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Ageing is associated with an increased risk of developing noncommunicable diseases (NCDs), such as diabetes and cardiovascular
disease (CVD).	e increased risk can be attributable to increased prolonged exposure to oxidative stress.O
en,CVD is preceded by
endothelial dysfunction, which carries with it a proatherothrombotic phenotype. Endothelial senescence and reduced production
and release of nitric oxide (NO) are associated with “vascular ageing” and are o
en accompanied by a reduced ability for the body
to repair vascular damage, termed “reendothelialization.” Exercise has been repeatedly shown to confer protection against CVD
and diabetes risk and incidence. Regular exercise promotes endothelial function and can prevent endothelial senescence, o
en
through a reduction in oxidative stress. Recently, endothelial precursors, endothelial progenitor cells (EPC), have been shown to
repair damaged endothelium, and reduced circulating number and/or function of these cells is associated with ageing. Exercise
can modulate both number and function of these cells to promote endothelial homeostasis. In this review we look at the e�ects
of advancing age on the endothelium and these endothelial precursors and how exercise appears to o�set this “vascular ageing”
process.

1. The Endothelium in Health and Disease

	e endothelium controls di�usion and transport of nutri-
ents, gases, and other signalling molecules from the blood
into the surrounding tissues and controls adhesion, rolling,
and migration of leukocytes to sites of infection and tissue
damage. 	e endothelium also controls blood �ow distri-
bution around the body through the release of vasoactive
substances, including nitric oxide (NO) and prostacyclin
(PGI2) [1]. Under normal conditions, NO is released from the
endothelium, which di�uses to the vascular smooth muscle,
causing the smooth muscle cells to relax, thus widening the
diameter of the blood vessel, allowing more blood to �ow
distally to that vessel, a process termed endothelial function.
NO is not only vasoactive to control vessel lumen diameter,
but also antiatherogenic, inhibiting platelet and leukocyte
adhesion to the endothelium [2].

Endothelial dysfunction o
en precedes CVD, and the
ability of the endothelium to produce and release NO, mea-
sured as �ow-mediated dilatation (FMD), can be predictive of

future cardiovascular events [3] andmortality [4], potentially
due to thosewith endothelial dysfunction being susceptible to
atheroma formation and progression.	erefore the endothe-
lium is a key player in maintenance of vascular health.

2. The Ageing Endothelium Role of
Oxidative Stress

Advancing age is associated with endothelial dysfunction [5–
12], increased susceptibility of endothelial cells to apoptosis
[13, 14], and altered intracellular signalling [8]. 	ese have
been linked to NO bioavailability [15–17] and chronic expo-
sure to oxidative stress [9, 18–20], which is an imbalance
between the production of free radicals (oxidants) and oppos-
ing antioxidants, of which the greater production or presence
of oxidants than antioxidants results in tissue damage and
cellular dysfunction. Indeed the bioavailability of NO itself is
a product of the rate of NO production and its scavenging by
free radicals. Free radicals, such as superoxide anions (O2

∙−),
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have been found in greater levels in aged vascular tissue of
rats compared to their younger counterparts [21], as well as
in other models of ageing [22, 23], and levels of reactive
oxygen species (ROS) derived fromNADPH oxidase account
for attenuated endothelial-dependent vasodilation in aged
mice [24]. Scavenging or inhibition of these radicals improves
endothelium function [15, 21]. 	e increased production of
O2
∙− and NO leads to the formation of peroxynitrite [15, 25]

and the subsequent uncoupling of eNOS [15]. In contrast
to this, Luttrell et al. [26] observed high eNOS content
within aortic rings of old versus young rats despite reduced
endothelial function, a potential compensatory mechanism
to increase the drive for NO production.

Oxidative stress can also promote atherosclerosis through
the oxidation of low-density lipoprotein (oxLDL), which can
stimulate macrophages to migrate from the circulation into
the vascular wall [27], progressing to the development of
foam cells, which is a key process in the formation of an
atherosclerotic lesion. OxLDL also exerts deleterious e�ects
on the vascular smooth muscle cell wall, by stimulating
in�ammatory cytokine release (tumour-necrosis factor-�,
TNF-�, and monocyte chemoattractant protein-1, MCP-1)
[28]. In fact, circulating oxLDL has been shown to be a pre-
dictor of cardiovascular events in humans [29], con�rming
its association with vascular health.

