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Introduction

A recent scientific statement from the American Heart Association (AHA) and American 

Stroke Association (ASA) highlighted the significance of vascular contributions to cognitive 

impairment and dementia (1), coined “VCID” here and referred to as vascular dementia 

and/or vascular cognitive impairment and/or vascular contributions to dementia 

alternatively. The concept for VCID emerged as a leading priority at the National Institutes 

of Health (NIH) National Institute of Neurological Disorders and Stroke (NINDS) hosted 

Stroke Research Priorities Meeting (2) and also at the 2013 the Alzheimer’s Disease-Related 

Dementia (ADRD) Summit. The ADRD Summit set research priorities for small vessel 

VCID research over the next 5–10 years: develop the next generation experimental models, 

encourage basic science investigation on the impact of AD risk factors on cerebrovascular 

function and vice versa (3, 4). The Alzheimer’s Association, with scientific input from the 

NINDS and the National Heart, Lung and Blood Institute (NHLBI), convened a panel of 

cross-disciplinary experts in Chicago, IL, on December 17th, 2013 to determine the state of 

the science and to identify the needed step, including unanswered research questions, which 

will translate into improved clinical outcomes related to small vessel VCID. This manuscript 

summarizes the proceedings of this discussion.

State of the science

Decades of data, including landmark work of the Honolulu Asia Aging Study (HAAS), the 

Rotterdam Study (20), and the Religious Orders Study and Memory and Aging Project 

(ROS/MAP) (12, 13) have provided significant insight into potential links of vascular 

factors to dementia, such as AD. An important risk factor for dementia was the presence of 

lacunar and larger cerebral infarcts in the brain that are pathologic markers of clinical or 

subclinical stroke (5–7, 20). Others have subsequently shown that ischemic brain injury, 

commonly detected in pathology as macro- and micro- infarcts and vessel disease, e.g. 

atherosclerosis, arteriosclerosis, and cerebral amyloid angiopathy [CAA], are highly 

prevalent in older persons and are independent risk factors for cognitive dysfunction and 

dementia (17–23).

Mixed vascular and AD etiology dementia is one the common dementia in older persons, 

and becomes even more common as age increases as both vascular and AD pathologies 

accumulate over time (10)(11). For example, in the longitudinal ROS/MAP, over half of the 

individuals with AD had a combination of both AD and vascular pathologies (12, 13). 

Importantly, the deleterious effect of vascular pathologies combined with AD pathology 

leads to increased likelihood of dementia; this is true for both large infarcts (commonly 

manifested as stroke) and micro infarcts in individuals with similar levels of AD 

neuropathology (14, 15). Vascular lesions detected by imaging, in particular small vessel 

and microvascular white matter damage, typically detected in current clinical settings as 

type 2 hyperintensities on MRI, and also as leukoaraiosis detected by CT, are also highly 

prevalent in the elderly, and worsening is associated with cognitive decline (16). Addition of 
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either arteriosclerosis or atherosclerosis results in further increased likelihood of micro 

infarcts, and an even higher probability of dementia.

The plot thickens: Molecular and vascular mechanisms

Molecular mechanisms associated with the vasculature and with accumulating AD 

pathologies have been linked in several ways and may be linked to the increased neuronal 

death observed in the mixed etiology. Decreased blood flow prior to beta-amyloid (Aβ) 

deposition has been observed in the brain of both mouse models of AD and in individuals 

with AD, and has been proposed to contribute directly to the cognitive symptoms and, some 

studies suggest the changes in the vasculature impair clearance of Aβ, and thereby accelerate 

the progression of AD (60, 61)(62, 63). Adding to this picture is considerable evidence that 

type 2 diabetes mellitus (T2DM) and insulin resistance are linked to an increased risk of 

vascular disease, AD pathology, and dementia (24)(25)(26).

Molecular mechanisms that may be related have been further supported by recent genetic 

studies. The International Genomics of Alzheimer’s Project (I-GAP), funded in part by the 

Alzheimer’s Association, published a meta-analysis of data from nearly 75,000 individuals 

and identified 21 genetic risk loci for late-onset AD (LOAD)(31). Individuals with small 

vessel cerebrovascular disease were not excluded because it is integral with a large 

proportion of AD, as discussed above. However, pathologic analysis of a subset of I-GAP 

individuals enabled comparison of the odds ratio (OR) for AD dementia for each of the 

genetic loci based on clinical diagnosis alone, clinical plus standard pathological definition 

(plaques and tangles), or more criteria that take into account vascular pathology. 

Interestingly, for individuals with vascular lesions the OR of specific genetic loci were 

different, increased or decreased, versus OR calculated using “pure” AD-pathology subjects, 

suggesting that some loci may function and respond differently with respect to vascular vs. 

