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Abstract: Neurons and glial cells in the brain are protected by the blood brain barrier (BBB). The
local regulation of blood flow is determined by neurons and signal conducting cells called astrocytes.
Although alterations in neurons and glial cells affect the function of neurons, the majority of effects are
coming from other cells and organs of the body. Although it seems obvious that effects beginning in
brain vasculature would play an important role in the development of various neuroinflammatory and
neurodegenerative pathologies, significant interest has only been directed to the possible mechanisms
involved in the development of vascular cognitive impairment and dementia (VCID) for the last
decade. Presently, the National Institute of Neurological Disorders and Stroke applies considerable
attention toward research related to VCID and vascular impairments during Alzheimer’s disease.
Thus, any changes in cerebral vessels, such as in blood flow, thrombogenesis, permeability, or
others, which affect the proper vasculo-neuronal connection and interaction and result in neuronal
degeneration that leads to memory decline should be considered as a subject of investigation under
the VCID category. Out of several vascular effects that can trigger neurodegeneration, changes in
cerebrovascular permeability seem to result in the most devastating effects. The present review
emphasizes the importance of changes in the BBB and possible mechanisms primarily involving
fibrinogen in the development and/or progression of neuroinflammatory and neurodegenerative
diseases resulting in memory decline.

Keywords: blood-brain-barrier; blood proteins; fibrinogen and cognitive impairment

1. Introduction

During this past decade, greater emphasis in neuroscience has been given to problems
associated with vascular cognitive impairment and dementia (VCID) [1]. As a result, out of
132 Research Priorities that have been used as a guide by the National Health, Lung, and
Blood Institute for this last decade, two compelling questions relate to vascular effects on
neurodegeneration. They are “What interdependencies between the brain/peripheral
nervous system are important to the development, progression, manifestations, and
treatment of cardiac and vascular disease?” and “What pathobiology underlies vascu-
lar causes of cognitive decline?” [2]. Inflammation can be one of the main causes in the
development of VCID.

Research has shown a strong link between cardiovascular diseases, along with cere-
brovascular diseases, and subsequent cognitive impairment and dementia [3]. During
some neuroinflammatory diseases, VCID is often presented as a co-morbidity. For example,
Alzheimer’s disease (AD) is the leading cause of dementia, and it is often accompanied
by VCID. It is estimated that 40% of AD patients also have some form of VCID. Vascular
dementia accounts for about 15–30% of dementia cases worldwide [3,4]. Other diseases
that are known to cause a substantial cognitive impairment are traumatic brain injury
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(TBI) [5–8] and multiple sclerosis (MS) [9]. Although dementia is not the primary clinical
sign associated with stroke, stroke almost doubles the risk of developing dementia later in
life [10]. The risk of dementia in stroke patients after the incident depends on the lesion size
and location, but stroke survivors also suffer worsened cognition years later for reasons
not well understood [10]. While incidence of dementia can be close to 5% after transient
ischemic stroke, its occurrence can reach 34% after severe stroke [3,4]. Ischemic stroke is the
most common type of stroke, making up 87% of all strokes where brain ischemia causes
substantial neuronal damage. It has been shown that aggravated peripheral inflammatory
response to stroke caused by preceding systemic inflammation has deleterious actions on
components of the neurovascular unit (NVU) that may affect BBB integrity [11]. Some
common mechanisms associated with cerebrovascular-driven cognitive impairment are
associated with accumulation of abnormal proteins, oxidative stress, early synaptic dis-
connection, and apoptosis leading to cell death. All these abnormalities can be positively
accompanied by alterations in the blood brain barrier (BBB). There are many studies that
link BBB dysfunction with dementia in humans [12–15] and in animal models [14–17]. The
objective of this review is to underline the importance of changes in the cerebrovascular
permeability resulting in accumulation of blood plasma proteins and particularly of fib-
rinogen (Fg) in the extravascular space of the brain, as well as to discuss some possible
mechanisms involved in the development and/or progression of neuroinflammatory and
neurodegenerative diseases resulting in memory decline.

