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Abstract
Cardiovascular disease (CVD) is a major cause of death in patients with chronic kidney disease (CKD). Both conditions are rising
in incidence as well as prevalence, creating poor outcomes for patients and high healthcare costs. Recent data suggests CKD to be
an independent risk factor for CVD. Accumulation of uremic toxins, chronic inflammation, and oxidative stress have been
identified to act as CKD-specific alterations that increase cardiovascular risk. The association between CKD and cardiovascular
mortality is markedly influenced through vascular alterations, in particular atherosclerosis and vascular calcification (VC). While
numerous risk factors promote atherosclerosis by inducing endothelial dysfunction and its progress to vascular structural damage,
CKD affects the medial layer of blood vessels primarily through VC. Ongoing research has identified VC to be a multifactorial,
cell-mediated process in which numerous abnormalities like mineral dysregulation and especially hyperphosphatemia induce a
phenotype switch of vascular smooth muscle cells to osteoblast-like cells. A combination of pro-calcifying stimuli and an
impairment of inhibiting mechanisms like fetuin A and vitamin K-dependent proteins like matrix Gla protein and Gla-rich
protein leads to mineralization of the extracellular matrix. In view of recent studies, intercellular communication pathways via
extracellular vesicles and microRNAs represent key mechanisms in VC and thereby a promising field to a deeper understanding
of the involved pathomechanisms. In this review, we provide an overview about pathophysiological mechanisms connecting
CKD and CVD. Special emphasis is laid on vascular alterations and more recently discovered molecular pathways which present
possible new therapeutic targets.
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ADMA Asymmetric dimethylarginine
ALP Alkaline phosphatase
BMP-2 Bone morphogenetic protein-2
CAD Coronary artery disease
cGMP Cyclic guanosine monophosphate
CKD Chronic kidney disease
CRP C-reactive protein
CPP Calciprotein particle
CRS Cardiorenal syndrome

CVD Cardiovascular disease
ECM Extracellular matrix
eNOS Nitric oxide synthase
ESRD End stage renal disease
EV Extracellular vesicles
GRP Gla-rich protein
IL-1 Interleukin-1
IL-6 Interleukin-6
IS Indoxyl sulfate
MGP Matrix Gla protein
miRNA MicroRNAs
NO Nitric oxide
ROS Reactive oxygen species
RUNX2 Runt-related transcription factor 2
TNAP Tissue-nonspecific alkaline phosphatase
TNF Tumor necrosis factor
VC Vascular calcification
VSMC Vascular smooth muscle cells
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Introduction

Chronic kidney disease (CKD) is defined as abnormality of
kidney structure or function, present for more than 3 months.
It is classified and staged based on cause, glomerular filtration
rate (GFR G1-G5), and albuminuria category (A1-A3) [1].
Both albuminuria and reduced GFR have been shown to be
associated with an increase in all-cause mortality which is
especially driven by cardiovascular events [2, 3, 5]. Large
meta-analyses have demonstrated that patients with impaired
renal function have a 40–50% increased risk of developing
coronary artery disease (CAD) compared to patients with nor-
mal renal function [4, 6]. This may, at least in part, be medi-
ated by the fact that two of the most common causes for CKD,
hypertension and diabetes mellitus, have also been identified
as cardiovascular risk factors. However, even after adjustment
for classic cardiovascular risk factors, CKD is still associated
with an increased risk of coronary events, suggesting CKD to
be an independent risk factor for CVD (Table 1) [6–8].
Furthermore, renal insufficiency correlates with the severity
of coronary atherosclerosis and incidence of coronary events
as well as mortality after myocardial infarction [7, 9, 10].
Rates of sudden cardiac deaths are increasing with declining
renal function illustrated by a rate of 7 cardiac arrests per
100.000 hemodialysis sessions in the USA [11].

Vascular calcification (VC) is a common finding among
CKD patients and even present in young adults with end stage
renal disease (ESRD) lacking typical cardiovascular risk fac-
tors such as hypertension or dyslipidemia [12–14]. VC man-
ifesting in the coronary arteries impairs coronary flow reserve
and is associated with a marked increase in adverse cardiac
events and cardiovascular mortality [13, 15, 16]. Interestingly,
CKD affects CVD in a wider spectrum than ischemic heart
disease alone. ESRD is also associated with aortic- and mitral-
valve calcification, leading to a faster progression of valve

stenosis and thus worse outcome for patients [17–19].
Furthermore, left ventricular hypertrophy, diastolic dysfunc-
tion, and cardiac fibrosis are known cardiac alterations which
are strongly influenced by CKD [20]. Also, VC occurs more
frequently in CKD patients, with a reported prevalence in
dialysis patients greater than 80% [12, 21]. The underlying
pathophysiological mechanisms for these multiple cardiovas-
cular changes associated with CKD are not completely under-
stood and therefore subject of ongoing research.