In addition to increased production of oxidants, there
may be a concomitant reduction or impairment in antiox-
idant defences with ageing resulting in prooxidants going
unchecked causing damage to surrounding tissues and
accelerating ageing. For example, plasma concentration of
one such antioxidant enzyme, superoxide dismutase (SOD),
which itself catalyzes the dismutation of O2

∙− into oxygen
and hydrogen peroxide, declines with age. 	is reduction
was however not found in cellular tissue [11, 30], which itself
may suggest that ageing may be associated with increased
production of ROS rather than an impairment of cellular
antioxidant capacity. Yet one study has found impaired
activities of various antioxidant enzymes in aged cardio-
vascular tissue in rats [31]. More studies are required to
fully elucidate the e�ects of age in animals and humans on
antioxidant capacity. Acute administration of antioxidants,
provided by vitamin C and SOD mimetics, can improve NO
bioavailability and endothelial function [9, 32, 33], therefore
o�ering the potential to reduce tissue damage via dietary
means. 	is is not within the scope of this review, but for a
review of this see Brown and Hu [34].

Sirtuin 1 (SIRT1) is a protein involved in DNA repair,
cell cycle regulation, and ageing [35]. It functions to catalyze
the removal of acetyl groups attached to lysine residues
of various molecules involved in cellular signalling [36]. It
is expressed in endothelial cells and has been observed to
play a key role in prevention of endothelial cell senescence
[37–39] by modulating p53 expression [39] and P66Shc
[37], both of which are involved in oxidative stress-induced
senescence. SIRT1 expression and activity are reduced in
aged endothelial cells [40], but by increasing the expressing
of SIRT1, endothelial senescence can be prevented [38, 41].
It appears that SIRT1 also plays a protective role in pre-
venting ROS production in endothelial cells, as activating

SIRT1 pharmacologically prevents ROS-induced endothelial
dysfunction [42]. In addition, inhibition of SIRT1 caused an
increase in NADPH oxidase activity and the associated O2

∙−

production [42], which can go on to inactivateNO [21]. SIRT1
is therefore an important regulator of vascular endothelial
ageing.

In addition to loss of NO bioavailability with ageing,
there has been documented evidence of loss of prostacyclin-
mediated dilatation of vasculature in humans [43] potentially
as a result of reduced prostacyclin production [44, 45].
However, under NO inhibition, the dilatory response to
prostacyclin in young andold subjectswas similar [43], impli-
cating loss of the NO pathway as the primary mechanism
behind ageing-induced vascular dysfunction.

3. Exercise and the Endothelium

Physical activity and regular exercise training has been shown
to play a signi�cant role in the prevention of CVD, in
addition to reducing the risk of mortality [46–58]. 	e
reverse can be seen with physical inactivity and sedentary
lifestyle associated with increased risk of NCD and mortality
[59–68]. Physical activity and regular exercise training is
antiatherogenic [69] and reduces oxidative stress through
upregulation of antioxidants, such as SOD [70, 71]. Exercise
has been shown to increase mitochondrial manganese SOD
and cytosolic Cu/Zn SOD isoforms [72] which may con-
tribute to a reduction in oxidative stress in the endothelium.
	ere is a plethora of studies showing the bene�cial e�ects of
exercise on FMD, indicating improved endothelial function
[5, 6, 12, 73–81]. On the other hand, sedentary interventions
(reducing step counts and increasing sitting time or bed
rest studies) result in the opposite e�ect on FMD [82–
84]. Exercise and periodic increases in physical activity
result in increases in cardiac output and greater blood �ow
through the vasculature. 	e increase in �ow across the
endothelium generates a shear stress stimulus, which is the
shearing e�ect of circulating cells across the endothelium.
Greater levels of laminar shear stress, as observed during
exercise, result in an increase in NO production and release
by the endothelium to widen the vessel diameter. Birk et
al. [85] investigated the role of shear stress on the vascular
adaptation to exercise. 	ey observed that, in individuals
who exercised for 8 weeks, brachial artery dilatory response
was greater in the arm that was unrestricted to blood �ow,
whereas, in the arm that was restricted to blood �ow via
an arm in�atable cu�, there was no signi�cant change in
endothelial-dependent dilatation. 	erefore shear stress is
a key stimulus for vascular adaptation during an exercise
training programme.	e improved endothelial function can
be attributable to increased endothelial NO synthase (eNOS)
protein levels within the endotheliumas evidenced frommice
models [19, 72] and/or reduced oxidative stress [19, 72, 76, 86].
	e reduced oxidative stress can help prevent the uncoupling
of NO, therefore increasing NO bioavailability. One study
has however shown no changes in eNOS protein content as
a result of exercise training [86]. 	e e�ects of ageing and
exercise on the endothelium are summarised in Figure 1.



