLC and all 10 accesses would miss both L1 and L2.

Increased rate of AEX. To evaluate Varys’s effectiveness
at detecting attacks with high AEX frequencies, we ran
a protected application under different system interrupt
rates and counted the number of aborts (i.e., detected
potential attacks). For the purity of the experiment, the
victim was a dummy program that does not introduce
additional AEXs on top of the system interrupts. In each
of the measurement, we tested several limits on minimal
runtime (MRT), inverse of the AEX rate. Similar to the
previous experiment, we had 1000 runs.

The results are presented in Table 2. Here, the “Normal
rate” is 100Hz (see §5.3); “Low-AEX attack” is 5.5kHz
as in the attacks from Wang et al. [45] and Van Bulck et
al. [43]; “Common attack” is 10kHz which corresponds
to the rate required for cache attacks. We can see that

USENIX Association 2018 USENIX Annual Technical Conference 235

MRT, IR
instructions

Normal

execution

Low-AEX

attack

Common

attack

60M 0.2% 100% 100%
62M 1.2% 100% 100%
64M 10% 100% 100%

Table 2: Varys abort rate depending on the system inter-
rupt rate and on the value of minimum runtime (MRT).

for (Set in L1_Cache_Sets):
for (Very Long):

for (CLine in CacheLine1..CacheLine8):
Read(Set, CLine)

Figure 9: An example of worst-case victim for a defense
mechanism based solely on interrupt frequency.

if we set the threshold on the number of IR instructions
between enclave exits to 60 millions, it achieves both low
level of false positives (0.2%) and detects all simulated
attack attempts.

Residual cache leakage. For small applications (i.e., ap-
plications with small or slowly changing working set),
cache leakage may persist even after we limit the fre-
quency of enclave exits.

As a worst case, we consider the following application
(see Figure 9): it iterates over cache sets, accessing all
cache lines in a set for a long time. With such applications,
limiting the interrupt frequency will not help, because
even a few samples are enough to derive the application
state. We use this application to evaluate effectiveness of
the cache eviction mechanism proposed in §5.2.

We use a kernel module to launch a time-slicing cache
attack on the core running the victim application. The
attack delivers an interrupt every 10 ms, and does an L1d
cache measurement on all cache sets. We normalize the
results into the range of [0,1]. Additionally, we disables
CPU prefetching both for the victim and attack code to
reduce noise. Essentially, it is a powerful kernel-based
attack that strives to stay undetected by Varys.

The results of the measurements are on Figure 10a.
Without eviction, the attack succeeds and the state of ap-
plication can be deducted even with a few samples. Then,
we apply Varys with L1i and L1d cache eviction to the
application (Figure 10b). Even though the amount of
information leaked decreases greatly, we can still distin-
guish some patterns in the heatmap due to residual L2
cache leakage. When we enable L2 eviction in Varys, the
results contain no visible information about the victim
application (Figure 10b).

8 Hardware Extensions

Many parts of Varys’s functionality could be implemented
in hardware to improve its efficiency and strengthen the

security guarantees. In this section, we propose a few
such extensions. We believe that introducing such a func-
tionality would be rather non-intrusive and should not
require significant architectural changes.

8.1 Userspace AEX handler

Varys relies on the SGX state saving feature for detec-
tion of enclave exits. However, this approach has certain
drawbacks: it requires the application to monitor the SSA
value, thus increasing the overhead, and it introduces a
window of vulnerability (§6.1). An extension to the AEX
protocol could solve both of the issues.

Normally during an AEX, the control is passed to the
OS exception handler, which further transfers control to
the userspace AEX handler, provided by the user. The
user AEX handler then executes ERESUME instruction,
which re-enters the enclave. However, there is no possibil-
ity for an in-enclave handler. Our proposed extension adds
a hardware triggered callback to the ERESUME instruction,
specified in the TCS: TCS.eres_handler. After each
ERESUME executed by unprotected code, the enclave is
re-entered, and the control is passed to code located at
the address TCS.eres_handler. To continue executing
interrupted in-enclave code, the ERESUME handler will
execute the ERESUME instruction once again, this time,
inside the enclave. Note that calling ERESUME inside of
an enclave is right now not permitted. One difficulty of
this extension would be an AEX during the processing of
a handler. We would allow recursive calls since handlers
could be designed to deal with such recursions.