Cardiorenal syndrome

An early step in attempting to establish a solid definition for
the combination of CKD and CVD was taken in 2004 by the
working Group of the National Heart, Lung, and Blood
Institute in the USA. They proposed a first definition of
“cardiorenal syndrome” (CRS) as an endpoint of cardiorenal
dysregulation leading to an exacerbation of heart failure
symptoms by an increased circulatory volume induced by
kidneys and other circulatory compartments [22]. In 2008, this
definition was extended by the consensus conference of the
Acute Dialysis Quality Initiative into “disorders of the heart
and kidneys whereby acute or chronic dysfunction in one
organ may induce acute or chronic dysfunction of the other”
[23]. They identified 5 subtypes of cardiorenal syndrome
characterized by the order of the failing organ (cardiorenal
versus reno-cardiac) and the temporal pattern (Table 2).

This sub-classification of the cardiorenal syndrome repre-
sents a first important step in creating a clinically applicable
definition in the common finding of combined cardiovascular
and renal disease. However, it should be acknowledged that
the pathophysiological background of this syndrome is more
complex and extends beyond the heart and kidney alone.
Recent investigations rather suggest a complex interaction of
neurohormonal dysregulation, uremia, anemia and inflamma-
tory pathways, endothelial dysfunction, atherosclerosis, and
vascular calcification which make it challenging to precisely
determine the sequence of pathophysiological events involved
[24].

Pathophysiology and therapeutic targets

Chronic inflammation

Atherosclerosis and its manifestation in the coronary arteries,
CAD, is supposed to be a key connector between CKD and
cardiovascular morbidity and mortality. Atherosclerosis is
characterized by a chronic inflammatory process of the vessel
wall which is initiated through endothelial dysfunction [28].
CKD strongly correlates with CAD prevalence and progres-
sion and is believed to play a role in its pathogenesis as an
independent risk factor [6–8]. CKD triggers vascular

Table 1 Classical cardiovascular risk factors and CKD-specific risk
factors fostering vascular disease

Classical cardiovascular risk factors

Diabetes mellitus

Hypertension

Smoking

Dyslipidemia

Family history

Age

Male sex

CKD-specific cardiovascular risk factors

Vascular calcification

Uremic toxins

Oxidative stress

Inflammation
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inflammatory processes, which is mirrored by an augmenta-
tion of inflammatory markers in the blood of CKD patients
[25–27]. Elevated levels of inflammatory biomarkers such as
C-reactive protein (CRP), interleukin-6 (IL-6), or tumor ne-
crosis factor (TNF) have been shown to be associated with an
increased risk of myocardial infarction and mortality [28–30].
While patients undergoing renal replacement therapy are ex-
posed to inflammatory triggers owing to the invasive nature of
the procedure, available evidence suggests that elevated in-
flammatory markers can be found in patients prior to initiation
of dialysis [31–33]. In animal models, it was shown that oxi-
dative stress, which is frequently observed in CKD patients,
correlates significantly with an increase in inflammatory
markers [34, 35]. Oxidative stress in chronic kidney disease
is a multifactorial process which can be caused by an impair-
ment of antioxidant mechanisms as well as an increased pro-
duction of reactive oxygen species (ROS) [36, 37]. It was
shown in rats that CKD is associated with a depressed super-
oxide dismutase activity parallel to an increase in NADPH
oxidase expression [35]. Nrf2, a translation factor which con-
trols expression of antioxidant genes, is a key player in resis-
tance to oxidative stress and may represent a potential target in
this process [38]. Thus, in rats with CKD, Nrf2 activity was
markedly reduced beside an increase in biomarkers of oxida-
tive stress and inflammation [34].

Recent controlled randomized clinical trials have dem-
onstrated a beneficial effect of SGLT2-inhibitors in heart
failure patients with and without diabetes regarding the
occurrence of major cardiovascular endpoints [39–41].
Of note, SGLT2-inhibition was additionally associated
with a slower progression of CKD in patients with and
without diabetes [42, 43]. Aside from an improved glyce-
mic control, the discussion about the beneficial cardiovas-
cular and renal effects of SGLT2-inhibitors is widely fo-
cused on volume control via the induction of natriuresis
and osmotic diuresis [44]. On a molecular level, SGLT2-
inhibitors have been shown to reduce oxidative stress,
which may suggest a benefit of these substances regarding
vascular alterations in patients with or without CKD [45,
46]. Although the molecular mechanisms of SGLT2-
inibitiors mediating the protective effects in vascular and

kidney disease are still vastly unknown, they represent a
promising novel target to treat patients with CAD und
CKD.

