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The endothelial barrier strictly maintains vascular and tissue homeostasis, and therefore

modulates many physiological processes such as angiogenesis, immune responses, and

dynamic exchanges throughout organs. Consequently, alteration of this finely tuned func-

tion may have devastating consequences for the organism. This is particularly obvious in

cancers, where a disorganized and leaky blood vessel network irrigates solid tumors. In

this context, vascular permeability drives tumor-induced angiogenesis, blood flow distur-

bances, inflammatory cell infiltration, and tumor cell extravasation.This can directly restrain

the efficacy of conventional therapies by limiting intravenous drug delivery. Indeed, for more

effective anti-angiogenic therapies, it is now accepted that not only should excessive angio-

genesis be alleviated, but also that the tumor vasculature needs to be normalized. Recovery

of normal state vasculature requires diminishing hyperpermeability, increasing pericyte

coverage, and restoring the basement membrane, to subsequently reduce hypoxia, and

interstitial fluid pressure. In this review, we will introduce how vascular permeability accom-

panies tumor progression and, as a collateral damage, impacts on efficient drug delivery.

The molecular mechanisms involved in tumor-driven vascular permeability will next be

detailed, with a particular focus on the main factors produced by tumor cells, especially

the emblematic vascular endothelial growth factor. Finally, new perspectives in cancer ther-

apy will be presented, centered on the use of anti-permeability factors and normalization

agents.
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VASCULAR PERMEABILITY IN CANCERS

VASCULAR BARRIER ORGANIZATION

Endothelial cells, pericytes, smooth muscle cells, and the basal

membrane collectively form the blood vascular wall, which ensures

selective exchanges between plasma and irrigated tissues. The pas-

sage of macromolecules, fluids, and cells through this endothelial

barrier can occur either through (transcellular) or between cells

(paracellular) (1). The ability to pass from the interstitial space to

the blood compartment, and vice versa depends on charge, size,

and binding characteristics.

Small molecules (inferior to 3 nm) are commonly transported

by the transcellular route, which requires a system of trafficking

vesicles, called vesicular vacuolar organelles (VVOs) (Figure 1).

Several permeability factors, such as vascular endothelial growth

factor (VEGF) and histamine have been demonstrated to acti-

vate VVOs and to orchestrate vascular homeostasis (2). These

VVOs comprise, among other things, clustered caveolae, and rely

on caveolin-1 protein function, that notably guarantees albumin

transport. Interestingly, caveolin-1 plays a dual regulatory role in

microvascular permeability by stabilizing caveolae structures and

allowing caveolar transcytosis, while acting as a negative regulator

through endothelial nitric oxide synthase (eNOS) (3, 4).

Cells and macromolecules larger than 3 nm use the paracellu-

lar pathway, which is mediated by the coordinated opening and

closing of endothelial cell–cell junctions. Adherens (AJ) and tight

(TJ) junctions maintain the restrictiveness of the barrier, while

gap junctions connect adjacent endothelial cells. Gap junctions

are responsible for water and ion transport but do not contribute

significantly or directly to the establishment of vascular barriers

(Figure 1). Among AJ proteins, the most important is vascular

endothelial cadherin (VE-cadherin),which is exclusively expressed

in vessels (1, 5). In mice, VE-cadherin gene deletion results in early

embryonic lethality due to massive vascular defects, while loss of its

function provokes a hyperpermeability phenotype in adults (6, 7).

VE-cadherin comprises five immunoglobulin-like domain repeats

in its extracellular region, one single-pass transmembrane domain

and a short cytoplasmic tail. While the extracellular domain con-

fers Ca++ dependency and allows homophilic interaction in trans

(i.e., between cadherins on neighboring cells), the transmem-

brane domain participates in lateral clustering within the same

cell (cis) (8). The cytoplasmic part of VE-cadherin binds to pro-

teins from the armadillo-repeat gene family, namely p120-catenin

and either β-catenin or plakoglobin (γ-catenin). This complex

serves to strengthen adhesion forces and allows dynamic con-

tacts (Figure 2). p120-catenin interacts with the juxtamembrane

part of the VE-cadherin cytoplasmic domain and is involved in

its retention at the cell surface, while β/γ-catenins, on the other

hand, act as constitutive partners of VE-cadherin, bound to its

carboxy-terminal part (9, 10). Importantly, VE-cadherin is also

connected to the actin cytoskeleton through the actin-binding

protein, α-catenin (5). Other adhesive proteins that accumulate in

or close to AJ, include N-cadherin, platelet-endothelial cell adhe-

sion molecule (PECAM-1), and junctional adhesion molecules

(JAMs).
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FIGURE 1 |Transcellular and paracellular pathways in endothelial cells. The passage of cells and macromolecules through the endothelial barrier can occur

through transcellular (vesicular vacuolar organelles) or paracellular (tight and adherens junctions) pathways. Gap junctions ensure water and ion transport.

Moreover, endothelial cells are anchored and connected to the extracellular matrix (ECM) through integrin-based adhesion complexes, namely focal adhesions.
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FIGURE 2 | VE-cadherin adhesive complex. VE-cadherin mediates the

adhesion between endothelial cells in calcium-dependent manner.