Oxidative Medicine and Cellular Longevity 3

SIRT1 content
TAC
NO bioavailability
Telomerase

ROS
Glucose

In�ammation

function

responses

repair

damage
(EMPs)

apoptosis

↑ Endothelial

↑ Angiogenic

↑ Endothelial

↑ Endothelial

↓ Capillarity

↑ Endothelial

Ageing

Exercise

Figure 1: 	e e�ect of age and exercise on the endothelium. SIRT1: Sirtuin 1, TAC: total antioxidant capacity, NO: nitric oxide, ROS: reactive
oxygen species, and EMP: endothelial microparticles.

4. Endothelial Precursors: New Cellular
Markers of Endothelial Regeneration

	e endothelium is reported to have a turnover rate of
between 47 and 23,000 days using continuous labelling
techniques [87]. However, endothelial cell turnover may be
higher in areas of bifurcations [88], potentially as a result
of disturbed �ow [89], and increases in oxidative stress
[90]. It was thought that normal endothelial cell turnover
was maintained by proliferation of resident endothelial cells;
however, recently, the contributions of stem cell-like cells
have been described, as also seen with skin [91] and skeletal
muscle [92]. Endothelial precursors or endothelial progenitor
cells (EPCs) were discovered in 1997 by Asahara et al. [93].
Researchers observed that isolated CD34+ cells from human
peripheral blood formed tube-like structures on �bronectin-
coated plates in vitro. 	ese cells, a
er a period of 7 days in
culture, began to express endothelial lineage markers such
as VEGFR2, PECAM-1, and E-selectin and stained posi-
tively for eNOS. 	ese CD34+ cells also secreted NO under
stimulation by vascular endothelial growth factor (VEGF)
or acetylcholine, a key characteristic of mature endothelial
cells. 	ese EPCs have been consistently shown to repair
damaged endothelium in animal [93–95] and human studies
[96–98]; however, these endothelial precursors are rare events
in human peripheral blood, accounting for only between
0.0001 and 0.01% of all mononuclear cells [99], with this
level varying depending on age and health status [100]. Tissue
damage may stimulate a mobilisation of CD34+ progenitors,
which may increase the circulating number of these cells
by up to 500% (0.01% to 0.50% of all mononuclear cells)
[101]. EPCs may make up a substantially smaller number
in circulating pool and may only make up 10% of CD34+

progenitors [102].

	ere is some debate on the origin of these endothe-
lial precursors. 	ere is clear evidence showing that they
are likely derived from the bone marrow [94, 95]. Some
researchers have suggested that EPCs are resident in the
vessel wall, with adventitia-resident CD34+ progenitors able
to promote vessel formation in vitro [111] and in vivo [96].