Recently, interleukin 1 (IL-1) has emerged as a potential
therapeutic target to contain inflammation in CKD. IL-1 is a
cytokine which is activated by the NLRP3 inflammasome and
that induces IL-6 which is independently associated with an
increase in mortality in hemodialysis and pre-dialysis patients
[47, 48]. Malnutrition is another common finding among
CKD patients and was shown to influence circulating inflam-
mation markers in a bidirectional way [49, 50]. In this context,
it is of interest that on the basis of the available evidence, a
“malnutrition inflammation atherosclerotic syndrome” has
been proposed [50].

Chronic inflammation in CKD is a multifactorial condition
and specific pharmacological targets to improve outcomes for
patients are rare. IL-1β inhibition has shown promising results
in animal models with different renal disorders [47, 51, 52]. In
a randomized, double-blind placebo-controlled trial with over
10,000 patients, administration of canakinumab, a human
monoclonal antibody that targets IL-1β, was associated with
a significantly lower rate of recurrent cardiovascular events
than placebo [53]. In a subgroup analysis, it was shown that
inhibition of IL-1β is particularly promising regarding cardio-
vascular outcomes in CKD patients [47]. At present, however,
canakinumab is not approved for this indication in the USA or
Europe. Other anti-inflammatory substances with a broader
mechanism of action have also shown promising results. In
a recent placebo-controlled trial, colchicine was shown to sig-
nificantly reduce the risk of ischemic cardiovascular events in
patients with myocardial infarction [54]. To date, no such
studies have been performed specifically in patients with
CKD. In this patient population, safety concerns are of special
importance since colchicine is partly eliminated by the kidney
and is not removed through hemodialysis [55].

Endothelial dysfunction

Accumulating evidence suggests that CKD promotes athero-
sclerosis and CAD by inducing damage to endothelial cells.
Albuminuria as a consequence of glomerular damage was

Table 2 Five subtypes of cardiorenal syndrome based on the consensus conference of the Acute Dialysis Quality Initiative. Modified after Ronco et al.
[23]. AHF, acute heart failure; ACS, acute coronary syndrome

Type Name Definition

Type 1 Acute cardiorenal syndrome Acute worsening of heart function (AHF-ACS) leading to acute kidney injury

Type 2 Chronic cardiorenal syndrome Chronic abnormalities in cardiac function causing progressive chronic kidney disease

Type 3 Acute reno-cardiac syndrome Abrupt worsening of renal function causing acute cardiac dysfunction

Type 4 Chronic reno-cardiac syndrome Chronic kidney disease contributing to decreased cardiac function, cardiac hypertrophy,
and/or increased risk of adverse cardiovascular events.

Type 5 Secondary cardiorenal syndrome Systemic condition causing both cardiac and renal dysfunction.
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shown in several studies to correlate with elevated levels of
vonWillebrand factor, an indicator of endothelial dysfunction
[56–58]. Furthermore, albuminuria and CKD were shown to
be associated with microvascular endothelial dysfunction
[59]. In order to control vascular tone, the endothelium syn-
thesizes and releases the vasodilator nitric oxide (NO) from
the amino acid L-arginine [60]. In addition, NO plays an im-
portant role in regulating vascular permeability, leukocyte ad-
hesion and smooth muscle cell proliferation [61]. Therefore, a
hallmark in endothelial dysfunction is a decrease in NO syn-
thesis or bioavailability which is frequently observed in CKD
patients [62, 63]. Amador-Martinez et al. were recently able to
show in a rat model that cardiac alterations in CKD are partly
promoted by an inactivation of endothelial nitric oxide syn-
thase (eNOS) leading to reduced synthesis of NO [64]. L-
arginine deficiency is a known factor leading to a decreased
activity of eNOS and substitution of L-arginine was shown to
positively affect cardiac alterations in rats with CKD [64].

Important mediators of endothelial dysfunction in CKD are
uremic toxins such as asymmetric dimethylarginine (ADMA)
and indoxyl sulfate (IS), which accumulate in CKD patients in
parallel with declining renal function. ADMA disturbs endo-
thelial function by competitive inhibition of eNOS and is
closely associated with the presence and functional signifi-
cance of CAD in CKD [65, 66]. Similarly, IS is involved in
the pathogenesis of CRS through impairment of endothelial
NO synthesis and, consecutively, endothelial proliferation
in vivo and in vitro [67, 68]. Thus, the role of these uremic
toxins may also extend into participating in the complex in-
terrelationship of the heart and the kidney as a mediator of
endothelial dysfunction.

Another recently described mechanism of endothelial dys-
function in CKD is driven by a change in the functional prop-
erties of LDL-cholesterol. Thus, carbamylation of lysine res-
idues of the LDL-particle is primarily observed in CKD pa-
tients promoting endothelial dysfunction by increasing reac-
tive oxygen species (ROS) production and eNOS uncoupling
[69].