8.2 Intel CAT extension

Although Intel CAT could be used to prevent concurrent
LLC attacks, the OS has complete control over the CAT
configuration, which renders the defense ineffective. It
can be solved by associating the CAT configuration reg-
isters with version numbers that are automatically incre-
mented each time the configuration changes. The applica-
tion could check the version number in the AEX handler
after each AEX and thus easily detect the change. In case,
no support for AEX handlers is added, the application
could perform periodic checks within the enclave instead.

To estimate the potential impact of the extension, we
ran an experiment where Nginx was protected by Varys
and had a slice of LLC exclusively allocated to it (see Fig-
ure 11). As we see, allocating 4 and 2 MB of cache did not
cause a significant slowdown for the given workload. The
difference in throughput comes mainly from the larger
eviction region: Varys had to flush 4 MB instead of 256
KB. However, allocating this large part of the cache can
significantly reduce the overall system performance. At
the same time, if we try a more modest allocation, we risk
causing a much higher rate of cache misses, which is what
happened with the 1 MB allocation in our experiment.

236 2018 USENIX Annual Technical Conference USENIX Association

20

40

60

250 500 750 1000 1250

Time (s)

C
a

c
h

e
 S

e
t

0.00

0.25

0.50

0.75

1.00

Access
Latency

(a) No eviction.

20

40

60

200 400 600

Time (s)

C
a

c
h

e
 S

e
t

0.00

0.25

0.50

0.75

1.00

Access
Latency

(b) L1 eviction.

250

500

750

1000

300 600 900

Time (s)

C
a

c
h

e
 S

e
t

0.00

0.25

0.50

0.75

1.00

Access
Latency

(c) L2 eviction.

Figure 10: An experiment proving the effectiveness of cache eviction. Without eviction, we can easily see the program
behavior. With L1 eviction, the L2 residual leak exposes some information. With L2 eviction, no visible information is
exposed. Graphs have different time scales due to different overhead from L1/L2 measurement and presence of eviction
mechanism. Color reflects normalized values, with different absolute minimum and maximum values for every graph.

0 10 20 30 40 50 60

Throughput (×103 msg/s)

0.2

0.3

0.4

0.5

0.6

0.7

L
a
te

n
c
y
 (

m
s
)

Varys

w/ 1MB allocation

w/ 2MB allocation

w/ 4MB allocation

Figure 11: Impact of different cache allocation sizes on
throughput and latency of Nginx protected by Varys.

8.3 Trusted HW timer

Since the hardware timer (RDTSC/P instruction) is not
available in SGX1, we use a software timer, which wastes
a hyperthread. SGX2 is going to introduce the timer, but
we cannot rely on it either as privileged software can
overwrite and reset its value.

We see two ways of approaching this problem: We
may introduce a monotonically increasing read-only timer
which could be used as-is. Alternatively, we could intro-
duce a version number that is set to a random value each
time the timer is overwritten. To ensure the timer correct-
ness, the application would have to compare the version
of this register before and after the measurement.

9 Related Work

The idea of restricting minimal runtime was proposed by
Varadarajan et al. [44], although they relied on features
of privileged software. Similarly, Déjà Vu [14] relies on
measuring execution time of execution paths at run-time.

T-SGX [40] uses Transactional Synchronization Exten-
sions (TSX) to detect and hide page faults from the OS. It
protects against page fault attacks, but not page-bit and
cache timing attacks. Cloak [22] strives to extend T-SGX

guarantees to cache attacks by preloading sensitive data,
but requires source code modifications.

Concurrently with our work, an alternative approach
to establishing thread co-location was proposed in Hyper-
Race [13]. It uses data races on a shared variable as a way
of distinguishing L1 from LLC sharing. Accordingly, it
does not require a timer thread.

Zhang et al. [51] and Godfrey at al. [19] employ flush-
ing as a defense against cache attacks, and Cock [15]
proposed to used lattice scheduling [16] as an optimiza-
tion. All of them rely on privileged software.

Among the alternatives, Racoon [37] builds on the idea
of oblivious memory [20] and makes enclaves’ memory
accesses independent of the input by introducing fake ac-
cesses, but requires manual changes in code. Dr. SGX [8]
automates the obfuscation. Shinde et al. [41] make the
accesses deterministic at the page level. Both introduce
high overheads (in the range of 3–20×).