2. Inflammation and Thrombogenesis

Inflammation is one the most important factors that cause changes in normal home-
ostasis in the body. Many neurodegenerative diseases are associated with inflammation and
considered neuroinflammatory diseases. For example, TBI [18–20], AD [21], MS [22,23], and
stroke [24] are considered neuroinflammatory diseases. The main components of the circu-
latory system that can be affected by inflammation and may result in neurodegeneration are
blood cells, such as platelets, leukocytes, and erythrocytes, and vascular wall components,
such as endothelial cells (ECs), smooth muscle cells, and pericytes. For example, blood
samples from AD patients showed an increased number of activated platelets compared
to that in samples from the control group [25]. Platelets, major players in hemostasis and
thrombosis [21], have also been known to have a significant effect during inflammation [26].
Activation of platelets and their increased aggregation have been documented during
neurodegenerative diseases such as TBI [27], AD [25], and MS [28]. It has been shown that
AD mutations result in a significantly hyperactivated state of circulating platelets where the
platelets from 3XTg-AD mice adhere more avidly on matrices and have an increased ability
to form thrombi during normal flow condition [29]. Therefore, it is well-accepted that
platelets are not only activated as a result of inflammation during inflammatory diseases but
also can cause or exacerbate pathological processes and result in further neurodegeneration.

Increased thrombosis in the circulatory system would reasonably be expected to
affect blood flow in small cerebral vessels, impairing exchange between the vessels and
neurons and thus leading to vasculo-neuronal uncoupling. For example, it is known that
TBI is associated with an almost immediate reduction in cerebral blood flow (CBF). It
was reported that in the period of 2 h after a controlled cortical impact causing mild-to-
moderate TBI, microthrombi occluded up to 70% of venules and 33% of arterioles [30].The
reduced CBF seen in the traumatic penumbra caused by the formation of thrombi in the
microcirculation [30] leads to secondary damages causing impairment in neuronal function
and neurodegeneration, ultimately resulting in memory reduction [31].

The role of platelets in MS pathology has been speculated due to their interaction with
leukocytes during their penetration of the BBB and the release of platelet-EC adhesion
molecule-1 (PECAM-1) to the circulation [32]. In normal conditions, the basal expression
of adhesion molecules is low; however, the expression of adhesion molecules on ECs
and leucocytes is upregulated during inflammation [33]. Increased soluble PECAM-1
(sPECAM-1) is detected in the sera of MS patients [34]. The increased levels of sPECAM-1
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may be a result of its increased release from microvessels and leukocytes during inflam-
mation [34]. Platelet extravasation has been described in inflammatory reactions as a
consequence of vascular rupture or increased permeability of undamaged venular endothe-
lium by a transcellular route [35]. More commonly, platelets are described as “pathfinders”
to direct leukocyte recruitment to the sites of their extravasation [36], and the significant
role platelets play in the leukocyte recruitment into the inflamed brain microvessels was
validated [37].

3. BBB Breakdown and Extravasation of Blood Cells

Leukocyte extravasation occurs primarily in post-capillary venules where shear stress
is low [38]. The process of leukocyte migration from the blood stream to the extravas-
cular space involves multiple steps. It begins with flowing leukocytes decelerating and
slowly rolling on the activated endothelium [38,39], followed by adhesion strengthen-
ing and spreading, intravascular crawling, and finally, transcellular and/or paracellular
transmigration [39]. Specific interactions of Fg with leukocytes and with ECs through
its respective receptors on these cells, such as integrin αMβ2 and intercellular adhesion
molecule-1 (ICAM-1), results in migration of leukocytes through ECs [40,41]. It has been
shown that Fg dose dependently increases the adhesion of leukocytes to human umbilical
vein ECs [42]. In an inflammatory condition, where Fg is elevated, it can be assumed
that there is an increased adhesion of leukocytes on the luminal surface of ECs, leading
to intraintimal accumulation and then extravasation of leukocytes. In fact, the finding
of large depositions of Fg on the luminal surface of ECs in vivo represents a hallmark of
certain inflammatory conditions, such as atherothrombosis [43]. Thus, it is possible that
inflammation-induced elevation of the blood content of Fg potentially exacerbates the
neuroinflammatory pathology.

Besides leukocytes, erythrocytes could also be found being extravasated during a
breakdown of the BBB. However, if the vascular wall is not damaged significantly enough
to allow penetration of red blood cells (RBCs), they do not cross the BBB even if the vessels
are permeable to other cells or plasma components [44]. Extravasation of erythrocytes
has been shown to cause oxidative injury to the brain [45]. It leads to the deposition of
hemoglobin-derived neurotoxic products, including free iron. Decompartmentalization of
iron from erythrocytes can cause brain edema and lipid peroxidation, leading to oxidative
damages and neuronal death [45,46].