Hyperphosphatemia as a frequently observed finding
among patients with CKD is known to be a major factor in-
volved in the development of medial calcification in CKD (see
below). In vitro and in vivo data available suggest a direct
influence of elevated phosphate on endothelial function [70,
71]. An hyperphosphatemic milieu results in an impairment of
angiogenesis, endothelial migration, and survival; a possible
molecular mechanism for this finding could be the downreg-
ulation of annexin II [70].

Vascular calcification in CKD

While atherosclerosis is characterized through vascular endo-
thelial dysfunction progressing to vascular structural damage,
the medial layer of blood vessels is affected differently in

CKD [72]. In this layer of the vessel wall, the primary abnor-
mality is VC [73]. VC is highly prevalent in CKD patients and
even present in young adults with ESRD lacking typical car-
diovascular risk factors such as hypertension or dyslipidemia
[12–14]. VC manifesting in the coronary arteries impairs cor-
onary flow reserve and is associated with a marked increase in
adverse cardiac events and cardiovascular mortality [13, 15,
16]. VC occurs in two different phenotypes, medial and inti-
mal calcification, differing in their pathogenesis [74, 75].
While intimal calcification is mainly inflammation-driven
and closely associated to atherosclerotic plaques, medial cal-
cification is considered to be the major form of VC in CKD
[74, 76]. As a result of intimal VC, uremic patients present
with heavily calcified atherosclerotic plaques whereas in the
absence of CKD, plaques are more fibroatheromatous [77,
78]. Furthermore, increased deposition of CRP in plaques of
CKD patients has been reported which may be an indicator for
a higher inflammatory component [77, 78].

VC is a cell-mediated process similar to skeletal bone for-
mation (Fig. 1). A crucial event is a phenotype switch of
vascular smooth muscle cells (VSMC) to osteoblast-like cells
which is induced through a number of different stimuli like
hyperphosphatemia and hypercalcemia [27, 75, 79]. During
the process of t ransdi f ferent ia t ion of VSMC, a
“reprogramming” is observed with a loss of SMC markers
like SM22α and newly expression of osteochondrogenic
markers like Runt-related transcription factor 2 (RUNX2),
alkaline phosphatase (ALP), osteopontin and osteocalcin
[27, 80, 81]. On a cellular level, VC shows similarities with
cellular processes observed in senescence which underlines
the theory that CKD is a risk factor for premature vascular
aging [82, 83]. In the process of VC, VSMC-derived extracel-
lular vesicles (EV) (formerly matrix vesicles) containing cal-
cium phosphate crystals cause mineralization in the extracel-
lular matrix (ECM) [84, 85, 86] .

In 2006, a work group of the Kidney Disease: Improving
Global Outcomes (KDIGO) recommended the introduction of
the term “chronic kidney disease-mineral and bone disorder”
(CKD-MBD) to describe a syndrome consisting of abnormal-
ities in bone and mineral metabolism as well as extra-skeletal
calcifications including VC [87]. Mineral dysregulation and
especially phosphate accumulation play a key role, since in-
organic phosphate, known to mediate vascular calcification in
a time- and dose-dependent manner, is frequently elevated in
CKD patients [79]. Phosphate accumulation as a result of a
declining renal clearance and secondary hyperparathyroidism
were shown to induce an upregulation of osteogenic gene
expression in vitro [76]. In this context, the activity of specific
enzymes that regulate biomineralization such as tissue-
nonspecific alkaline phosphatase (TNAP) becomes of interest.
TNAP regulates extracellular pyrophosphate, an inhibitor of
calcification and, accordingly, TNAP overexpressing mice
showed a significant increase in medial calcification [88,
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89]. Alterations in bone metabolism of CKD patients, or renal
osteodystrophy, are a multifaceted disorder with adynamic
bone disease as the most frequently observed form among
patients on dialysis [90]. Adynamic bone disease is character-
ized by a low bone turnover and is known to be associated
with VC in nondialysis CKD patients as well as in patients on
hemodialysis [90–92]. A common finding among CKD pa-
tients is a deficiency of vitamin D which can lead to hypocal-
cemia. Low circulating levels of 25-hydroxyvitamin D are
known to be associated with increased mortality in CKD pa-
tients as well as the development of VC [93, 94]. Vitamin D
substitution may have beneficial effects on VC development
in CKD patients, a potential mechanism for this finding is that
vitamin D known suppresses calcification by downregulation
of RUNX2 [95, 96]. However, dosage and indication for vi-
tamin D substitution should be chosen wisely. Elevated con-
centrations of calcium and the calcium-phosphate product
may markedly influence VSMC calcification [27, 97].
Excessive substitution of vitamin D or the administration of
calcium containing phosphate binders can be associated with
intermittent increases in serum calcium concentration [98].
Moreover, apoptotic or necrotic cells in the vessel wall can
alsomediate elevated levels of calcium [27]. In the presence of
elevated phosphate levels, even small elevations of calcium
were shown to act synergistically to promote vascular

calcification [97]. Under these calcifying stimuli, calcium
phosphate crystals are loaded onto EV by VSMC which nu-
cleate in the ECM as hydroxyapatite [86].