However, Passman et al. [112] failed to observe endothelial
di�erentiation of adventitial progenitors, with these cells
instead taking amore vascular smoothmuscle cell phenotype.
It may be that the vascular growth and reparative process
involves both circulating cells derived from the bone marrow
and vascular-resident cells, promoting the proliferation of
endothelial cells through paracrinemeans via the secretion of
VEGF and also through di�erentiation into mature endothe-
lial cell phenotype.

	ere appears to be 2 subsets of EPCs, each subset playing
a di�erent role in vascular regeneration and repair.	ese have
been termed “early” and “late” outgrowth cells and named so
because of their appearance in culture. 	e so-called “early”
EPCs appear early in culture and die a
er 4 weeks.	ese cells
secrete relatively large amounts of proangiogenic cytokines
and growth factors such as VEGF and interleukin-8 (IL-8),
whereas the “late” EPCs appear late in culture, live up to
12 weeks, produce more NO than “early” EPCs, and formed
capillary structures to a greater extent than “early” EPCs [113].
It can be concluded that “late” EPCs have greater ability to
di�erentiate into endothelial cells, whereas “early” EPCs have
greater potential to promote vascular repair in a paracrine
manner.

5. Endothelial Progenitor Cells and
Vascular Disorders

Many studies have found that those with vascular-related
disorders have reduced circulating number and/or impaired
function of EPCs compared to healthy age-matched controls
[114–138]. Numbers are also associated with endothelial func-
tion [116, 131], implicating the role of EPCs in maintaining
endothelial health. Circulating “late” EPCs have also been
shown to be predictive ofmortality incidence, with thosewith
higher numbers having a lowermortality rate than those with
low circulating levels [139].

Paradoxically, Pelliccia et al. [140] found that those with
high levels of CD34+CD45−VEGFR2+ cells were more likely
to su�er a cardiovascular event within 5 years of follow-
up a
er undergoing percutaneous coronary intervention.
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	ese �ndings may be attributable to the potential role of
EPCs in the progression of atherosclerosis [126]. EPCs may
contribute to atherosclerotic development through secretion
of proin�ammatory factors such as plasminogen activator
inhibitor 1 (PAI-1) and monocyte chemoattractant protein-1
(MCP-1) [141]. Both are involved in atherosclerosis, with PAI-
1 expressed within plaques, with more expression in increas-
ingly progressed plaques [142], and with MCP-1 involved in
the adhesion of monocytes to the vascular wall [143]. EPCs’
secreting these proin�ammatorymediators of atherosclerosis
is a surprising function and paves the way for the potential
role of EPCs in atherosclerosis development and progres-
sion. However there are some reports linking EPCs to the
prevention of atherosclerosis, either by inverse relationships
between number/function and atherosclerotic lesion devel-
opment [119] or by infusion of these cells potentially causing
reduced plaque burden or attenuation of plaque progression
[144, 145]. Additional research is needed to fully elucidate the
role in atherosclerosis development or prevention.

In the studies that show reduced circulating number of
EPCs with vascular-related disorders, this reduction could
be as a direct result of bone marrow depletion of these
cells, due to an increased requirement for vascular repair.
Mobilization of these cells byVEGF inmice has been found to
reduce the number of both haematopoietic andmesenchymal
stem/progenitor cells within the bone marrow a
er only 5
days [146]. In addition critical limb ischemia patients display
reduced circulating EPCs aswell as a reduced number of bone
marrow resident CD34+ cells compared to healthy controls
[132].

	e observed reduction in circulating progenitor number
in those with vascular disease may also be attributable to an
impaired mobilization process. Matrix metalloproteinase-9
(MMP-9) activity in the bone marrow of critical ischemia
patients is reduced accompanying a reduced circulating and
bone marrow resident CD34+ cell number [132]. MMP-9 is
involved in the mobilization of progenitors from the bone
marrow [147–149], believed to be speci�cally involved in
cleaving stromal-derived factor-1 (SDF-1, ligand for C-X-C
Chemokine Receptor 4; CXCR4) allowing CXCR4+ progeni-
tor cells free to leave the bone marrow [150]. Diabetics, both
type I and type II, also appear to have reduced circulating EPC
numbers compared to healthy controls [120, 131, 151–156], in
part due to impaired mobilization. Type II diabetics present
with a reduction in capillarity within the bonemarrow, which
was associated with the duration of the diabetes, as well
as fasting glucose levels [155], with a possible consequence
of inadequate nutrient delivery for progenitor or stem cell
production within the bone marrow. 	is could implicate
impaired progenitor cellmaintenance in addition to impaired
mobilization.