10 Conclusion

We presented Varys, an approach to protecting SGX en-
claves from side channel attacks. Varys protects from
multiple side channels and causes low overheads. Con-
ceptually, Varys protects against side channels by limiting
the sharing of core resources like L1 and L2 caches. We
have shown that implementing it in software is possible
with reasonable overhead. With additional hardware sup-
port, we would not only expect a more straightforward
implementation of Varys but also lower overhead and
protection against a wider range of side channel attacks,
including LLC-based ones.

Acknowledgments. We thank our anonymous reviewers
for the helpful comments. This work was partly funded
by the Federal Ministry of Education and Research of
the Federal Republic of Germany (03ZZ0517A, Fast-
Cloud) and by Horizon 2020 Research and Innovation
Programme (690111, SecureCloud).

USENIX Association 2018 USENIX Annual Technical Conference 237

References

[1] nginx: The architecture of open source applications. www.

aosabook.org/en/nginx.html, 2016. Accessed: May, 2018.

[2] ACIIÇMEZ, O. Yet another microarchitectural attack: Exploiting
I-cache. In Workshop on Computer Security Architecture (2007).

[3] ARNAUTOV, S., TRACH, B., GREGOR, F., KNAUTH, T.,
MARTIN, A., PRIEBE, C., LIND, J., MUTHUKUMARAN, D.,
O’KEEFFE, D., STILLWELL, M. L., GOLTZSCHE, D., EYERS,
D., KAPITZA, R., PIETZUCH, P., AND FETZER, C. SCONE:
Secure Linux Containers with Intel SGX. In Proceedings of the

12th USENIX Symposium on Operating Systems Design and Im-

plementation (OSDI) (2016).

[4] BAUMANN, A., PEINADO, M., AND HUNT, G. Shielding appli-
cations from an untrusted cloud with Haven. In Proceedings of

the 11th USENIX Symposium on Operating Systems Design and

Implementation (OSDI) (2014).

[5] BERNSTEIN, D., LANGE, T., AND SCHWABE, P. The security
impact of a new cryptographic library. Progress in Cryptology–

LATINCRYPT 2012 (2012).

[6] BERSHAD, B. N., LEE, D., ROMER, T. H., AND CHEN, J. B.
Avoiding conflict misses dynamically in large direct-mapped
caches. In ACM SIGPLAN Notices (1994).

[7] BIENIA, C., AND LI, K. PARSEC 2.0: A new benchmark suite for
chip-multiprocessors. In Proceedings of the 5th Annual Workshop

on Modeling, Benchmarking and Simulation (MoBS) (2009).

[8] BRASSER, F., CAPKUN, S., DMITRIENKO, A., FRASSETTO, T.,
KOSTIAINEN, K., MÜLLER, U., AND SADEGHI, A.-R. DR.
SGX: Hardening SGX Enclaves against Cache Attacks with Data
Location Randomization. arXiv:1709.09917 (2017).

[9] BRASSER, F., MÜLLER, U., DMITRIENKO, A., KOSTIAINEN,
K., CAPKUN, S., AND SADEGHI, A.-R. Software Grand
Exposure: SGX Cache Attacks Are Practical. arXiv preprint

arXiv:1702.07521 (2017).

[10] BRUMLEY, B. B., AND HAKALA, R. M. Cache-timing template
attacks. In International Conference on the Theory and Applica-

tion of Cryptology and Information Security (2009), Springer.

[11] CHE TSAI, C., PORTER, D. E., AND VIJ, M. Graphene-SGX: A
practical library OS for unmodified applications on SGX. In 2017

USENIX Annual Technical Conference (USENIX ATC 17) (2017).

[12] CHEN, G., CHEN, S., XIAO, Y., ZHANG, Y., LIN, Z., AND

LAI, T. H. SGXPECTRE Attacks: Leaking Enclave Secrets via
Speculative Execution. arXiv preprint arXiv:1802.09085 (2018).

[13] CHEN, G., WANG, W., CHEN, T., CHEN, S., ZHANG, Y., WANG,
X., LAI, T.-H., AND LIN, D. Racing in Hyperspace: Closing
Hyper-Threading Side Channels on SGX with Contrived Data
Races. In IEEE Symposium on Security and Privacy (2018).