Oxidative Stress in Cerebrovascular Disease

Under normal conditions, there is a balance between oxidant and antioxidant systems
preventing oxidative damage. Oxidative stress develops when generation of reactive oxy-
gen species (ROSs) is enhanced and/or ROS scavenging is impaired. Iron-derived ROSs
are implicated in the pathogenesis of various vascular disorders, including vasculitis and
reperfusion injury [47]. In the brain, ROSs have been shown to significantly alter BBB per-
meability and promote monocyte transmigration across the BBB. Therefore, any molecules
that potentially generate enhanced ROSs potentially exacerbate neuroinflammation [48].

4. Increased Cerebrovascular Permeability and Neurodegeneration
4.1. Paracellular

Overall, changes in cerebrovascular permeability play the main role in the develop-
ment of VCID. There are two modes of vascular permeability: paracellular (between the
cells) [49] and transcellular (through the cells) [50–52]. Depending on the size of a sub-
stance, one or the other pathway can be used in extravasation. For example, a moderately
large virus may not fit the gaps formed for a paracellular transport and would likely use
a transcellular pathway involving vesicular transport [53]. In normal conditions, brain
vessels are characterized with higher transendothelial electrical resistance than in periph-
eral circulation, indicating tighter junctions and therefore suggesting lesser paracellular
transport than in skeletal muscle [54]. Similarly, much less transcellular transport (caveolar



Biomolecules 2023, 13, 648 4 of 16

transport) occurs in brain vessels than in peripheral circulation [55]. During pathologies
(inflammation), slight increases in these transport mechanisms can result in devastating
consequences. These effects may result in enhanced water transport through paracellular
and transcellular (via aquaporins) pathways and result in edema formation [56]. It is
noteworthy that the physical breakdown of the BBB (rupture of vessels) that can occur
during stroke or moderate to severe TBI and result in the accumulation of blood cells in the
brain can result in changes of neuronal function and thus neurodegeneration [46]. Damage
of vessels that leads to vascular rupture results in bleeding and the accumulation of blood
components in the brain tissue. This process may not be considered a result of “vascular per-
meability” changes. Vascular permeability changes may occur in non-ruptured vessels that
can be a result of alterations in the function of paracellular and/or transcellular transports.
Altogether, changes in BBB integrity (vascular rupture) and/or permeability (enhanced
paracellular and/or transcellular transports) inevitably lead to neurodegeneration and can
result in memory reduction.

Chronic inflammation may also be one of the causes of enhanced cerebrovascular
permeability. One of the indications of inflammation is a microvascular leakage of plasma
substances and proteins and their deposition in the subendothelial matrix and intersti-
tium [49]. We have shown a reduction in some endothelial junction proteins, along with
increased endothelial layer permeability to albumin, caused by an elevated level of Fg,
which is known to be associated with inflammation [57,58]. One of the possible mecha-
nisms of increased paracellular transport can be explained by the findings that activity of
inflammatory matrix metalloproteinases (MMPs) increases in many neurodegenerative dis-
eases and after ischemic central nervous system (CNS) injury [59,60]. MMPs directly affect
junction proteins and basement membrane extracellular matrix proteins [59]. Involvement
of MMP-9 in increased extravascular deposition of Fg and an accompanied reduction in
short-term memory has been found during TBI [61]. The levels of many adherence junctions
and tight junction proteins are reduced in various neurodegenerative diseases, such as in
AD and other diseases associated with dementia [44], amyotrophic lateral sclerosis [62],
MS [63], and some animal models of neurodegeneration, such as aging [64].

4.2. Transcellular

Another pathway of cerebrovascular permeability, transcellular transport, includes
caveolar transcytosis. While small molecules mainly use the paracellular pathway, high
molecular weight proteins (e.g., Fg) cross the vessel wall mainly via caveolar transcyto-
sis [52,65]. The main effect of this transport as opposed to the paracellular transport is that
it can move relatively large proteins across the BBB. Crossing of the vascular wall for large
proteins of the plasma via paracellular transport requires physically opening endothelial
junctions wide enough to allow extravasation of these proteins.

On the other hand, caveolae that can be ~30–80 nm in diameter [66–68], with the neck
diameter reaching ~56 nm in ECs [69], can accommodate large proteins. For example,
albumin and Fg, with their Stokes–Einstein radiuses of about 3.5 nm [70,71] and 8.4 nm [72],
respectively, can easily fit into a caveola and be transported across the BBB.