6. Ageing and Endothelial Progenitor Cells

As discussed, ageing is associated with endothelial dysfunc-
tion, as well as impaired angiogenesis [157–161]. 	ese e�ects
could be associated with a reduction in EPC numbers or
impaired function of these vasculogenic cells. Age does in fact

result in reduced circulating EPCs [104, 106] and impaired
function as displayed as reduced migration and proliferation
[97, 98, 103, 105, 106, 109, 110] (Table 1). In two studies, migra-
tion and proliferation of EPCs were independent predictors
of endothelial function in both young and old individuals
[103, 104].

Xia et al. [97, 98] used in vivomousemodels to investigate
the e�ect of age and the ability of human “early” EPCs to
repair damaged endothelium. 	e authors induced carotid
artery injury in mice and found that the ability of the
mice to repair the endothelium was age-dependent. 	e
mice that received the “young” EPCs (EPCs isolated from
young individuals) displayed a greater ability to repair the
endothelium in comparison to those that received the “old”
EPCs (EPCs isolated from old individuals). Based on the
morphological appearance of these cells being “early” EPCs,
it is likely that these cells promoted reendothelialization
mainly via paracrine means [113]. 	is in vivo model was
accompanied by in vitro age-related impairments in EPC
migration and adhesion of these cells. 	e authors reported
that, under stimulation by SDF-1, these “old” cells failed to
phosphorylate Janus Kinase-2 (JAK-2) to the same extent as
“young” EPCs, despite similar CXCR4 cell surface expression
between the two age groups, implicating a disrupted intra-
cellular signalling mechanism as the reason by which these
cells become dysfunctional, rather than cell surface protein
expression changes.

EPCs from old individuals may also display impaired
paracrine action, as found by Kushner et al. [108], who
observed reduced release of granulocyte colony-stimulating
factor (G-CSF) a
er stimulation by the stimulant phyto-
hemagglutinin (PHA). However, the stimulated release of IL-
8, another proangiogenic cytokine, was not di�erent between
young and old individuals. 	erefore, paracrine action of
these cells and their ability to stimulate endothelial repair
by signalling endothelial cells to proliferate may be hindered
with age.

	e same group measured telomere length in EPCs
isolated from peripheral blood mononuclear cells (PBMNC)
in another study. Telomeres are repetitive DNA sequences
(TTAGGG) at the end of chromosomes, and they act to
protect DNA from damage. Replication of cells causes the
length of telomeres to shorten, and therefore telomere length
has o
en been used as a biomarker for cellular/biological age
[107, 162, 163]. Repeated rounds of division and replication
may cause cells to become senescent (cells are unable to repli-
cate further). Telomere length, as measured using genomic
DNA preparation and Southern hybridization techniques in
EPCs isolated from PBMNC from old compared to young
individuals, was shorter; however, they were not di�erent
between young and middle-aged individuals [107]. 	e par-
ticipants in this study were reported to be healthy men, with
no history of CVD or diabetes, further strengthening the
belief that these cells are a�ected not only by disease, but
also by ageing. Recent evidence suggests that telomeres can
be deleteriously impacted upon by ROS. In an ageing model
using n�b1 knockout mice, �broblasts that show accelerated
ageing also display reduction in telomere length, yet this
e�ect was attenuated by antioxidant treatment of the mice
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Table 1: E�ect of age on EPC number and function.

Reference Subject population EPC assay Finding

Heiss et al.,
2005 [103]

20 young (∼25 yr) men
20 old (∼61 yr) men

CD34+VEGFR2+,
CD133+VEGFR2+ cells (FC)
EPC CFU
EPC migration

(i) No di�erence in EPC number between age
groups
(ii) Reduced EPC migration and proliferation
in old versus young men

	ijssen
et al., 2006
[104]

16 young (19–28 yr) men
8 old (67–76 yr) men

CD34+VEGFR2+ cells (FC) EPC reduced in old versus young men

Hoetzer
et al., 2007
[105]

10 young (22–35 yr) men
15 middle-aged
(36–55 yr) men

21 old (56–74 yr) men

EPC CFU
EPC migration

(i) Reduced proliferation in middle-aged and
older versus young men
(ii) Reduced migration in old versus
middle-aged and young men

	um et al.,
2007 [106]

10 young (23–31 yr) men
16 middle-aged
(50–69 yr) men

12 old (∼74 yr) men.