[14] CHEN, S., REITER, M. K., ZHANG, X., AND ZHANG, Y. De-
tecting Privileged Side-Channel Attacks in Shielded Execution
with Déjà Vu. In ASIA CCS ’17 (2017).

[15] COCK, D. Practical probability: Applying pGCL to Lattice
scheduling. In Interactive Theorem Proving: 4th International

Conference (2013).

[16] DENNING, D. E. A lattice model of secure information flow.
Communications of the ACM (1976).

[17] DISSELKOEN, C., KOHLBRENNER, D., PORTER, L., AND

TULLSEN, D. Prime+Abort: A Timer-Free High-Precision L3
Cache Attack using Intel TSX. In Usenix Security (2017).

[18] GE, Q., YAROM, Y., LI, F., AND HEISER, G. Contemporary
Processors Are Leaky – and There’s Nothing You Can Do About
It. arXiv preprint arXiv:1612.04474 (2016).

[19] GODFREY, M., AND ZULKERNINE, M. A server-side solution
to cache-based side-channel attacks in the cloud. In IEEE Sixth

International Conference on Cloud Computing (CLOUD) (2013).

[20] GOLDREICH, O., AND OSTROVSKY, R. Software protection
and simulation on oblivious RAMs. Journal of the ACM (JACM)

(1996).

[21] GÖTZFRIED, J., ECKERT, M., SCHINZEL, S., AND MÜLLER, T.
Cache attacks on Intel SGX. In European Workshop on System

Security (EuroSec) (2017).

[22] GRUSS, D., LETTNER, J., SCHUSTER, F., OHRIMENKO, O.,
HALLER, I., AND COSTA, M. Strong and Efficient Cache Side-
Channel Protection using Hardware Transactional Memory. In
26th USENIX Security Symposium (USENIX Security 17) (2017).

[23] GUERON, S. Intel’s new AES instructions for enhanced perfor-
mance and security. In Fast Software Encryption: 16th Interna-

tional Workshop (2009).

[24] HÄHNEL, M., CUI, W., AND PEINADO, M. High-Resolution
Side Channels for Untrusted Operating Systems. In 2017 USENIX

Annual Technical Conference (USENIX ATC 17) (2017).

[25] INCI, M. S., GULMEZOGLU, B., IRAZOQUI, G., EISENBARTH,
T., AND SUNAR, B. Cache attacks enable bulk key recovery on the
cloud. In International Conference on Cryptographic Hardware

and Embedded Systems (2016).

[26] INTEL CORPORATION. Intel R© 64 and IA-32 Architectures Soft-

ware Developer’s Manual. 2016.

[27] IRAZOQUI, G., EISENBARTH, T., AND SUNAR, B. S$A: A
shared cache attack that works across cores and defies VM sand-
boxing – and its application to AES. In 2015 IEEE Symposium on

Security and Privacy (2015).

[28] KESSLER, R. E., AND HILL, M. D. Page placement algorithms
for large real-indexed caches. ACM Transactions on Computer

Systems (TOCS) (1992).

[29] KOCHER, P., GENKIN, D., GRUSS, D., HAAS, W., HAMBURG,
M., LIPP, M., MANGARD, S., PRESCHER, T., SCHWARZ, M.,
AND YAROM, Y. Spectre Attacks: Exploiting Speculative Execu-
tion. arXiv preprint arXiv:1801.01203v1 (2018).

[30] LATTNER, C., AND ADVE, V. LLVM: A compilation framework
for lifelong program analysis and transformation. In Proceed-

ings of the International Symposium on Code Generation and

Optimization (CGO) (2004).

[31] LIU, F., GE, Q., YAROM, Y., MCKEEN, F., ROZAS, C., HEISER,
G., AND LEE, R. B. CATalyst: Defeating Last-Level Cache Side
Channel Attacks in Cloud Computing. In HPCA (2016).

[32] LIU, F., YAROM, Y., GE, Q., HEISER, G., AND LEE, R. B.
Last-level cache side-channel attacks are practical. In 2015 IEEE

Symposium on Security and Privacy (2015).

[33] MARSHALL, A., HOWARD, M., BUGHER, G., AND HARDEN, B.
Security best practices for developing windows azure applications.
Microsoft Corp, 2010.