VE-cadherin is constituted of an extracellular domain, which allows homophilic

interaction in trans. The transmembrane domain participates to lateral

clustering in cis. The intracellular domain of VE-cadherin binds p120-catenin

(p120), and β-catenin (β-cat), which participates to VE-cadherin membrane

retention. Actin cytoskeleton is anchored to VE-cadherin via α-catenin (α-cat)

or plakoglobin (plako). In addition, VE-cadherin can bind VEGF-R2 (vascular

endothelial growth factor receptor 2) and VE-PTP (vascular endothelial

phosphotyrosine phosphatase).

Tight junctions participate in endothelial cell cohesion and

block molecule diffusion along the apical and basolateral poles

(11). They rely on transmembrane adhesion proteins (occludin

and claudins), JAM family proteins, and intracellular con-

nectors, including ZO-1, -2, -3 (Zonula Occludens). First,

occludin and claudins contain four transmembrane domains with
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N- and C-terminal intracellular parts. Second, JAM-A belongs

to the immunoglobulin superfamily with one intracellular short

domain, one single transmembrane domain, and two extracellu-

lar immunoglobulin-like domains. Third, the ZO proteins contain

three PDZ (post synaptic density protein PSD95, Drosophila disk

large tumor suppressor Dlg1, and zonula occludens-1 protein

zo-1), one SH3 (SRC homology 3) and one guanylyl kinase-like

domains (11). Contrary to VE-cadherin, deletion of the claudin-5

gene does not impair mouse embryo development, but rather leads

to post-natal death caused by a defective blood-brain barrier (12).

Thus, VE-cadherin is instrumental in vascular barrier integrity,

while claudins may have a more restrictive role (13). Neverthe-

less AJ and TJ are functionally and structurally linked and can

influence each other (14, 15).

Within blood vessels, endothelial cells are interactively

anchored to the extracellular matrix (ECM) through integrin-

based adhesion complexes, namely focal adhesions (Figure 1).

Indeed, integrins bridge the ECM to the acto-myosin contractility

apparatus (16), and allow endothelial cells to adapt to extracellular

signals and cues (e.g., shear stress and secreted molecules). From

a molecular standpoint, Rho-GTPase activation, stress fiber for-

mation, and acto-myosin contraction are finely tuned through

integrin adhesion and collectively contribute to the modula-

tion of endothelial junction integrity (17, 18). More recently,

it was demonstrated that the integrin-associated focal adhesion

tyrosine kinase (FAK) contributes to the impairment of vascu-

lar barrier function (19). Indeed, VEGF-induced FAK activation

was shown to lead to VE-cadherin/FAK interaction in associa-

tion with β-catenin phosphorylation on tyrosine Y142, result-

ing in VE-cadherin/β-catenin dissociation, junction opening, and

endothelial barrier disruption.

Hence, vascular barrier properties depend on both structural

(basal membrane, smooth muscle cells, endothelial cells) and func-

tional (VVO, AJ, TJ) features. To endorse this role, endothelial

cell adhesion has to be tightly regulated. Indeed, aberrant and

uncontrolled increase of vascular permeability can participate

in the progression of many pathological states, such as chronic

inflammatory diseases, diabetes, and tumor angiogenesis.

VASCULAR LEAKAGE IN THE TUMOR MICROENVIRONMENT

Compared to normal tissues, tumor vasculature is immature and

exhibits structural abnormalities, such as dilatation, saccular for-

mation, and a hyper-branched and twisted pattern. Moreover,

solid tumors usually present few to none functional lymphatic

vessels (20, 21). Many molecular and cellular factors contribute

to this morphological and functional failure, in which vascular

permeability is central. Rapidly growing tumors secrete an abun-

dance of different factors (VEGF, chemokines, and others) that

govern uncontrolled angiogenesis. In such microenvironments,

most of the criteria that define the endothelial barrier properties

are circumvented.

First, tumor vessels are characterized by extensive angiogene-

sis, i.e., neovessel formation from pre-existing vascular networks.

In this scenario, tumor endothelial cells have a proliferation rate

50–200 times faster than that of normal quiescent endothelial cells

(22). They also have to migrate and rearrange into vascular tubules,

dedicated to fuel the tumor mass. This high endothelial plasticity in

the constantly remodeled vascular wall is accompanied by elevated

permeability. Tumor vessel hyperpermeability correlates with faint

VE-cadherin expression, opening of paracellular junctions, and

transcellular holes formation (23). In the course of tumor growth,

the direct consequence of hyperpermeable vessels is plasma

membrane protein extravasation and formation of a provisory

matrix to allow endothelial cell sprouting and formation of new

vessels (24).

Morphologically, the pericytes surrounding tumor vessels are

abnormally shaped and are weakly associated with endothelial

cells (25). In addition, tumor blood vessels lack smooth muscles

(Figure 3). Similarly, the basal membrane can be either unusu-

ally thick or totally absent (26). In these conditions, resistance to

blood flow is increased, and thereby the efficacy in tumor blood

supply is reduced. As a consequence, despite a high microvessel

density, tumors are poorly vascularized with hyperpermeable vas-

culature. This could lead in fine to the accumulation of metabolic

products (lactic and carbonic acids) and extracellular pH decrease

(27). Tumor vessel defects also quell oxygen supply, frequently

causing hypoxia in the tumor microenvironment. Hypoxia, in

turn, supports tumor angiogenesis through the hypoxia-inducible

transcription factors (HIF), and further elevates the expression of

pro-angiogenic molecules, such as VEGF, TNF (tumor necrosis

factor), and PDGF (platelet-derived growth factor). Interestingly,

because of its involvement in chemo- and radio-resistance, as well

as metastasis, hypoxia has been suggested as an adverse prognostic

factor (28).