CD133+VEGFR2+ cells (FC)
EPC migration
eNOS content of EPC

EPC numbers, migration, and eNOS content
reduced in old versus young and middle-aged
versus young men

Kushner
et al., 2009
[107]

12 young (21–34 yr), 12
middle-aged (43–55 yr),
and 16 old (57–68 yr)

men

Telomere length of isolated EPCs
EPC telomere length signi�cantly reduced in
older versus middle-aged and young men

Kushner
et al., 2010
[108]

17 young (21–34 yr) men
20 old (56–70 yr) men

EPC release of proangiogenic
factors: G-CSF, VEGF, IL-8, and
IL-17

EPC release of G-CSF impaired in old versus
young men

Xia et al.,
2012
[97, 98]

10 young (∼27 yr) men
10 old (∼68 yr) men

25 young (∼26 yr) men
22 old (∼68 yr) men

CD34+VEGFR2+ cells (FC)
Mouse model of carotid injury
and infusion of EPCs from young
or old men.

As above +
EPC migration
EPC adhesion assay

(i) EPC numbers reduced in old versus young
men
(ii) Reduced endothelial repair capacity in
mouse model in old versus young men
(iii) Reduced CXCR4:JAK-2 signalling in old
versus young men
(iv) EPC adhesion to endothelial monolayer
impaired in old versus young men
(v) Reduced EPC migration in old versus
young men

Williamson
et al., 2013
[109]

4 young (20–30 yr)
individuals

4 old (50–70 yr)
individuals

EPC CFU
EPC migration

(i) No di�erence in proliferation between
young and old individuals
(ii) Reduced migration in old versus young
individuals

Yang et al.,
2013 [110]

20 young (21–33 yr) men
20 old (59–72 yr) men

CD34+VEGFR2+ cells (FC)
EPC migration

Reduced number and migration of EPCs in
sedentary old versus sedentary and endurance
trained young, no di�erence in endurance
trained old versus young men

FC: �ow cytometry, CFU: colony forming units.

[164]. However, data is lacking with respect to circulating
progenitor cells.

Once again, oxidative stress may play a central role in
the ageing e�ect on progenitor cell number and function.
CD34+ progenitors in male and female octogenarians were
inversely correlated with circulating levels of ROS, and those
individuals who had died by the end of the follow-up (7
years) had signi�cantly higher levels of ROS at baseline [165],
highlighting the importance of reducing oxidative stress and
related damage for longevity. Indeed circulating levels of
ROS are greater in aged humans than young humans, and
this is also accompanied by a decreased EPC content of
SIRT1, whichmay allow ROS damage to continue unchecked.
SIRT1 administration to EPCs in vitro rescues EPCs from

H2O2-induced apoptosis [166], and SIRT1 deletion leads
progenitor cells to exhibit an ageing phenotype as indicated
by an increase in DNA damage and increased intracellular
content of ROS [167]. 	ese observations lead us to believe
that the process of ageing, through the increased production
of ROS, and reduced SIRT1 content of EPCs, could lead,
partially, to the reduced number and function of these
vascular regenerative cells, increasing risk for CVD in ageing
individuals.

	e evidence points to a deleterious e�ect of ageing
on the ability of the body to stimulate endothelial repair,
through depletion of EPC number, in both circulation and
bone marrow, as well as impairment of function of these
cells. Ageing is associated with increased risk of NCDs [168],
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and the e�ect of age on EPCs may be a causative factor. It
is therefore of great importance to maintain EPC number
and function throughout the lifespan in order to reduce risk
of these NCDs. 	ere is plenty of evidence to show that
pharmaceutical interventions, such as statins [169–176], can
helpmaintain EPCnumber and function; however this places
a large �nancial burden on health services, thus addressing
other lifestyle factors, such as diet, and exercise may be more
cost e�ective.