Despite the fact that elevated phosphate levels are known to
be associated with adverse cardiovascular outcomes in CKD
patients, only few studies have examined clinical endpoints of
interventions regarding phosphate control [99]. Meta-analyses
of available randomized controlled trials regarding phosphate
binding agents have demonstrated a lower all-cause mortality
of patients receiving the non-calcium-based agent sevelamer
compared to calcium-based binders while there was no signif-
icant difference regarding cardiovascular death [100, 101].
According to available data from clinical trials comparing
phosphate binders to placebo in nondialysis CKD patients,
the relevance of the administration of phosphate binders has
not been proven in this population[102–103]. The “IMpact of
Phosphate Reduction On Vascular End-points in Chronic
Kidney Disease” (IMPROVE-CKD) study, a multicenter, ran-
domized parallel-group trial, examined the impact of the non-
calcium-based phosphate binder lanthanum carbonate on sur-
rogate markers of cardiovascular disease compared with pla-
cebo [99]. Experimental background of that study was, among
others, an in vitro study in rat aortic tissue which showed that
the administration of iron citrate resulted in an anti-calcific
effect by preventing or partially reverting high phosphate

Fig. 1 Intimal and medial calcification in CKD. CKD-specific risk fac-
tors are adding up to traditional cardiovascular risk factors and result in
endothelial dysfunction and intimal calcification. A phenotype switch of
vascular smoothmuscle cells to osteoblast-like cells with a loss of smooth
muscle cell markers like SM22a and expression of osteochondrogenic
markers like Runt-related transcription factor 2 (RUNX2) and alkaline

phosphatase (ALP) represents a crucial event in medial calcification. In
this process, levels of miRs are altered which act as regulators of calcifi-
cation in CKD. MGP matrix Gla protein, GRP Gla-rich protein, EV
extracellular vesicles, CV cardiovascular, miR microRNA, CCP
calciprotein particle

339J Mol Med (2021) 99:335–348



induced osteo-chondrocytic shift of ECM [105]. Treatment of
CKD patients with lanthanum over 96 weeks however
showed no significant difference to placebo regarding arterial
stiffness and aortic calcification [106]. However, it is worth
mentioning that in this nondialysis CKD population, the pa-
tients presented with normophosphatemia at baseline. The in-
fluence of a positive phosphate balance on this therapeutic
approach needs to be further investigated [106].

In contrast to calcium and phosphate, magnesium has
emerged to be a possible protector against VC. Clinical data
suggest an inverse association between serum magnesium
levels and the expression of VC in peritoneal- and hemodial-
ysis patients [107, 108]. In vitro studies performed on VSMC
were able to show a decreased formation of hydroxyapatite
formation after exposing the cells to increased magnesium
concentrations, a potential molecular mechanism for this find-
ing is suggested to be an impairment of β-glycerophosphate
induced ALP activity [109, 110]. In addition, data from ex-
perimental studies suggests magnesium to counteract VSMC
transdifferentiation by impairing the expression of osteogenic
transcription factors [111, 112]. Therefore, magnesium sup-
plementationmight present a potential therapeutic approach to
battle VC and needs to be investigated in future clinical
studies.

More recently, impairment of calcification inhibiting
mechanisms, such as fetuin A, klotho, and the vitamin K-
dependent matrix Gla protein (MGP) and Gla-rich protein
(GRP) have emerged as participants in the complex multifac-
torial process of VC [113, 114]. These proteins act as inhibi-
tors for the precipitation of calcium/phosphate crystals by
forming the calciprotein particle (CPP). CPP exist in two dif-
ferent phenotypes, primary and secondary CPP, which differ
in shape, function, and diameter [115]. In vitro, secondary
CPP are capable to induce VSMC calcification, expression,
and release of TNF-α and may thereby represent a promising
new biomarker for VC and potential therapeutic target [115].
In addition to their suggested influence on atherosclerosis,
both systemic inflammation and malnutrition are associated
with progression of VC [116]. A potential mechanism for this
finding is supposed to be mediated through decreases in fetuin
A levels, which were shown in several studies to be associated
with an increase in vascular calcification and cardiovascular
mortality [117, 118].