Within the tumor microenvironment, the ECM undergoes sig-

nificant compositional modifications most notably by increasing

the levels of expression of collagen-1, matrix metalloproteases

(MMP)-1 and -2, and laminin-5 (29). For instance, collagen-

1 deposit increases ECM stiffness, and this is related with

poor prognosis and higher metastasis potential (30). In addi-

tion, ECM stiffness enhances integrin expression and promotes

focal adhesion signaling, and consequently influences tumor cell

malignancy (31).

In summary, abnormal blood vessels and lack of lymphatic ves-

sels in tumors, as well as increased ECM stiffness and relatively high

interstitial fluid pressure (IFP) collectively contribute to the func-

tional outcome called enhanced permeability and retention (EPR).

This phenomenon facilitates both macromolecule extravasation

and retention. Whereas normal vessels form a selective barrier,

limiting cell and macromolecule passage, the tumor vasculature

is extremely leaky and not restrictive. Consequently, although

these features could benefit to tumor angiogenesis and growth,

anti-tumor drug delivery is rather limited.

IMPACT ON DRUG DELIVERY

To gain in bioavailability and selectivity toward tumor cells, thera-

peutic molecules must counteract biological and physical barriers,

among which are endothelial transport and blood flow. Drug efflux

pumps are one of the main obstacles that anti-cancer drugs must

overcome. These transporters are highly expressed in a large panel

of cancer cells, as well as in the blood-brain barrier, where they

ensure drug detoxification (32, 33).

However, tumor vessels cannot ensure correct tumor blood per-

fusion, since they are structurally aberrant and hyperpermeable
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FIGURE 3 | Endothelial barrier in normal and tumor vessels. The

endothelial barrier structure differs in normal (A) and tumor (B) blood vessels.

Contrary to normal vessels, the tumor vasculature pattern is extremely

disorganized and anarchic, presents morphological and structural difference,

i.e., weak association between endothelial cells, abnormal shapes of

pericytes, lack of smooth muscles, as well as basal membrane modification.

(24). The pressure difference between vessels and surrounding

tissues constitutes also an important physical barrier. Upon vas-

cular leakage, transcapillary interstitial fluid flow decreases and

IFP increases resulting in poor drug penetration through tumor

vessels (21). In addition to blood vessel leakage, both the absence

of a functional lymphatic system and increased ECM-frictional

resistance also lead to tumor IFP increase (34). This ultimately

provokes disruption in blood flow directions, again limiting drug

delivery.

Importantly, tumor drug delivery can be tailored by changing

the size and charge of the delivered molecule. Of interest, mole-

cules larger than 40 kDa cannot be passively eliminated through

renal clearance and are unable to cross normal blood vessels

through endothelial junctions; however, they could easily pene-

trate tumors through leaky vessels. EPR of tumor vessels permits

the passage of molecules ranging from 40 to 70 kDa, thus, in associ-

ation with other properties such as the ability to traverse relatively

long distances,prolonged plasma half-life and slow clearance, these

larger molecule have been proposed to be the most appropriate for

specific tumor delivery (35, 36). In addition, due to the negative

charges of the vessel luminal face, the use of cationic therapeutic

molecules may also favor vascular accumulation, which in turn

can elevate tumor drug concentration (37).

Thus, although drug delivery is strongly impaired in tumors

because of structural and functional vascular defects, some of these

constraints, such as vessel leakiness, can be exploited for curative

purposes.

MOLECULAR MECHANISMS INVOLVED IN VASCULAR

PERMEABILITY

As presented above, endothelial barrier integrity ensures vascular

and tissue homeostasis. In cancers, deregulation of this fine-tuned

function leads to the formation of a chaotic blood vessel network

associated with elevated permeability. We will now detail the mole-

cular mechanisms involved in tumor-driven vascular permeability,

focusing on the main factors produced by tumor cells, such as

VEGF and chemokines. This knowledge could open new avenues

for drug design.

VASCULAR ENDOTHELIAL GROWTH FACTOR

Vascular endothelial growth factor belongs to the family of

platelet-derived growth factors and was originally referred to as

vascular permeability factor (38). It is a homodimeric glycopro-

tein of which several forms have been described in mammals, these

are: VEGF-A, B, C, D, and the placenta growth factor PlGF. Among

these,VEGF-A is the most commonly studied and better described
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in literature. Various cell types, such as endothelial cells, smooth

muscle cells, fibroblasts, and immune cells (macrophages, lym-

phocytes, neutrophils, and eosinophils) can produce and release

VEGF within the environment. In turn, VEGF can act in both an

autocrine and paracrine manner. In cancers, tumor cells consti-

tute an important source of VEGF. VEGF stimulates endothelial

cell growth and promotes vasculogenesis and angiogenesis. It also

increases vascular permeability, its first described function, in

many tissues, and plays a crucial role in tumor vasculature devel-

opment (22). VEGF intracellular signaling is mediated by three

tyrosine kinase-receptors, namely VEGF-R1, -R2, and -R3, as well

as co-receptors such as neuropilins. The binding of the ligand to

its cognate receptors induces their dimerization, autophosphory-

lation, and subsequent signal transduction (39). VEGF-A inter-

acts with both VEGF-R1 and -R2, but only VEGF-R2 is directly

involved in normal and pathological vascular permeability (40).