AD-specific (i.e. plaques and tangles) pathology. Further investigation is needed to 

understand the linkage of underlying mechanisms with these pathological changes.

The innate immune system has also been implicated as a potential connection point between 

AD and vascular disease. Innate immunity is activated both in cerebrovascular disease (34) 

and in AD, in which postmortem studies show chronic inflammation characterized by an 

influx of activated microglia and infiltrating monocytes around plaques and tangles (32). 

Lue and colleagues reported that plaques and tangles appear only to cause 

neurodegeneration when inflammation is also present (33). While it is unclear whether 

recruitment of the innate immune system is a response to damage or pathogenic in nature, 

large GWAS studies suggest innate immune cells, including resident microglia and 

infiltrating monocytes and may drive AD pathogenesis through vascular related mechanisms 

that we are just beginning to understand (35) (36). A potential linkage between the immune 

infiltration and VCID may be the disruption of the blood brain barrier (BBB), demonstrated 

in post-mortem brain tissue studies of individuals with AD-related cognitive impairment, 

although the mechanism and timing has been unclear (41–45)(46).

The brain is the most lipid rich organ in the body and has a specialized system to carry fats; 

several lines of evidence suggest that lipid and lipoprotein metabolism may provide key 
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insight into VCID and AD. Lipid metabolism has long been implicated in AD; APOE is both 

a known genetic risk factor for late onset AD and is a primary lipid carrier in the brain (37). 

ApoE4, the product of the detrimental APOE allele, has multiple neuropathological effects 

in the central nervous system, including a loss of cerebrovascular integrity and breakdown 

of the BBB (38). Mechanistically, the proinflammatory cyclophylin A (CypA)-matrix 

metalloproteinase-9 (MMP-9) pathway is activated in pericytes in transgenic humanized 

APOE4 knock-in mice, leading to degradation of endothelial tight junctions as well as 

basement membrane proteins, and thus disruption of the BBB (39). Consistent with findings 

in transgenic APOE4 mice, a recent study in cognitively normal humans found age-

dependent BBB breakdown in APOE4 carriers vs. non-APOE4 carriers, as indicated by an 

increased CSF/plasma albumin ratio and increased CypA and MMP-9 levels in the CSF 

(40). Irrespective of mechanism, BBB disruption exposes the brain parenchyma to 

potentially neurotoxic blood proteins, e.g. thrombin, fibrin, plasmin and hemoglobin, as well 

as the iron from lysed erythrocytes (i.e., siderosis)(47).

The cholesterol transporter ABCA1 delivers lipids to ApoE as well as ApoA-I, the primary 

protein component of HDL (“good cholesterol”). ApoE and ApoA-I in turn transport 

cholesterol from organs and arterial walls to the liver for excretion (49). In ABCA1 deficient 

mice, ApoE particles in the blood cannot become lipidated, ultimately resulting in increased 

amyloid burden in the dentate gyrus; conversely, in mice that overexpress ABCA1, this 

amyloid burden is nearly eliminated. Thus, drug discovery programs are looking for ways to 

increase ABCA1 expression, for example by using Liver X Receptor or LXR agonists (50). 

Like ApoE, ApoAI may also play an important role in vascular contributions to brain health, 

as indicated by studies of APOA-I/APOA-I knockout mice crossed with the Amyloid 

Precursor Protein (APP)/PS1ΔE9 transgenic AD mouse model (48) (51). As ApoA-I and 

high density lipoprotein (HDL) protect endothelial function in large peripheral vessels (52), 

HDL appears to also promote endothelial repair in healthy subjects (54, 55); to affect 

activity of the innate immune system; to have anti-inflammatory and antioxidant functions 

(52, 54) (53). Taken together, understanding the roles of ApoA-I and HDL in neurovascular 

physiology is an important priority.

Cerebral pial collateral circulation has a special role in limiting damage due to 

cerebrovascular occlusion. The adverse hemodynamic environment present in the pia limits 

collateral circulation under normal condition, but when brain circulation is compromised, 

e.g. in an ischemic event, these pial collaterals can facilitate compensatory blood perfusion 

in brain regions that would otherwise be (even more) compromised. Genetic and 

environmental factors can combine to limit the anatomical extent and capacity of pial 

collaterals for compensatory circulation, and thus significantly increase severity of brain 

injury in occlusive vascular disease (56, 57). For example, aging causes rarefaction of 

collateral vessels associated with dysfunctional nitric oxide synthase signaling and increased 

collateral tortuosity and resistance, increasing severity of ischemic injury (58), and genetic 

variation has been shown to influence and limit the extent of compensatory collateral 

circulation (59).