Another key calcification inhibitor which is impaired in
CKD patients is the klotho/FGF23 axis. The klotho gene
was first described as an aging suppressor and encodes for a
single-pass transmembrane protein which functions as a
coreceptor for fibroblast growth factor 23 (FGF-23) [119,
120]. CKD is characterized by klotho deficiency and low
levels of circulating klotho were shown to be associated with
adverse renal outcome [120, 121]. In addition to being a bio-
marker for CKD, klotho plays a pathogenic role in CKD and
especially in VC. Evidence suggests that klotho improves the

phosphate metabolism by inducing phosphaturia and
supresses thereby VSMC calcification [120]. In line with
these findings, animal models of klotho substitution have
shown positive effects regarding kidney injury and phospha-
turia [122, 123]. Klotho substitution may represent a promis-
ing therapeutic approach to influence VC in CKD patients.
FGF23 in contrast is known to be elevated in CKD patients
and is a potent predictor of adverse cardiovascular outcomes
[124]. However, FGF23 was shown to be independently as-
sociated with VC, its relevance as an therapeutic target re-
mains subject of ongoing research [125]. In a rat model of
CKD, FGF23 neutralization was shown to positively influ-
ence secondary hyperparathyroidism but accelerated
hyperphosphatemia, vascular calcification, and mortality
[126].

Interestingly, hyperaldosteronism, which is a frequent find-
ing among patients with CKD, is also observed in klotho-
deficient mice and is supposed to participate in VC [127,
128]. VSMC express the mineralcorticoid receptor which is
sensitive for aldosterone and can be blocked by the competi-
tive antagonist spironolactone [129]. Experimental data pro-
vide evidence that aldosterone leads to the expression of the
type III sodium-dependent phosphate transporter PIT1, which
leads to an increase of ALP activity and expression of
ostegenic transcription factors [130]. In an animal model with
klotho-deficient mice, this effect was ameliorated through the
administration of spironolactone-associated with an enhanced
survival of the animals [130]. However, until now, no data are
available regarding the positive influence of spironolactone on
VC in patients.

Subclinical vitamin K deficiency is frequently observed in
CKD patients and can be due to malnutrition, dietary restric-
tions, or anticoagulant therapies with vitamin K antagonists
[131, 132]. This leads to a reduced bioavailability of vitamin
K-dependent proteins. MGP and GRP are proteins synthe-
sized by vascular smooth muscle cells and known as inhibitors
of tissue calcification, while GRP may also exhibit anti-
inflammatory efficacy [114, 133, 134]. To be fully active,
both require vitamin K-dependent posttranslational modifica-
tion (gamma carboxylation) [135]. Both MGP or GRP defi-
ciency are associated with early development of VC in vitro
and in vivo and thus represent a molecular mechanism
connecting vitamin K deficiency in CKD with VC [136,
137]. The pathophysiological importance of an impairment
of calcifying inhibitors is impressively highlighted by the ex-
ample of calciphylaxis. Calciphylaxis is a rare syndrome with
a high mortality characterized by calcification and thrombotic
occlusion of microvessels in subcutaneous adipose tissue
which results in painful, ischemic skin lesions [138]. It shares
a number of pathophysiological features with VC such as a
reduction of carboxylated MGP, fetuin A deficiency, and the
use of vitamin K antagonists as a risk factor [138]. Despite its
synonym “calcific uremic arteriolopathy,” calciphylaxis is
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also reported in nonuremic patients without advanced renal
impairment. In contrast to VC, which typically affects the
aorta, coronary, and femoral arteries, calciphylaxis occurs in
the microcirculation of subcutaneous adipose tissue [138].
Therefore, calciphylaxis represents a distinct entity of VC
rather than a continuum of VC [138].

Since vitamin K deficiency represents a key feature in the
development of VC, the effects of vitamin K substitution have
been investigated. A recently published study comparing oral
vitamin K2 substitution versus placebo in CKD patients
showed no improvement in vascular stiffness or other mea-
sures of vascular health [139]. Vitamin K1 supplementation
however is a promising and uncomplicated way to positively
influence VC in CKD patients and, therefore, its effect on CV
risk is under investigation in current clinical trials (Table 3)
[135, 140]. Further support for an essential role of vitamin K
in vascular calcification is provided by experimental and clin-
ical studies with vitamin K antagonists suggesting adverse
effects on cardiovascular outcomes[141–143].

Extracellular vesicles as intercellular messengers in
CKD and CAD

In the past years, circulating EV have emerged to play a key
role in cardiovascular health and disease [72]. EV are mem-
brane shed particles that consist of a lipid bilayer and are
categorized into exosomes (30–100 nm), microvesicles
(200–1000 nm), and apoptotic bodies (1–4 μm) with each
category having its own formation process [144, 145]. EV
play an important role in intercellular communication by
transferring their bioactive cargos including proteins, lipids,
and nucleic acids. This mechanism of signal transfer has
evolved as an important regulator of cardiovascular health
and disease [146, 147]. Circulating EV are released from their
origin cell in consequence of certain stimuli. Circulating EV
are known to mediate many physiological and pathophysio-
l o g i c a l m e c h a n i sm s l i k e i n f l amm a t i o n a n d
coagulation[148–150]. Endothelial cell damage and apoptosis