However, VEGF-R1 is reported to act as a regulator of VEGF-R2

signaling, and thus might indirectly regulate vascular permeability.

VEGF-A promotes vascular permeability by disruption of AJ

and TJ, resulting in transient opening of endothelial cell–cell

contacts (5, 14) (Figure 4). Indeed, VEGF-A promotes tyrosine

phosphorylation of VE-cadherin and of its binding partners β-

catenin, plakoglobin, and p120, in a Src-dependent mechanism

(41). Consistent with this, VE-cadherin phosphorylation is inhib-

ited in Src-deficient mice (41). VE-cadherin can also associate

with VEGF-R2 and inhibit its phosphorylation and subsequent

internalization (42). This association potentiates the phospho-

rylation of AJ components by Src, thus impairing endothelial

barrier integrity and favoring tumor cell extravasation and dissem-

ination in pathological models (43). The VE-cadherin/VEGF-R2

association also contributes to VE-cadherin-induced contact inhi-

bition of cell growth and requires the β-, but not p120-catenin,

binding domain of VE-cadherin (42, 44). In addition, VEGF-A

mediates VE-cadherin phosphorylation and internalization via

the sequential activation of Src, the guanine nucleotide exchange

factor Vav2, the Rho-GTPase Rac, and its downstream effector,

the serine-threonine kinase PAK (Figure 4). This signaling path-

way culminates in the PAK-dependent phosphorylation of VE-

cadherin, which directs its internalization (45). Moreover, VEGF

signaling decreases VE-cadherin/p120-catenin association pro-

moting clathrin-dependentVE-cadherin endocytosis (46). Indeed,

p120 binding to VE-cadherin prevents its internalization, while

its silencing by siRNA leads to VE-cadherin degradation, and

loss of cell–cell contacts (10, 47). The expression of VE-cadherin

mutants that compete with the endogenous molecule for binding

with p120, triggers VE-cadherin degradation, suggesting that p120

might act as plasma membrane retention signal. More recently,

a motif within VE-cadherin was identified to be responsible for

VE-cadherin/p120 coupling and endocytosis sorting (48). In this

context, VE-cadherin-mediated cell–cell contacts are stabilized

by the small GTPase Rap1 and its effector, the cyclic adeno-

sine monophosphate (cAMP)-activated guanidine exchange factor

Epac (49, 50). Small GTPases also regulate myosin light chain

(MLC) phosphorylation, acto-myosin contractility, and endothe-

lial permeability (51). Indeed, VEGF induces the phosphorylation

of MLC that results in the formation of stress fibers which exert

centripetal tension on intercellular junctions (52).

Of note, endothelial permeability can also be regulated through

changes in the expression of AJ and TJ components (15, 53). For

example, VEGF signaling through VEGF-R2 induces the expres-

sion of SRF (serum response factor), which is important for

VE-cadherin expression (54). Indeed, SRF knockdown in mice

reduces VE-cadherin expression and angiogenesis. Furthermore,

claudin-5 expression is regulated by VE-cadherin, confirming that

the latter is instrumental in controlling endothelial barrier func-

tion (15). Recently, it has been described that VEGF is involved in

claudin-5 down-regulation in peritoneal endothelium, inducing

ascites in ovarian cancer patients (55).

INTERLEUKIN-8

Cytokines are key drivers of immune responses and play impor-

tant roles in cancer progression. Among these, the chemokine

IL-8 (CXCL8, CXC chemokine ligand 8) is overexpressed and

secreted by cancerous cells. Of note, their cognate G-protein-

coupled receptors (GPCR), CXCR1 and CXCR2, are expressed on

endothelial cells, tumor cells, and neutrophils/tumor-associated-

macrophages, indicative of pleiotropic activities of IL-8. Activation

of IL-8 endothelial receptors is known to promote angiogenic

responses, through enhanced proliferation, survival, and migra-

tion (56). Furthermore, intratumoral IL-8 concentration is pro-

posed to chiefly cause neutrophil recruitment into the tumor

microenvironment and to promote metastasis (57). Besides its

chemotactic role, IL-8 arose as an essential factor of angiogen-

esis and increased vascular permeability (58). Indeed, IL-8 can

provoke VEGF-R2 phosphorylation and transactivation, which in

turn result in both Src and RhoA activation, leading to endothe-

lial gap formation, and elevated permeability (59). IL-8 can also

increase permeability in mouse and human endothelial cells via a

VEGF-R2 independent mechanism (60). IL-8 initiates a signaling

route through CXCR2/Rac/PI3Kγ that triggers the phosphory-

lation and subsequent internalization of VE-cadherin, thereby

promoting increased permeability. Moreover, blockade of CXCR2

and PI3Kγ with pharmacological inhibitors or by RNA interfer-

ence (RNAi), limits IL-8-induced neovascularization and vessel

leakage (60). In glioblastoma, cancer cells were found to secrete

high concentrations of IL-8, which was further demonstrated to

function as a key factor involved in tumor-induced permeabil-

ity in vitro, and to signal to brain microvascular endothelial cells

via CXCR2, promotingVE-cadherin cell–cell junction remodeling,

and elevated permeability (61). Similarly, in prostate cancers, IL-8

secretion is associated with increased Akt expression and activa-

tion, which impacts on endothelial cell survival, angiogenesis, and

cell migration (62).