An emerging area of interest in cerebrovascular circulation in health and disease that may 

help identify novel drug targets is clearance of parenchymal waste, including Aβ, into the 
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CSF via perivascular circulation [also referred to as the glymphatic system (65, 66)]. Xie 

and colleagues demonstrated glymphatic Aβ clearance occurs during sleep (67), correlating 

with findings that both AD and VCID are linked to sleep disturbances (68). In addition to 

this potential role for the glymphatic system, BBB transport of Aβ from the parenchyma 

directly into vascular circulation is severely compromised in transgenic AD mouse models, 

and is a significant area for potential therapeutic development (69, 70). In the vasculature 

itself, another emerging topic with novel potential for intervention is stalled blood flow in 

brain capillaries due to leukocyte adherence to the endothelial lumen wall (64). When 

leukocytes adhere to the endothelium due to inflammation, only a small number of affected 

capillaries in the brain can result in significant decreases in downstream blood flow (64).

Animal models as a research tool

The VCID field has a need to model vascular factors, both genetic and non-genetic, to create 

novel models of mixed dementia representing the human disorder, in particular, for the 

purposes here, small vessel VCID. Several types of vascular models are currently used to 

study how vascular disease ay contributes to dementia: middle cerebral artery occlusion 

(MCAO) mouse model of stroke (71)(72); the bilateral common carotid stenosis (BCAS) 

model that creates chronic cerebral hypoperfusion (73); several mutant APP transgenic mice 

that develop CAA and CAA-related cerebrovascular deficits in addition to classic 

parenchymal Aβ pathology (74); and, finally, the Dutch APP mutation mouse model of 

CAA that develops extensive vascular Aβ deposits at an advanced age, but develop very few 

parenchymal Aβ plaques (75). There is also a more aggressive mouse model of CAA that 

includes Aβ accumulation in the vessel wall (76). Rosenberg and colleagues developed 

Another potential model are rats fed the Japanese Permissive Diet (JPD) of low protein and 

high salt, as they develop spontaneous hypertensive/stroke (SHR/SP) with unilateral carotid 

occlusion and white matter damage that evolves over weeks to months (77).

Yet another model of cardiovascular disease, wild type mice fed a diet deficient in B6, B12 

and folic acid to drive a condition of hyperhomocysteinemia, which is implicated as a 

potential risk factor for cardiovascular disease, stroke, T2DM, vascular dementia, and AD 

(78). Feeding this diet to a transgenic mouse overexpressing APP resulted in an induction of 

a proinflammatory state and a change in the distribution of amyloid. Further, these mice 

have cognitive impairments and an increased number of microhemorrhages. Hypertensive 

animal models, such as those that display white matter disease, may also be useful, since a 

major risk factor for cerebrovascular disease is hypertension. In this regard, one example of 

a mouse model already used for systemic vascular and cardiac research, that may be useful 

for better understanding VCID, overexpresses renin under an albumin promoter develops an 

allele-dose-dependent hypertension, heart failure and loss of collaterals in the hetero- and 

homozygous strains (79). Despite the utilization of these models, there is lack of clear 

animal model(s) to tease out the role of VCID (such as associated risk factors) in dementia 

onset and progression. As discussed in the below section, the need for new model systems 

with metabolic similarity to humans, such as animal models with white matter vascular 

injury, animal models of hypertension or the potential utility of stem cell/induced pluripotent 

models are in need of further exploration.
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Biomarkers of VCID

Biomarkers that precede and predict onset and that demonstrate the level of burden and track 

progression of small vessel disease-related brain injuries are the gold standard for the 

scientific community, and such a biomarker would greatly enhance the development of 

interventions for VCID with the greatest impact on AD and the associated high disease 

burden of related mixed dementias with a vascular component. Today, subsets of such 

biomarkers are in early development in clinical research with the ultimate goal of 

transferring to a clinical setting, and there is still much unknown about the longitudinal 

changes associated with VCID that may inform biomarker discovery. Tools such as 

diffusion-weighted magnetic resonance imaging (DWI-MRI) sequences to characterize 

acute/sub-acute microinfarcts (82) and functional MRI (fMRI) to assess impaired vascular 

reactivity associated with CAA (83) are being explored. Another area of exploration, a 