Among the continuous endothelium found in many types of tissue, including lung,
muscle, and brain, the ECs in the brain have more restricted permeability [73]. The critical
characteristic of brain endothelium is that it establishes the barrier limits for the diffusion
of blood-borne solutes and restricts molecular exchange [73]. These features include
specialized tight junctions that restrict diffusion of molecules, a small number of endocytic
vesicles, and lowered rates of transcytosis relative to peripheral vasculature [44]. Thus, in
normal conditions, caveolar transcytosis is quite low and very little macromolecular cargo
crosses the cerebral capillary endothelium [55]. However, during inflammation, activation
of ECs results in enhanced caveolar transcytosis that can have devastating effects on brain
cells [74–76].

Alterations in endothelial layer integrity, caveolar transcytosis, and the basal mem-
brane result in the accumulation of high molecular weight proteins, normally found in
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plasma, in the extravascular space [77]. One such protein is Fg [77]. It is evident that depo-
sition of Fg in the extravascular space of brain tissue during inflammatory diseases such as
AD [78] and TBI [8,79] is associated with a decline in memory. Enhanced deposition of Fg
results in favorable conditions for the formation of Fg-containing protein complexes such
as Fg-amyloid beta (Aβ) [75,78,80] and Fg-cellular prion protein (PrPC) [81]. It has been
shown that PrPC can be endocytosed via caveolae [82]. We found that at an elevated level
(e.g., during inflammation), Fg is transcytosed [74], is extravasated by caveolae [75], and
then can directly interact with PrPC [83]. It is known that, during neurodegenerative dis-
eases, endogenous PrPC undergoes a transformation to a conformationally altered scrapie
prion protein (PrPSc) that accumulates in the brain as insoluble aggregates [84]. The binding
of Fg to PrPSc has also been documented [85]. It has also been found that PrPC can bind
readily to Aβ, indicating that it may act as a receptor that initiates a chain of events leading
to neuronal destruction [86]. In addition, it has been shown that the specific interaction of Fg
with Aβ [75,80] modifies Fg’s structure, leading to an abnormal fibrin clot formation more
resistant to degradation [80,87]. Combined, these results suggest that a possible interaction
of extravasated Fg with PrPC and Aβ may result in the formation of aggregates highly
resistant to degradation and lead to the neurodegeneration seen during neuroinflammatory
diseases. In addition, the deposition of Fg and the formation of Fg-containing protein
complexes in the extravascular space of the brain results in increased water transport and
its accumulation in the interstitium, leading to the formation of edema and the resultant
neurodegeneration [88].

5. Acute Phase Proteins in VCID

As a result of the development of systemic inflammation, blood plasma proteins such
as albumin, Fg, C-reactive protein (CRP), and possibly some other high molecular weight
acute reactant proteins may contribute to VCID. In response to injury and infection, at the
expense of albumin synthesis, the liver enhances the synthesis of certain plasma proteins
collectively known as acute phase proteins (APPs) [89]. The magnitude of the increase
in the levels of these proteins varies. While CRP and serum amyloid A (SAA) can reach
plasma levels of several hundred to a thousand-fold following acute inflammation, levels
of haptoglobin and Fg do not increase more than two to tenfold [89,90]. Moreover, while
the levels of CRP and SAA rapidly return to their normal range after the inflammation
subsides, the levels of haptoglobin and Fg stay elevated for more than 21 days [90].

CRP is a 21 kD protein that has a similar structure to SAA [91]. Measuring the levels of
CRP has been a standard of care in the clinic that can be a useful objective index to monitor
the effectiveness of a therapy for a disease (inflammatory). At a normal level (0.8–9 µg/mL),
CRP does not affect the BBB permeability [91]. On the other hand, it has been shown that
when the level of CRP exceeds 2.5 µg/mL, it increases paracellular permeability of the BBB,
affecting function but not the level of expression of tight junction proteins [91].