TRANSFORMING GROWTH FACTOR-β1

TGF-β1 is a multifunctional polypeptide member of the trans-

forming growth factor beta superfamily. It regulates the pro-

duction of cytokines and ECM components, and is involved in

diverse biological processes, such as proliferation and differen-

tiation in many cell types (63–65). Within the tumor microen-

vironment, macrophages, mesenchymal, and cancer cells secrete

TGF-β1 under hypoxic and inflammatory conditions. TGF-β1

was suggested to act as a potent inducer of angiogenesis, since

its increased expression correlates with high microvessel density
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FIGURE 4 | Molecular pathways involved in VEGF-endothelial

permeability. VEGF-A stimulation induces VEGF-R2 dimerization and

the sequential activation of Vav2, Rac, and PAK, through Src. This results

in the serine phosphorylation of VE-cadherin by PAK, and its subsequent

internalization into clathrin-coated pits. VEGF can also trigger the

tyrosine phosphorylation of VE-cadherin and of its binding partners

β-catenin (β-cat) and p120, in a Src-dependent fashion. In addition,

VEGF-A decreases the VE-cadherin/p120-catenin association and

promotes VE-cadherin endocytosis. VEGF-A also induces the

phosphorylation of myosin light chains (MLC), which produces stress

fibers that exert tension on intercellular junctions, thus weakening

cell–cell contacts. Finally, VEGF-A stimulation causes the dissociation of

VE-PTP/VE-cadherin and triggers loss of adhesion and permeability

increase.

and poor prognosis in various types of cancers (66). TGF-β1

also augments vascular permeability by altering cell–cell contacts.

This is thought to involve p38 mitogen-activated protein kinase

(MAPK) and RhoA signaling cascades, which in turn modulate

ECM adhesion and lead to the loss of endothelial-barrier integrity

and function (67). In primary breast tumors, TGF-β1 activity

is associated with an increased risk of lung metastasis. Indeed,

angiopoietin-related protein 4 (ANGPTL4), a TGF-β1 target gene,

disrupts endothelial cell–cell junctions, and facilitates the extrava-

sation of breast cancer cells (68). Moreover, TGF-β1 induces

the expression of VEGF in fibroblasts (69), whereas it inhibits

angiopoietin-1, an anti-permeability factor, therefore exacerbat-

ing tumor-associated vascular leakage (70). In addition, TGF-β1

potentiates the secretion and activation of MMPs (71).

STROMAL CELL-DERIVED FACTOR 1

Stromal cell-derived factor 1, also known as CXCL12, is a mem-

ber of the α-chemokine subfamily and the ligand for the GPCR

CXCR4. In adulthood, SDF-1 was implicated in angiogenesis by

recruiting endothelial progenitor cells from the bone marrow (72).

SDF-1 is highly expressed in a number of cancers and is associ-

ated with tumor extravasation and increased metastases (73, 74).

CXCR4 expression also corroborates with metastatic properties

of breast cancer cells (75). Indeed, CXCR4 levels were found to

be higher in malignant breast tumors in comparison to those of

normal healthy counterparts. In vivo, neutralizing CXCR4/SDF-1

signaling axis significantly impaired breast cancer cell extravasa-

tion and propagation (75, 76). SDF-1 can also mediate endothelial

permeability via CXCR4, as for instance, SDF-1 stimulation of

breast cancer cells in vitro increased their passage across the

endothelial barrier. This effect is dependent on both PI3K/Akt and

calcium signaling in endothelial cells (77). Inhibiting this pathway

with anti-CXCR4 antibodies, on the other hand, decreased vas-

cular leakage (77). Moreover, SDF-1 is involved in macrophage

recruitment to breast tumors in mice, in response to chemother-

apy (78). This action is believed to stimulate tumor blood vessel

growth, counteracting the effects of the drug. Finally, it is to be

noted that VEGF stimulates SDF-1 secretion and vice versa (79,

80). However, VEGF implication in SDF-1-induced permeability

remains to be elucidated.

INTERLEUKIN-10

IL-10, also known as human cytokine synthesis inhibitory factor,

is an anti-inflammatory cytokine. The role of IL-10 in cancers,

though well accepted, is vaguely understood (81). Indeed, IL-10

is suspected to exert both pro- and anti-tumor activities, and
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contradictory results have been reported regarding its involve-

ment in tumor angiogenesis. On one hand, IL-10 could hamper

angiogenesis and tumor growth in mice bearing VEGF-producing

ovarian cancer (82), and suppress tumor growth and metastasis of

human melanoma cells (83). On the other hand, other studies have

suggested that IL-10 may promote angiogenesis in a melanoma cell

model, by inhibiting macrophage functions and inducing tumor

and vascular cell proliferation (84).

MATRIX METALLOPROTEINASES

Metalloproteinases are a large family of proteases that include

MMP and ADAM (a disintegrin and metalloproteinase). MMPs

belong to a family of zinc-containing endopeptidases that degrade

various components of the ECM. Their aberrant over-expression

correlates with cancer progression, cell invasion, and metastasis

(85). Tumor-associated macrophages secrete VEGF and MMP-9,

which are directly involved in both breast cancer and colorectal

cancer cell invasion and metastasis (86). In addition, MMPs pro-

mote tumor progression by rearrangement of the ECM. Indeed,

they trim cell adhesion molecules and degrade matrix proteins,

favoring cell proliferation, and angiogenesis. MMP-7 can shed VE-

cadherin, while MMP-2 and MMP-9 are involved in occludin pro-

teolysis, thus enhancing endothelial permeability (87, 88). MMPs

can also potentiate vascular leakage in a more indirect fashion,

via cleavage and activation of chemokines such as IL-8, which is

processed by MMP-9 (89, 90). Moreover, in vitro experiments have

demonstrated a role for ADAM10 and ADAM17 in endothelial

gap formation in response to cytokines. This is probably mediated

by the cleavage of adhesion molecules within cell–cell junctions,

including VE-cadherin and JAM-A (91).