7. Exercise and Endothelial Progenitor Cells

Regular exercise has been consistently shown to be bene�cial
for health. Exercise can improve cardiorespiratory �tness,
lower blood pressure [177, 178], improve le
 ventricular
function [133, 179], reduce chronic low-grade in�ammation
[180], improve tissue perfusion [181], reduce fasting blood
glucose [182], and increase insulin sensitivity [183]. Taken
together, there is overwhelming evidence that regular exercise
or having a higher level of cardiorespiratory �tness can o�er
some protection against NCD incidence and mortality [47–
58]. Recently, there has been a growth in interest in EPC
biology and the impact of exercise on these cells.

Acute exercise has been repeatedly shown to mobilize
EPCs into the circulation in addition to enhancing the in
vitro and in vivo function of these cells for a period of up
to 72 hours, depending on the intensity and duration of
the bout of exercise investigated [134, 184–202], with few
studies showing no changes [104, 203] or even reductions in
progenitors a
er exercise [204]. 	e observed increases in
circulating angiogenic progenitors are o
en seen alongside
increases in circulating SDF-1 [187], VEGF [184, 191, 193, 194],
G-CSF, MMP-9 [193], or increased NO production [202].
Acute maximal exercise bout has been shown to improve
the function of EPCs, as measured by increased migratory
capacity to VEGF and SDF-1 in vitro [134] which is proposed
to aid in the cells being able to migrate to ischaemic tissue to
stimulate vessel growth.	e improved function of these cells
may be due to increases in CXCR4 cell surface expression,
yet this has yet to be investigated in EPCs. Exercise-induced
increases in circulating cortisol have been found to increase
CXCR4 expression in T-lymphocytes [205] indicating that
the circulating environment that these cells are exposed
to as a result of exercise may a�ect cell surface receptor
expression and subsequently function. Increased CXCR4 cell
surface expression could also be stimulated by increases
in shear stress [97] caused by increases in cardiac output
seen with exercise. Further study is required to investigate
the e�ect of acute exercise and the role CXCR4 plays in
postexercise improvements in EPC migratory function. Age
also appears to have an impact on the acute exercise response.
EPC numbers increased in circulation in old individuals;
however, this response was attenuated in comparison to a
young population [200] suggesting an impaired mobilisation
process.

Regular exercise training also results in increases in
resting EPC numbers [98, 105, 110, 206–220], potentially
contributing to the observed improvement in endothelial

function with exercise [219]. However, some studies have
found no changes in circulating number but did �nd
improvements in in vivo endothelial-repair ability [98], in
vitro endothelial colony forming unit ability [215], or in vitro
NO production [218]. Xia et al. [98] investigated the e�ect
of regular exercise training on EPC-mediated endothelial
repair using a murine model of carotid artery injury. Before
and a
er exercise training (30 minutes per day, 3 days
per week, and 12 weeks of aerobic exercise) human “early”
EPCs were isolated and cultured. 	ese cells were then
injected into le
 carotid artery of athymic nude mice a
er
carotid injury. Endothelial regeneration was greater in the
mice injected with EPCs from young subjects compared to
those injected with EPCs from older subjects. Endothelial
regenerative ability of these cells was improved in the older
men a
er the 12-week training period. 	e improvement
in EPC in vivo function as a result of the exercise training
period in humans was associated with improvements in
intracellular signalling, with increased signalling between
CXCR4 and its downstream target, Janus Kinase-2 (JAK-
2) [98], a potential mechanism for the improved migratory
capacity of these cells a
er training interventions [134]. Other
functional improvements seen with exercise training include
improvedmigration to VEGF [105, 217, 220] and SDF-1 [220],
adhesion to human umbilical cord vein endothelial cells [98],
and secretion of NO [218]. Importantly these improvements
in EPC function and/or number have been found to be
related to the improvement seen in endothelial function as
a result of an exercise training program [219], potentially
implicating these cells in the process of improving endothelial
functionwith exercise.	e e�ects of age and exercise on these
progenitor cell subsets and their e�ect on the endothelium is
summarised in Figure 2.

Other mechanisms behind improved number and func-
tion of these cells with exercise training are potentially linked
to reduced oxidative stress which a�ect progenitor cell func-
tion [166] and lower fasting blood glucose, as hyperglycaemic
conditions typically a�ect progenitor cell functions [152, 221].