SAA is a small protein with a molecular weight of 12.5 kD that can be found in the
blood of healthy individuals at the level of 20–50 µg/mL [92]. In subclinical inflamma-
tion, and for patients receiving glucocorticoid or immunosuppressive therapy, it has been
suggested that SAA is a more sensitive biomarker than CRP [93]. It has been shown that
Apo-SAA dose dependently increased the rat brain ECs permeability, shown by a signifi-
cant reduction in transendothelial electrical resistance [94]. Interestingly, it has been shown
that the circulating lipid free form of the SAA in the human plasma is 100 times lesser
than that of SAA associated with high-density lipoprotein (HDL) [92]. Furthermore, the
SAA-mediated impairment of the BBB was shown to be inhibited by the addition of HDL
related to SAA in plasma [94]. Whether the free form of native SAA impairs the integrity
of the BBB in pathological conditions remains unclear [94]. Given the SAA characteristic
of high lipophilicity and the fact that most of the circulating SAA is associated with HDL,
it is suggested that only a small amount of lipid-free SAA plays a major role in the BBB
permeability changes compared to the other APPs.
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Haptoglobin is an acute phase glycoprotein that can be found in the serum of all
mammals [95]. As it binds to free hemoglobin (Hb) with a high affinity, haptoglobin’s
primary function is to facilitate Hb clearance. Hb is the prominent blood protein involved in
transporting oxygen in the circulation. When unbound to haptoglobin and in the absence of
other clearance mechanisms, free Hb can catalyze the formation of free radicals and mediate
oxidative damages [95]. Haptoglobin is primarily synthesized in the liver. However, it
has been shown that oligodendroglia can also synthesize haptoglobin, releasing it into the
extracellular space, where it shows protective effects on brain cells from damages mediated
by hemolytic product during intracerebral hemorrhage [96]. Haptoglobin production has
also been described in other tissues, such as lung, skin, and kidney, during inflammatory
conditions [97]. Although zonulin, a pre-haptoglobin precursor protein, has been shown
to enhance small intestinal permeability, its direct effect in mediating BBB permeability
has been questioned [98]. There are contrasting findings where preclinical in vitro data
showed that zonulin potentially impaired BBB permeability [99], while other studies did
not find evidence of its significant contribution in BBB permeability changes [98]. Taking
into consideration that haptoglobin is found at a very low level in the normal brain [96]
and that it has been shown to protect against Hb-induced toxicity [100], the prevailing role
of haptoglobin can be considered to be neuroprotection.

Fg is an acute phase reactant protein that is increased during inflammation [90]. The
blood content of Fg increases not only during neuroinflammatory diseases such as AD [101],
MS [102], TBI [103], or stroke) [104], but also during other inflammatory diseases such as
cardiovascular diseases [105,106] and cancer [107]. It has been widely shown that Fg and
its derivative fibrin are not only markers of inflammation [90], but also cause inflammatory
responses [57,108–111]. The cause-and-effect relationship between elevated blood levels of
Fg (HFg) and cardiovascular disease has been shown, and HFg is presumed to be more
than just a byproduct of an inflammatory cardiovascular disease. It may independently or
interactively modulate the severity and/or the progression of cardiovascular disease [105].
Fg deposition in brain parenchyma has been documented during conditions with an
impaired BBB, such as MS [112]. In fact, extravascular deposition of Fg in the brain
parenchyma seen in autopsy tissue samples of patients who suffered from MS is indicative
of BBB impairment [113].

Changes in blood rheological properties that are caused by changes in blood viscosity,
blood flow, RBC aggregation, leukocyte activity, and platelet thrombogenesis are associated
with HFg. A significant role of Fg in blood viscosity changes has long been known [114–117].
In addition, it is established that Fg is directly involved in platelet thrombogenesis [118]. We
have shown that HFg that occurs during hypertension (an inflammatory disease) enhanced
development of platelet thrombogenesis [119,120]. Interaction of Fg and leukocytes during
their activation has been well defined [42,121]. In addition, the role of Fg in increased
RBC aggregation has been well established [122]. We have shown that a direct interaction
of Fg with erythrocytes has a significant effect on RBC aggregation [123]. Furthermore,
a direct correlation between blood viscosity and RBC aggregation during hypertension
is well established [124,125]. Combined, these effects of Fg can easily result in develop-
ment of hemostasis during inflammatory diseases and cause vasculo-neuronal uncoupling
in the brain.