SEMAPHORINS

Semaphorins correspond to a family of secreted and membrane-

bound proteins that can act as both attractive and repulsive

guidance molecules (92, 93). Besides their role in neural develop-

ment, some of these molecules can modulate endothelial plasticity

(94). Indeed, semaphorin 4D plays a positive role in endothelial

migration and tumor angiogenesis (95, 96). In contrast, class 3

semaphorins, notably semaphorin 3A (S3A), and semaphorin 3E,

are reported to operate as selective inhibitors of VEGF-induced

angiogenesis (97–100). However, S3A and VEGF can also coop-

erate to induce vascular permeability (101). Indeed, S3A induces

Akt phosphorylation through PI3K signaling, thus enhancing vas-

cular permeability (101). In glioblastoma, the cancer stem-like cell

sub-population expresses and secretes S3A ex vivo (102). In this

context, S3A mediates endothelial cell–cell junction destabiliza-

tion and elevates endothelial permeability (102). On a molecular

level, S3A disrupts the VE-cadherin/PP2A complex, allowing VE-

cadherin serine phosphorylation and subsequent internalization

(45, 102). Consistent with this, inhibition of S3A by blocking anti-

body or by silencing RNAs has been demonstrated to abrogate

these effects.

NITRIC OXIDE AND PEROXYNITRITE

Nitric oxide (NO) is a highly reactive free radical, which medi-

ates a myriad of cellular reactions (103). NO is produced from

l-arginine and oxygen by NO synthases (NOS). There are three

major NOS isoforms: inducible NO synthase (NOS2/iNOS),eNOS

(NOS3/eNOS), and neuronal NO synthase (NOS1/nNOS). NOS3

is constitutively expressed in endothelial cells, cardiac myocytes,

and hippocampal pyramidal cells and is involved in suppressing

platelet aggregation, maintaining vascular tone, inhibiting smooth

muscle cell proliferation, and prompting angiogenesis (104). In

cancers, NOS3 generates NO in blood vessels, which can favor

endothelial proliferation, migration, and tumor progression (105,

106). Of note, NOS3 can be induced by VEGF in a MAPK/PLC-

γ-dependent manner (107). NOS3 may also be involved in mod-

ulating vascular leakage. Indeed, it has been reported that eNOS

translocation to the cytosol, but not to the Golgi, is associated

with hyperpermeability in vitro and in vivo (108, 109). Stimu-

lation of endothelial cells with platelet-activating factor (PAF)

induces S-nitrosylation of β-catenin and p120 and significantly

diminishes their association with VE-cadherin (110). Further-

more, VEGF treatment elicited S-nitrosylation of β-catenin at the

Cys619 residue, within the VE-cadherin interaction site (111).

Inhibition of β-catenin S-nitrosylation prevents NO-dependent

dissociation of β-catenin from VE-cadherin and disassembly of AJ

complexes, thereby inhibiting VEGF-mediated endothelial perme-

ability (111). Moreover, oxidized products of NO, such as perox-

ynitrite (ONOO-), activate MMPs, which favor matrix rearrange-

ment and endothelial permeability as discussed above. However,

NO can induce cytotoxic effects on cancer cells. The balance

between NO-mediated permeability and angiogenesis or apoptosis

should thus be considered in tumor-targeted therapy (112).

In conclusion, endothelial permeability-mediated signaling

pathways converge at the disruption and destabilization of cell–

cell contacts, promoting AJ and TJ restructuration and subsequent

opening of endothelial cell–cell junctions. We will now present

the anti-permeability factors and normalization agents that may

represent new perspectives in cancer therapy.

PERSPECTIVES IN CANCER THERAPY

It is now well accepted that vascular permeability limits drug deliv-

ery thus restraining the efficacy of conventional therapies. New

approaches aim now at diminishing both excessive angiogenesis

and hyperpermeability. In this paragraph, perspectives in cancer

therapy, such as the use of anti-permeability factors and blood

vessel normalization agents will be discussed.

ANTI-PERMEABILITY FACTORS

The most relevant anti-permeability factors are angiopoietin-1

and its cognate receptor Tie2, sphingosine-1-phosphate (S1P), and

fibroblast growth factor (FGF) (Figure 5).