Detraining and inactivity on the other hand play a role
in reducing vascular regenerative capacity of these cells.
Only 10-day detraining was su�cient to reduce CD34+ and
CD34+VEGFR2+ progenitor cells, and the extent of decline
in EPCs (CD34+VEGFR2+) was associated with the decline
in endothelial function [222]. Additionally, these cells at
baseline were associated with oxLDL plasma concentra-
tions. 	e observed increase in EPC senescence potentially
resulted from a reduction in total antioxidant capacity of the
individual, which concomitantly decreased a
er the 10-day
detraining. Data from this study suggest that oxidative stress
and antioxidant capacity of the individual may be associated
with physical activity and as a result may modulate EPC
number and senescence and subsequent endothelial function
and cardiovascular risk.

8. Summary

	e process of ageing is o
en associated with increased
morbidity and mortality. “Vascular ageing” represents
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Figure 2: 	e e�ects of age and exercise on EPC-mediated vascular repair and endothelial function. Ageing causes the reduced signaling
between CXCR4 and Janus Kinase-2 (JAK-2), as well as being associated with a reduced antioxidant capacity. Exercise mobilizes EPCs from
bone marrow and rescues the signaling between CXCR4 and JAK-2, as well as stimulating production of antioxidants Sirtuin 1 (SIRT1) and
superoxide dismutase (SOD). EPC-mediated repair of endothelium leads to improved endothelial function.

the multitude of e�ects of ageing on the vascular tree
including endothelial dysfunction, increased arterial
sti�ness, atherosclerotic plaque formation, and an impaired
angiogenic response. Exercise training may o�set this
process of “vascular ageing” by maintaining or improving
EPC number and function, which can then act to help
maintain endothelial function through paracrine signalling
to promote endothelial proliferation or by adhering to
the vessel wall and di�erentiating into mature endothelial
cells, with fully functional eNOS and high NO content.
	e reduction in oxidative stress as seen following exercise
training programs may also promote EPC survival and
prevent functional decline of these cells with age.
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[211] J. M. Fernández, D. Rosado-Álvarez, M. E. Da Silva Grigoletto
et al., “Moderate-to-high-intensity training and a hypocaloric
Mediterranean diet enhance endothelial progenitor cells and
�tness in subjects with the metabolic syndrome,” Clinical
Science, vol. 123, no. 6, pp. 361–373, 2012.

[212] C. Fiorito, M. L. Balestrieri, E. Crimi et al., “E�ect of l-arginine
on circulating endothelial progenitor cells and VEGF a
er
moderate physical training in mice,” International Journal of
Cardiology, vol. 126, no. 3, pp. 421–423, 2008.

[213] L. Gatta, A. Armani, F. Iellamo et al., “E�ects of a short-
term exercise training on serum factors involved in ventricular
remodelling in chronic heart failure patients,” International
Journal of Cardiology, vol. 155, no. 3, pp. 409–413, 2012.

[214] U. Laufs, N. Werner, A. Link et al., “Physical training increases
endothelial progenitor cells, inhibits neointima formation, and



Oxidative Medicine and Cellular Longevity 15

enhances angiogenesis,”Circulation, vol. 109, no. 2, pp. 220–226,
2004.

[215] F. Manfredini, G. M. Rigolin, A. M. Malagoni et al., “Exercise
training and endothelial progenitor cells in haemodialysis
patients,” Journal of International Medical Research, vol. 37, no.
2, pp. 534–540, 2009.

[216] P. Sarto, E. Balducci, G. Balconi et al., “E�ects of exercise
training on endothelial progenitor cells in patients with chronic
heart failure,” Journal of Cardiac Failure, vol. 13, no. 9, pp. 701–
708, 2007.

[217] O. Schlager, A. Giurgea, O. Schuhfried et al., “Exercise training
increases endothelial progenitor cells and decreases asymmetric
dimethylarginine in peripheral arterial disease: a randomized
controlled trial,”Atherosclerosis, vol. 217, no. 1, pp. 240–248, 2011.
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