Specific interaction of Fg with the microvascular endothelium and the resultant vaso-
constriction has been shown [126]. We have also shown that at elevated levels, Fg can
activate ECs [111] and enhance caveolar transcytosis of proteins [127], resulting in the
increased BBB permeability seen during TBI [128]. While out of vasculature, Fg can interact
with and activate astrocytes [129,130] and, by directly interacting with neurons, generate
(ROS), NO, and mitochondrial superoxide in these cells [83]. Moreover, as it is converted to
fibrin in the extravascular space, it induces perivascular microglial clustering, promotes
demyelination, and promotes dendrite and spine elimination in neurons, which has been
shown to be associated with neurodegeneration and reduced neuronal density [131,132].
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Although Fg is mainly synthesized and generated in the liver [133], in addition to
being situated in plasma, it is accumulated in α-granules of platelets [134,135]. The release
of Fg from α-granules [134] occurs slower than secretion from dense granules [136] and
possibly as a second phase of platelet activation after content of the dense granules is
released. Fg deposited on activated endothelial cells can become a binding site for even
non-activated platelets via their surface receptor αIIbβ3 [137]. It has been known that RBC
aggregation can be promoted by several plasma proteins, such as Fg, α2-macroglobulin,
and immunoglobulins M and G [138]. However, it was found that the only protein that had
an effect on RBC aggregation on a biologically relevant level was Fg [138]. We have found
that Fg had a specific interaction with RBCs via, most likely, integrin-like receptors on the
surface of erythrocytes and promoted RBC aggregation [123]. Combined, these results
suggest that during inflammation, when its blood content is elevated, Fg can be involved
in platelet thrombogenesis and RBC aggregation, leading to blood flow reduction and
decreasing supply to neural tissue with necessary nutrients, resulting in neurodegeneration.
These findings suggest that Fg can be one of the most prominent agents in the circulatory
system involved in vascular effects of neurodegeneration and memory reduction, i.e., in
VCID. Some inflammation-induced and VCI-mediated mechanisms involved in memory
decline are presented in Figure 1.
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out is fibrinogen (Fg). It can be involved in changes of vascular permeability in various ways.
Changes in vascular permeability result in direct activation of astrocytes and neurons through
increased deposition of blood proteins (particularly of Fg) in the extravascular space, leading to
neurodegeneration and a reduction in memory. Orange arrows indicate direct effects of Fg. Red
arrows indicate direct effects. Dotted arrow indicates indirect effect. Green boxes and the arrow
define anti-inflammatory pathway, while red boxes emphasize effects with strongest effects in VCID.
Abbreviations: RBC—red blood cells, ECs—endothelial cells, CRP—C reactive protein, SAA—serum
amyloid A, ROS—reactive oxygen species.

6. Other Proteins Involved in VCID

It has been shown that Aβ is generated in both brain and peripheral tissues and is
released into the circulatory system [139], where its level is correlated with increased risk
of AD development [140–142]. Blood-derived Aβ can enter the brain tissue and cause
neuronal dysfunction [143,144]. Strong association of Aβ peptide with Fg was linked to
severity of AD [80]. A correlation of Aβ pathology and impairment in memory during TBI
has been suggested [145]. In addition, there is evidence that links the occurrence of TBI to
the onset and progression of AD and cognitive impairment [146]. Repetitive mild TBI has
been shown to accelerate Aβ deposition, lipid peroxidation, and cognitive impairment in a
transgenic mouse model of AD [146].

The extravasation of Aβ has a major role in the accumulation of Aβ in the CNS [147].
There is also evidence that Aβ accumulation itself affects brain vasculature and changes the
function of the NVU [144]. It has been shown that the association of Fg and Aβ alters throm-
bosis [78] and results in the formation of clots with an abnormal structure and resistance
to fibrinolysis [87]. Although the formation of complexes containing Fg/fibrin [148] and
Aβ [149,150] is the hallmark of AD [78,80,148], some evidence indicates that the content of
Aβ alone has a limited effect on memory [151,152]. These results suggest that formation of
Fg–Aβ complexes can have a greater effect on memory reduction than the extravascular
deposition of Fg or Aβ alone.

Although Aβ is strongly associated with AD [80], there is evidence of the greater
role of cellular prion protein (PrPC) in memory reduction [151,152]. In addition, the
role of PrPC in TBI-associated memory reduction has been shown [153]. PrPC is a cell
surface, glycosylphosphatidylinositol anchored glycoprotein, abundantly expressed in
neurons, glial cells [154], and endothelial cells [155]. It was shown that PrPC participates
in Aβ transcytosis through the BBB [156] and Aβ-mediated memory reduction during
TBI [151]. We have recently shown that Fg can specifically interact with PrPC on the
surface of astrocytes [81,130]. Moreover, our data showed that Fg can form a complex
with PrPC in the extravascular space of mouse brains during mild-to-moderate TBI and
was accompanied by short-term memory reduction [61]. TBI causes Aβ-PrPC-Fyn kinase
activation, which also induces tau phosphorylation [153]. Fyn kinase is localized in the
postsynaptic density of the brain, which is the primary site of signal transduction and
processing, and its activity is linked to synaptic function [157,158].