Angiopoeitin-1 is a potent pro-angiogenic factor with the

particularity of stabilizing blood vessels and counteracting

VEGF-induced vascular permeability (63, 113). As mentioned

above, VEGF elevates endothelial permeability via VE-cadherin

adhesion destabilization in a Src-dependent mechanism (41,

45). Angiopoietin-1 elicits a signaling pathway through Tie2

that promotes the sequestration of Src though mammalian

diaphanous (mDia) (114), thus hindering VEGF signaling and

VE-cadherin internalization. In an intact endothelial monolayer,

angiopoietin-1 promotes the interaction of Tie2 with the vas-

cular endothelial protein tyrosine phosphatase VE-PTP (115,

www.frontiersin.org August 2013 | Volume 3 | Article 211 | 7

http://www.frontiersin.org
http://www.frontiersin.org/Pharmacology_of_Anti-Cancer_Drugs/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Azzi et al. Vascular permeability in cancers

VEGF-R2 

VEGF-A 

Tie2 

Ang-1 

Src sequestration 

S1P1R 

S1P 

FGFR 

FGF 

cytoskeletal rearrangement 
barrier enhancement and 

integrity  

VE-cadherin 
 stabilization 

VE-cadherin 

 sta
-cat 

-cat 

VE-cadherin 
 internalization 

p120 

T

FIGURE 5 | Signaling pathways of anti-permeability factors. The most

relevant anti-permeability factors are angiopoietin-1 (Ang1), sphingosine-1-

phosphate (S1P), and fibroblast growth factor (FGF). Ang1 activation of its

cognate receptor, Tie2, elicits a signaling pathway and promotes Src

sequestration; thus hindering VEGF-A signaling and VE-cadherin

internalization. S1P signaling maintains vascular integrity by modulating

VE-cadherin internalization, cytoskeletal rearrangement, barrier enhancement

and integrity, through its cognate receptor S1P1R. FGF maintains the integrity

of the VE-cadherin/p120-catenin complex, thus stabilizing VE-cadherin at the

membrane.

116). VE-PTP associates with VE-cadherin and stabilizes it at

the plasma membrane by blocking its tyrosine phosphoryla-

tion in response to VEGF-R2 activation (117). Angiopoeitin-1

also maintains the barrier integrity by increasing the associa-

tion between VE-cadherin and plakoglobin (118), thus strength-

ening cell–cell contacts and limiting endothelial permeability.

Consistently, VEGF signaling in vivo triggers the dissociation of

VE-PTP from VE-cadherin, facilitating leukocyte extravasation

and vessel leakage (119). Furthermore, angiopoeitin-1 balances

VEGF pro-permeability actions by controlling NO release from

endothelial cells. Indeed, it increases eNOS phosphorylation on

Thr497,and subsequently reduces NO release and transendothelial

permeability (120).

In addition to angiopoeitin-1, S1P, a biologically active phos-

phorylated lipid growth factor released from activated platelets,

has emerged as an endothelial barrier protective agent. In both

pulmonary artery and lung microvascular endothelial cells, S1P

was able to reverse barrier dysfunctions elicited by thrombin (121).

At the molecular level, S1P signaling maintains vascular integrity

by cytoskeletal rearrangement and barrier enhancement through

Rac activation (121). Moreover, high-density lipoproteins, acting

as major plasma carriers for S1P, promote endothelial-barrier

integrity via the Akt signaling pathway (122). Plasma-derived

S1P also plays an essential role in maintaining vascular integrity.

Indeed, mutant mice engineered to selectively lack S1P in plasma

show increased vascular leak and impaired survival after admin-

istration of permeability inducing factors (123). Elevated leak

was associated with interendothelial cell gaps in venules and was

reversed by acute treatment with an agonist for the S1P receptor

1 (S1PR1) (123). Furthermore, recent works present S1PR1, as a

key component of vascular stability (124, 125). These two studies

elegantly showed that S1PR1 inhibits VEGF-induced VE-cadherin

destabilization and internalization, and thereby enhances cell–cell

adhesion (124, 125).

Other factors, such as FGF, can act as VE-cadherin stabilizing

agents. Indeed, the inhibition of FGF signaling results in the disso-

ciation of theVE-cadherin/p120-catenin complex, and subsequent

VE-cadherin internalization, disassembly of AJ and TJ, and loss of

vascular barrier integrity (126).

Thus, since they counteract VEGF-induced permeability and

contribute to the maintenance of vascular barrier function, anti-

permeability factors appear as potential therapeutic candidates.

Another promising approach is the use of anti-VEGF/VEGF-

R drugs to promote normalization of the vascular wall and its

microenvironment.

NORMALIZATION AGENTS

From 1950 to the 2000s, the only existing non-invasive treatment

for solid tumors has been chemotherapy, which is mainly based

on reducing tumor cell proliferation. Because its lack of selectivity

causes a large panel of side effects, new strategies, such as mole-

cular and personalized therapies, attempt to focus on molecules

overexpressed in cancers. Unfortunately, the results from clinical

trials targeting such molecules in anti-cancer therapy have been

quite disappointing with an overall low extension of survival, with

the exception of imatinib, a tyrosine kinase inhibitor (TKI) used in

chronic myelogenous leukemia treatment (127). In addition, anti-

angiogenic molecules have been suggested to improve anti-cancer

therapy, not only because they reduce tumor vascularization, but

also thanks to their “normalization” action, which improves drug

delivery.

Bevacizumab (commercialized as Avastin) was one of the first

clinically available anti-angiogenic drugs. This humanized mouse

antibody targeting VEGF was FDA-approved about a decade ago
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for combination use with standard chemotherapy in colorectal and

non-small cell lung cancers. In addition, bevacizumab alone can

significantly curb disease progression in patients with metastatic

renal cell cancer (128). Recently published data suggest promis-

ing clinical efficacy of bevacizumab monotherapy in metastatic

melanoma (129). Beside anti-VEGF, broad-spectrum multi-target

TKI prolong cancer-free survival by collectively decreasing tumor

vessel diameter, density, and permeability, even when admin-

istered in the absence of conventional therapies. For instance,

sunitinib and sorafenib monotherapies appear particularly effi-

cient in gastrointestinal and renal cancers (130). Nevertheless,both

bevacizumab and TKI can cause serious adverse effects, such as

gastrointestinal perforations.