are crucial steps in the pathophysiology of CVD and endothe-
lial microvesicles have been shown to be elevated in patients
with CVD compared to healthy control subjects. This has
been described in patients with hypertension, CAD, acute cor-
onary syndrome, and myocardial infarction[151–154]. We
have previously shown that endothelial-derived EV promote
endothelial cell repair by delivering functional miR-126 into
recipient cells. This mechanismwas shown to be altered under
pathological hyperglycemic conditions [155]. Furthermore,
elevated levels of endothelial- and platelet-derived EV have
been reported in CKD patients compared to healthy controls
[156, 157]. Endothelial cells incubated with IS show an in-
crease in EV release and a significantly reduced angiogenesis
in endothelial progenitor cells [158]. Increased levels of endo-
thelial EV were shown to be an independent predictor of CV
mortality in patients with ESRD [159]. In vitro, endothelial
EV from plasma of patients with ESRD led to reduced
endothelium-dependent relaxations and cyclic guanosine
monophosphate (cGMP) generation [160]. In addition to these
findings, endothelial-derived EV correlate with an impaired
arterial function in patients with ESRD, demonstrated by an
accelerated aortic pulse wave velocity and loss of flow-
mediated dilation [160].

VSMC-derived EV play a crucial role in the early stages of
development of VC [84–86]. EV produced by VSMC under
physiological conditions do not contain calcium phosphate
crystals and moreover transport calcification inhibitory pro-
teins such as vitamin K-dependent MGP and fetuin-A [84,
161]. Under calcifying stimuli such as elevated phosphate
levels as they are present in CKD patients, calcium phosphate
crystals are loaded onto the EV [86]. It is important to mention
that EV secretion by VSMC is not a pathological process
itself. Thus, removal of exosomes from healthy serum pro-
moted VC which underlines the importance of exosomes as
calcifying inhibitors under certain circumstances [162].
In vitro, VSMC that were incubated with serum of CKD pa-
tients demonstrated increased calcification compared with
controls. Serum of CKD from which EV had been removed

Table 3 CKD-specific mediators of VC and potential therapeutic approaches. MGP, matrix Gla protein; GRP, Gla-rich protein; miR, microRNA;
RUNX2, Runt-related transcription factor 2

Mediators VC in CKD Potential therapeutic approach

Hyperphosphatemia Administration of phosphate binders

Vitamin K deficiency Vitamin K substitution

Klotho deficiency Klotho substitution

RUNX2 expression in VSMC Administration of miR-133a, miR-204, miR-205

Inflammation Anti-inflammatory substances (canakinumab, colchicine)

Secondary hyperparathyroidism FGF23 neutralization

Hypomagnesemia Magnesium substitution

Hyperaldosteronism Spironolactone

Vitamin D deficiency Vitamin D substitution
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showed a marked decrease in VSMC calcification [162].
Taken together, these findings indicate that, on a molecular
level, EV act as mediators between CKD and CVD.
Influencing the phenotype and cargo of EV derived from
VSMC could therefore represent an interesting therapeutic
target for VC in CKD patients.

microRNAs as gene regulators of vascular alteration
in CKD

MicroRNAs (miRNAs) play an outstanding role in post tran-
scriptional gene regulation and can be transferred
intercellularly through EV [163]. MiRNAs are small, noncod-
ing nucleotides of about 20 basepaires that modulate different
biological pathways in angiogenesis and apoptosis as well as
diseases such as atherosclerosis and CKD [164, 165]. We
have previously shown that atherosclerotic conditions pro-
mote the packaging of endothelial miR-92a-3p into endothe-
lial microvesicles which regulates angiogenesis and may act
as a potential regenerative messenger in intercellular commu-
nication [166]. Patients with diabetic nephropathy express a
different exosomal miRNA profile than healthy subjects and
upregulated miRNAs closely correlate with the degree of al-
buminuria [167]. A pilot study, comparing urinary and plas-
matic miRNA-profiles of CKD patients with eGFR < 30 ml·
min−1·1.73 cm−2 and patients with eGFR ≥ 30 ml·min−1·
1.73 cm−2 showed 266 circulatory and 384 urinary miRNA
that were differently expressed [168]. A number of upregulat-
ed miRNA in this study, including miR-130a-3p and miR-
1825, target the TGFβ pathway [168]. Own data reveal that
CKD patients exhibit significantly lower vesicular levels of
vascular protective miR-126-3p and miR-130a-3p [169].
In vitro treatment with the model uremia toxin IS leads to a
decreased packaging of the two miRNAs into EV through a
hnRNPU-dependent sorting mechanism. This altered miRNA
packaging was shown to be functionally relevant as it influ-
ences endothelial cell migratory capacity [169]. Another
miRNA, miR-92a, which is relevant for endothelial function
circulates in augmented levels in the peripheral blood of CKD
patients. It correlates with levels of IS and is transported by
endothelial microvesicles that originate from uremia-damaged
endothelial cells [170]. In cultured endothelial cells, miR-92a
induced inflammasome activation and thus mediated endothe-
lial cell damage [170]. MiRNAs have been investigated as
therapeutic targets to reduce CKD-associated atherosclerosis.
Thus, in mice with renal injury, increased levels of miR-92a-
3p were observed and inhibition of miR-92a-3p with a single
injection miRNA inhibitors complexed to HDL significantly
reduced atherosclerotic lesions [171]. Inhibition of these
miRNAs significantly altered the TGFβ pathway and
STAT3 trancriptional activity [171]. Furthermore, recent data
support the concept that substitution of cardiovascular protec-
tive miRNAs may represent a potential treatment strategy.