It is well known that the deposition of Aβ plaques and tau-associated neurofibrillary
tangles are a hallmark of AD. Both the deposition of amyloid and tau proteins have been
implicated in the memory decline present during AD [159]. In fact, the direct interaction
between the Aβ and specific regions of tau has recently been defined, suggesting that
targeting only Aβ or only tau may not be the best treatment strategy during AD [160].
However, there are some conflicting data regarding effects of Aβ and tau on memory. Some
data indicate that the content of tau, but not the levels of Aβ, in cerebrospinal fluid is
associated with the severity of short-term memory impairment present in AD patients [161].
Other studies indicate that hyperphosphorylation of tau is not directly responsible for Aβ-
induced neurodegeneration in vitro [162], and amyloid deposition has a greater association
with microglial activation and memory reduction than tau pathology does [163]. Similarly,
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it has been shown that tau has a limited role in Aβ-induced memory impairment [164].
These results suggest that Aβ may have a greater effect than tau in memory reduction. This
point can be substantiated by the fact that tau is exclusively present in nonvascular brain
cells while Aβ, in addition to its presence in brain cells, can also be extravasated from the
blood stream to further increase its overall content in the brain during neuroinflammation.

The neuropeptide substance P (SP) was first identified in the brain and gut in the
early 1930s by Euler and Gaddum [165]. It is widely distributed in the central, peripheral,
and enteric nervous systems and acts as a neurotransmitter and a neuromodulator that
has a potent hypotensive property. It has been shown that during acute brain injury, SP
was found perivascularly and linked to vasogenic edema formation [166]. It is suggested
that SP plays a major role in secondary injury during neuroinflammatory diseases such as
TBI. It has been found that SP mediates an increase in vascular permeability leading to the
formation of edema [167]. Furthermore, SP itself may have a direct role in learning and
memory, as it has been shown that blocking SP receptor expression in the hippocampus in
the neostriatum impairs learning and memory in tested rats [168].

7. Some Other Inflammatory Agents Commonly Associated with BBB Disruption

Several other inflammatory mediators have been involved in modulation of BBB
permeability. These are bradykinin, which increases BBB permeability by acting on B2
receptors, serotonin, which affects BBB permeability in some but not all studies, and
histamine, one of the few CNS neurotransmitters consistently associated with BBB impair-
ment [169]. Increased BBB permeability leads to the neurodegeneration and reduction in
memory seen during diseases such as AD [144] and TBI [7,8,61,75].

8. Conclusions

In conclusion, we would like to emphasize that most of the systemic effects that are
conveyed to neurons originate in the circulation. These effects exclude genetic, epigenetic,
and some sensory effects that could directly affect neuronal function, which are not con-
sidered in the present review. Systemic alterations undeniably affect the composition of
blood and properties of blood cells, plasma proteins, vascular cells, and/or vessels affecting
blood flow. All these changes can positively influence the BBB integrity. As a result, any
pathological alteration of the BBB property results in abnormal effects in glial and neuronal
functions, eventually leading to possible neuroinflammation and neurodegeneration with
high incidence of memory reduction. All these emphasize an imperative importance to
study mechanisms of cerebrovascular permeability during various neurodegenerative
diseases. Studying the link between BBB dysfunction and dementia might be key in find-
ing the right window for intervention. To help accelerate the development of new and
existing biomarkers for VCID, the MarkVCID consortium was formed under cooperative
agreements with the NINDS and the National Institute on Aging in 2016 [170], involving
multicenter studies whose mission is to identify and validate biomarkers for VCID. The
overall goal of the consortium is to deliver high-quality biomarkers ready for use in clinical
trials aimed at generating scientific breakthroughs in deeper understanding and treatment
of VCID. New discoveries will not only open the possibility of restoring and/or main-
taining properties of the intact BBB, but also will exploit ways for safe delivery of drugs
through the BBB during various pathologies. Currently diagnosis for VCID is limited to
clinical signs of dementia and/or magnetic resonance imaging, which may take place later
in the course of the disease as a part of intervention or prevention. Therefore, developing
biomarkers, preferably noninvasive markers, for early detection and prevention of VCID is
an imperative goal for the future.
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