The Notch ligand delta-like 4 (Dll4) has recently emerged as

a critical regulator of tumor angiogenesis (131). Activation of

the Notch pathway in neighboring endothelial cells causes inhi-

bition of tip cell formation, an early event in sprouting angio-

genesis. Mechanistically, this is believed to occur through the

down-regulation of VEGF-R2/3 pro-angiogenic pathway and the

up-regulation of VEGF-R1 anti-angiogenic pathway (132). Inter-

estingly, VEGF can also operate upstream of Dll4 to potentiate

its effects (133). However, the exact role of Dll4 in tumor growth

and its potential in anti-cancer therapy remain unclear. Indeed,

Dll4/Notch activation reduces overall tumor angiogenesis, while

tumor vascular function was improved and tumor growth was

heightened (134). This supports the notion that further strategy

in anti-cancer therapy could be based on Dll4/Notch signal-

ing blockade. On the other hand, Dll4-driven Notch activation

might reduce both tumor-induced angiogenesis and endothelial

cell responsiveness to VEGF (135), and therefore argue rather

for the use of Dll4 as an effective therapeutic approach in

cancers.

COMBINATION THERAPY AND FUTURE STRATEGIES

Recently, based on general hallmarks of the tumor vasculature, i.e.,

poor blood flow, leakage, and reduced drug uptake, a new trend in

anti-cancer treatment has emerged, that involves combining vas-

cular normalization agents with traditional therapies to improve

treatment response.

To re-establish an efficient tumor vascularization, assis-

tant molecules, namely those bearing anti-angiogenic or anti-

permeability properties, have been designed and tested in clinical

trials, in parallel with cytotoxic drugs. In this scenario, the use of

either the vasoconstrictor Angiotensin II (136) or the vasodilator

Bradykinin B2 receptor agonist (137) improves tumor treatment

uptake, through an increase in transcapillary pressure. Similarly,

to facilitate stromal barrier crossing, the ECM-degrading enzyme

collagenase (138) was shown to exert favorable changes in the tran-

scapillary pressure gradient and thereby enhance anti-cancer drug

penetration.

Alternatively, bevacizumab, the anti-VEGF drug, impinges

on both microvascular density and tumor IFP, and improves

drug uptake in colorectal carcinoma patients (139). Moreover,

pazopanib, an inhibitor of VEGF and PDGF receptors, induces

better tumor liposomal drug delivery (140). Likewise, radiother-

apy combined with anti-integrin antibody (intetumumab) reduces

tumor vessel density, while increasing tumor cell apoptosis and

hindering metastasis (141). Interestingly, apart from its role in

permeability, high levels of VEGF have been reported to pro-

mote T-reg proliferation, inhibit antigen-presenting cell matu-

ration and as a consequence, decrease immune responses (142,

143). Therefore, anti-angiogenic drugs, especially those targeting

VEGF actions, could improve cancer immunotherapy by stimulat-

ing tumor microenvironment immune responses (142). Although

significant evidence has demonstrated the benefits of anti-VEGF

therapies in cancer treatment, its general use is still controversial.

First, significant increase in overall survival is observed only when

bevacizumab is combined with standard chemotherapies. In addi-

tion, many patients exhibit resistance to anti-VEGF treatments,

while timing and doses to be administered, cost and relapse effects

raise some major concerns. Finally, vascular regrowth remains

highly problematic. Indeed, a second wave of angiogenesis orches-

trated by pro-angiogenic ligands of the FGF family could account

for the short-term efficacy of VEGF-based anti-angiogenic thera-

pies (144). Unlike bevacizumab, combination of TKI with conven-

tional chemotherapy does not improve the outcome of anti-cancer

treatment. In this scenario, use of erlotinib, a potent inhibitor

of the epidermal growth factor receptor tyrosine kinase, with

standard chemotherapy has failed to enhance tumor response or

survival in lung carcinoma (145). Highly efficient TKI monother-

apy could be combined with chemotherapy only when tumor cells

become resistant to TKIs.

Alternatively, dose, schedule, and decreased toxicity may

amend tumor responses. Contrary to standard chemotherapy,

i.e., high doses with prolonged drug-free breaks, metronomic

chemotherapy refers to chronic and equally spaced administra-

tion of low doses of cytotoxic drugs, without pauses. For example,

reduced but continuous doses of cyclophosphamide suppressed

tumor growth more effectively than canonical chemotherapy

scheduling, even in drug-resistant tumors (146). Interestingly,

metronomic chemotherapy exerts anti-tumor and anti-metastatic

actions by decreasing VEGF serum concentration and increas-

ing apoptosis of cancer cells (147). For those reasons, metro-

nomic chemotherapy could be considered as an anti-angiogenic

chemotherapy.

Importantly, the efficacy of anti-angiogenic therapy combined

with cytotoxic conventional therapies (chemo- and/or radio-

therapies) depends on optimal treatment scheduling. Indeed for

each anti-cancer therapy, a “normalization window,” has to be

determined to define period and doses necessary for tumor vessel

normalization (148).
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