CAA-specific amyloid PET imaging tracer may be useful for diagnosing CAA before 

symptoms become apparent, quantifying CAA burden at the time of symptom presentation, 

monitoring CAA progression over time, and/or assessing response to a CAA-directed 

treatment. During investigation of CAA in mouse models, Zipfel and colleagues identified a 

fluorescent phenoxazine analog called resorufin that preferentially binds to CAA rather than 

parenchymal Aβ (80), and are now working to develop second-generation analogs to 

overcome challenges associated with affinity and solubility. Such tools may provide insight 

into VCID related changes and possible information on the longitudinal progression of these 

changes. Possible other areas of exploration for potential biomarkers may include measures 

related to microinfarcts, microbleeds, siderosis, white matter lesions, microinfarcts, altered 

microstructure, BBB breakdown and pericyte degeneration (shown to play a critical role in 

animal models of AD) (81), endothelial activation, as well as various aspects of immune 

dysfunction and inflammation, blood flow reductions, and vascular compliance. A greater 

understanding of the biological underpinnings discussed above will significantly inform the 

development of novel and informative biomarkers related to VCID.

Summary and next steps

One of the key concepts to emerge from this meeting is the recognition that cerebrovascular 

disease and especially small vessel disease is common in aging, and does not typically occur 

in isolation, but rather is associated with AD. Further there is a broad spectrum of comorbid 

conditions that commonly co-exist with AD and related dementia, including hypertension, 

diabetes, hypercholesterolemia, obesity, low physical activity, depression, and smoking. In 

discussion about how to move the field forward, meeting participants identified two focus 

areas: 1) the need to identify and understand the molecular and cellular mechanisms and 

targets that underlie the contribution of vascular disease to AD and dementia; and 2) the 

need to facilitate development and validation of non-invasive biomarkers of key vascular 

processes related to cognitive and neurologic impairment. For both of these goals, it is clear 

that new research tools are needed, including innovative technical approaches to imaging 

and fluid-based clinical research, and biological tools including humanized animal models, 

including animal models with metabolic similarity to humans, animal models with white 

matter vascular injury, animal models of hypertension; and the potential utility of stem cell/

induced pluripotent models. Tools are needed to answer gaps identified during this meeting:
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• Lipid metabolism and its role in amyloid deposition and cognitive/behavioral 

change

• Various roles of different cell types of the innate and adaptive immune systems

• Vascular injury and the response to injury

• Mechanisms for brain blood flow decrease in AD and other dementias

• The role of small vessel disease and blood-brain barrier breakdown

• Effects of reduced blood flow and changes in blood pressure

• Role of and interactions with other risk factors such as diabetes, including study of 

the pre-diabetic brain without the confounding effects of treatment

• Genetic cross-talk between the vasculature and the brain

• Studies of mixed etiology AD dementia

Novel biomarkers are also needed both for investigation of basic science research questions 

and to be developed as potential clinical disease markers. These markers need to be 

validated at an early stage in humans to ensure applicability for human studies:

• Better markers of blood flow, particularly for cerebral small vessels and collateral 

circulation

• A CAA-specific or other imaging compound that recognizes beta-amyloid or other 

markers, specifically and selectively in the cerebrovasculature

• Markers that enable more precise assessment of where pathology occurs in the 

brain parenchyma and blood vessels and the quantitative distribution of pathology

• Biomarkers that detect breakdown or dysfunction of blood-brain barrier 

permeability

• Biomarkers that reflect damage to brain structure and connectivity caused by 

microinfarcts, which are largely undetectable to current neuroimaging

• Vascular biomarkers of AD/dementia risk in prediabetic and insulin-resistant adults

• Improved imaging markers of cerebral vascular dysfunction

• Markers of peripheral circulatory system components that contribute to 

neuroinflammation.

• Improved outcome measures and clinical diagnostic criteria that accurately reflect 

the range of vascular events that impact cognition.

The mobilization of such studies will require significant investments at the federal and 

international levels, with targeted requests for proposals (RFAs) and funding calls. To help 

initiate global commitment of both the funding and the scientific communities, the 

Alzheimer’s Association launched a targeted grant program to fund pilot investigations for 

further discovery, and ultimately, motivate increased new investment by the international 

scientific funding communities into the VCID area of study.
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Future investments for these areas of scientific discovery will be essential to galvanize the 

scientific community and provide forums of communication between the dementia and 

vascular fields. As a next step, focused research sessions and presentations are at various 

stages of planning for annual AD, dementia and cardiovascular focused conferences, 

including the Alzheimer’s Association International Conference (AAIC) and two American 

Heart Association (AHA) conferences, including Atertiosclerosis, Thrombosis, and Vascular 

Biology (ATVB) 2014 and the AHA Scientific Sessions 2014. There is a clear need to both 

convene cross-disciplinary dialogues of the vascular and dementia communities and provide 

opportunities of global investment toward the ultimate goal of successful vascular 

intervention to decrease the burden of AD and other dementias
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