One such target investigated is miR-142-3p which is inversely
correlatedwith carotid-femoral pulse wave velocity in humans
as an indicator of vascular stiffness and is significantly de-
creased in patients with ESRD [172]. Also, in uremic mice
with markedly reduced acetylcholine-induced relaxation, in-
travenous injection of synthetic mimic syn-mmu-mir-142-3p
in order to restore bioavailability of miR-142-3p 2 days before
sacrifice increased aortic relaxation of aortic rings to control
levels [172].

VC is a cell-mediated process that requires genetic alter-
ations which may at least in part be modulated through
miRNAs [173]. RUNX2, a transcription factor which regu-
lates osteoblast differentiation and VSMC calcification, repre-
sents a key target for miRs influencing VC. Recent data show
protective miR like miR-133a, miR-204, and miR-205, as
well as miR triggering VC like miR-32 influence RUNX2
by decreasing or inducing its expression [174–177].
Furthermore, miR-30b and miR-125b have recently been
identified to protect against VC. Bone morphogenetic
protein-2 (BMP-2) may promote vascular calcification by de-
creasing miR-30b and miR-30c to induce RUNX2 expression
whereas upregulation of miR-30b attenuated VC in vivo and
in vitro [178, 179]. In vitro, downregulation of endogenous
miR-125b led to osteogenic transdifferentiation of VSMC and
increased activity of alkaline phosphatase activity and matrix
mineralization which was confirmed in ApoE knockout mice
[180]. Osterix, an osteoblast transcription factor, may be a
molecular target of miR-125b in this process [180]. In an
in vitro biomineralization model, VSMC that have been
transfected with miR-125b showed significantly lower
osteocalcin expression than control VSMC [181]. These data
are supported by the observation that decreased circulating
levels of miR-125b in CKD patients is associated with a de-
cline in renal function [182]. Recent studies have elucidated
the potential use ofmiR-125b as a biomarker for VC in uremic
patients. MiR-125b levels correlated significantly with VC
severity as well as levels of fetuin-A and mediators of mineral
bone disorder like osteoprotegerin and FGF-23 [181, 183]. In
one study, high levels of serum osteoprotegerin and low serum
miR-125b levels were able to synergistically enhance VC risk
estimating ability [183]. Furthermore, miR-135a, miR-762,
miR-714, and miR-712 targeting Ca2+-transporters in
VSMC were shown in vitro and in vivo in a rat model to be
overexpressed in the aortic media under calcifying conditions
[184]. Recently, Fakhry et al. investigated potential miRs in-
volved in VC by exposing rat aortic explants to high concen-
trations of phosphate and characterized the miR expression
profile versus control samples [80]. In that study, five miRs
were expressed differently compared to controls (miR-155, -
200c, -322, -331, -708) 3 days after exposition to phosphate
and five miRs (miR-328, -546, -301a, -409, -542) 6 days after
exposition [80]. It is of interest that some of the altered miRs
(miR-322, miR-155, miR-200c) are known to act by
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participating in inflammatory and osteoblastic processes [80].
Finally, Pan et al. were able to show that miR profiles in EV
frommouse VSMCwere significantly influenced through VC
[185]. Taken together, miRs represent important regulators of
VC in CKD and further understanding of single pathways will
be crucial to develop molecular treatment targets.

In summary, cardiorenal syndrome, the combination of
cardiovascular and chronic kidney disease, is a crucial chal-
lenge for modern medicine with rising numbers in incidence
and prevalence. Vascular calcification represents an important
link between CKD and cardiovascular mortality which is the
leading cause of death among patients with impaired renal
function. While numerous potential pathophysiological mech-
anisms have been uncovered in recent years, many details
remain unknown, and as a consequence, therapeutic options
to provide better outcomes for patients with VC are limited. A
further understanding of molecular mechanisms and genetic
targets involved in the complex process of VC is pivotal to
develop novel therapeutic targets. However, more research is
required to transfer promising experimental results into rou-
tine clinical practice. With a better understanding of the path-
ophysiological mechanisms involved in VC, in the future,
additional therapeutic targets with a chance for further im-
provements in therapy may be identified.
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