[34] OLEKSENKO, O., KUVAISKII, D., BHATOTIA, P., AND FETZER,
C. Fex: A Software Systems Evaluator. In Proceedings of the

47st International Conference on Dependable Systems & Networks

(DSN) (2017).

[35] ORENBACH, M., LIFSHITS, P., MINKIN, M., AND SILBER-
STEIN, M. Eleos: ExitLess OS Services for SGX Enclaves. In
EuroSys (2017).

[36] PERCIVAL, C. Cache missing for fun and profit. 2005.

[37] RANE, A., LIN, C., AND TIWARI, M. Raccoon: Closing digital
side-channels through obfuscated execution. In USENIX Security

Symposium (2015).

238 2018 USENIX Annual Technical Conference USENIX Association

www.aosabook.org/en/nginx.html
www.aosabook.org/en/nginx.html

[38] RANGER, C., RAGHURAMAN, R., PENMETSA, A., BRADSKI,
G., AND KOZYRAKIS, C. Evaluating MapReduce for multi-core
and multiprocessor systems. In Proceedings of the 13th Interna-

tional Symposium on High Performance Computer Architecture

(HPCA) (2007).

[39] SCHWARZ, M., WEISER, S., GRUSS, D., MAURICE, C., AND

MANGARD, S. Malware guard extension: Using SGX to conceal
cache attacks. CoRR abs/1702.08719 (2017).

[40] SHIH, M., LEE, S., AND KIM, T. T-SGX: Eradicating controlled-
channel attacks against enclave programs. In NDSS (2017).

[41] SHINDE, S., CHUA, Z. L., NARAYANAN, V., AND SAXENA,
P. Preventing Page Faults from Telling Your Secrets. In Pro-

ceedings of the 11th ACM on Asia Conference on Computer and

Communications Security - ASIA CCS ’16 (2016).

[42] TROMER, E., OSVIK, D., AND SHAMIR, A. Efficient cache
attacks on AES, and countermeasures. Journal of Cryptology 23,
1 (2010).

[43] VAN BULCK, J., WEICHBRODT, N., KAPITZA, R., PIESSENS,
F., AND STRACKX, R. Telling Your Secrets Without Page Faults:
Stealthy Page Table-Based Attacks on Enclaved Execution. In
Usenix Security (2017).

[44] VARADARAJAN, V., RISTENPART, T., AND SWIFT, M.
Scheduler-based defenses against cross-VM side-channels. In
23rd USENIX Security Symposium (USENIX Security 14) (2014).

[45] WANG, W., CHEN, G., PAN, X., ZHANG, Y., WANG, X., BIND-
SCHAEDLER, V., TANG, H., AND GUNTER, C. A. Leaky Caul-

dron on the Dark Land: Understanding Memory Side-Channel
Hazards in SGX. arXiv preprint arXiv:1705.07289 (2017).

[46] WU, Z., XU, Z., AND WANG, H. Whispers in the hyper-space:
High-speed covert channel attacks in the cloud. In USENIX Secu-

rity Symposium (2012).

[47] XU, Y., CUI, W., AND PEINADO, M. Controlled-Channel At-
tacks: Deterministic Side Channels for Untrusted Operating Sys-
tems. In IEEE Symposium on Security and Privacy (2015).

[48] YAROM, Y., AND FALKNER, K. FLUSH+RELOAD: A high
resolution, low noise, L3 cache side-channel attack. In USENIX

Security Symposium (2014).

[49] ZHANG, Y., JUELS, A., REITER, M. K., AND RISTENPART,
T. Cross-VM side channels and their use to extract private keys.
In Proceedings of the 2012 ACM Conference on Computer and

Communications Security (2012), CCS ’12.

[50] ZHANG, Y., JUELS, A., REITER, M. K., AND RISTENPART, T.
Cross-tenant side-channel attacks in paas clouds. In Proceedings

of the 2014 ACM SIGSAC Conference on Computer and Commu-

nications Security (2014).

[51] ZHANG, Y., AND REITER, M. K. Düppel: Retrofitting commod-
ity operating systems to mitigate cache side channels in the cloud.
In Proceedings of the 2013 ACM SIGSAC conference on Computer

& communications security (2013).

USENIX Association 2018 USENIX Annual Technical Conference 239

