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Abstract

Background: Apoptosis is a critical process in endothelial cell (EC) biology and pathology, which has been

extensively studied at protein level. Numerous gene expression studies of EC apoptosis have also been performed,

however few attempts have been made to use gene expression data to identify the molecular relationships and

master regulators that underlie EC apoptosis. Therefore, we sought to understand these relationships by generating

a Bayesian gene regulatory network (GRN) model.

Results: ECs were induced to undergo apoptosis using serum withdrawal and followed over a time course in

triplicate, using microarrays. When generating the GRN, this EC time course data was supplemented by a library of

microarray data from EC treated with siRNAs targeting over 350 signalling molecules.

The GRN model proposed Vasohibin-1 (VASH1) as one of the candidate master-regulators of EC apoptosis with

numerous downstream mRNAs. To evaluate the role played by VASH1 in EC, we used siRNA to reduce the

expression of VASH1. Of 10 mRNAs downstream of VASH1 in the GRN that were examined, 7 were significantly up-

or down-regulated in the direction predicted by the GRN.Further supporting an important biological role of VASH1

in EC, targeted reduction of VASH1 mRNA abundance conferred resistance to serum withdrawal-induced EC death.

Conclusion: We have utilised Bayesian GRN modelling to identify a novel candidate master regulator of EC

apoptosis. This study demonstrates how GRN technology can complement traditional methods to hypothesise the

regulatory relationships that underlie important biological processes.
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Background
The explosion of systems biology in recent years, facili-

tated by sequencing of the human genome [1,2] and the

development of high throughput methods to rapidly

characterise and quantify biological systems [3-6], has

promoted understanding of complex biological and

pathological processes. Gene regulatory networks (GRN)

represent a systems biology approach, taking advantage

of the growing number of RNA abundance data sets

generated by modern high throughput methods such as

microarrays or RNAseq, to holistically model interac-

tions between molecules in cells and tissues. GRN are

usually displayed as directed graphs - nodes represent

mRNA abundance and edges represent some form of

regulatory relationship between the nodes. The reverse

engineering of GRN from gene expression data has been

used to understand molecular interactions in both bac-

terial and lower eukaryotic organisms, as well as in more

complex mammalian systems. GRN employ simple cor-

relation [7] or Boolean [8] methods, algorithms based on

mutual information [9,10] as well as Bayesian methods.

Computational frameworks have been generated to sim-

ultaneously perform several types of GRN analysis [11].
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Bayesian GRN are in theory especially powerful for in-

ference of causal relationships between mRNAs in noisy

microarray data [12,13]. In Bayesian GRN, the probabil-

ity of the abundance of each mRNA node is modelled

using a function that takes as its inputs the abundance

of the node's parent mRNAs. The edges in a Bayesian

GRN can represent hidden protein, non-coding RNA or

metabolite-based regulatory relationships [14]. There-

fore, Bayesian GRN can in theory capture information

about a subset of the complex cellular regulatory cir-

cuitry [15]. Many GRN developed to date have had a

‘scale free’ structure [10,16], in which a small number of

“hub” RNAs can be identified that are connected to large

numbers of downstream RNAs in the networks. These

hub RNAs are candidate master-regulators of transcrip-

tion and other cellular processes. Their identification is

based on relationships in the data between the hub RNA

and their downstream RNAs in the GRN structure,

which are usually referred to as "children". Therefore,

the amount of data behind the identification of hub

RNAs is much greater than the amount of data behind

the identification of individual edges, and correct identi-

fication of hubs may be easier in theory than the correct

identification of individual edges.

Apoptosis is pivotal for normal EC function [17], and

the dysregulation of endothelial apoptosis is a key step

in the development of numerous pathologies [18], includ-

ing cardiovascular disease [19-21] and tumourogenesis

[22-25]. Understanding the regulatory events occurring

during this process in a holistic manner may provide

insight into normal vascular development and mainten-

ance, as well as vascular pathologies. Although there has

been extensive characterisation of the EC proteins

involved in apoptotic pathways [26-28], there have been

fewer investigations into regulation of the transcriptome

in ECs undergoing apoptosis [17,29].

To begin to address this issue, our group have

previously used Bayesian GRN to identify molecular

interactions involved in survival factor deprivation (SFD)-

induced EC apoptosis and cell cycle arrest [18]. This

previous study used micorarray data over a triplicated

eight time point SFD time course. Previous studies have

illustrated the value of supplementing time series data

with gene disruption data (e.g. [30]). Since at the time we

were especially interested in regulation of the cell cycle, in

this previous work the time series data was supplemented

by eight microarrays from EC cultures treated with

siRNAs targeting molecules associated with the cell cycle.

This analysis identified several GRN master regulator

RNAs including the γ-amino butyric acid (GABA)-

Receptor Associated Protein (GABARAP) [18].

In theory, the greater the volume of high-quality

siRNA data used to supplement time course data, and

the broader the range of RNAs targeted by the siRNAs,

the more likely it is that accurate predictions can be

made by GRN. Therefore, in this current study we have

expanded our previous analysis by combining triplicated

eight time point SFD time course data with a much lar-

ger library of EC siRNA disruptant microarray data,

which was generated from the knockdown of 351 differ-

ent mRNA transcripts that encode proteins with a broad

range of functions in EC [11]. This expanded analysis

identified numerous GRN master regulators, many of

which were already known to play important roles in EC

biology. However, we noted one major master regulator

RNA named Vasohibin-1 (VASH1) that had not at the

time been extensively studied in EC apoptosis. There-

fore, we investigated the function of VASH1 in regulat-

ing mRNA abundance and in the process of EC

apoptosis. We targeted VASH1 using siRNA and then

used quantitative polymerase chain reaction (PCR) to

examine the abundance of 10 of the 31 mRNAs directly

downstream of VASH1 in the GRN. 7 of these 10

mRNAs were significantly up- or down-regulated in the

direction predicted by the GRN when VASH1 expression

was reduced. We also show that VASH1 is required for

the apoptotic response in EC treated with SFD.

Methods
Cell culture and siRNA transfection

Umbilical cords were collected with written informed

maternal consent and the approval of the Cambridge

(UK) Research Ethics Committee. Human Umbilical

Vein ECs (HUVECs) were isolated by collagenase diges-

tion, as previously described [31]. Cells were cultured in

fully supplemented media without antibiotics (basal

EBM-2 with a propriety mix of heparin, hydrocortisone,

epidermal growth factor, fibroblast growth factor, vascu-

lar endothelial growth factor, 2% foetal calf serum (FCS)

Lonza, Cambridge, UK), at 37°C/5% CO2. To carry out

siRNA transfection, HUVEC pools consisting of 10 bio-

logical isolates (of equal contribution) were prepared

using passage 3 cultured cells. The HUVEC pools were

plated in 6-well plates at 2.5 × 105 per well and left for

24hrs until approximately 70% confluent. siRNA transfec-

tion was carried out using pools of four siRNA duplexes

from Dharmacon Inc (Lafyette, Colorado, USA) and the

SiFectamine transfection reagent (ICVEC, London, UK)

according to the manufacturer’s instructions.

RNA processing and microarray preparation

RNA was extracted using TRIzolW reagent (Invitrogen,

London, UK). RNA quality was assessed using the

Agilent 2100 bioanalyser. Biotin labelled cRNA was gen-

erated and hybridised on the CodeLink Human Uniset

20K microarrays following the manufacturer’s instruc-

tions (Applied Microarrays, Tempe, Arizona, USA, for-

mally supplied by GE Healthcare).
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Quantitative PCR

cDNA was synthesised from 1μg of total RNA using the

QuantiTect reverse transcription kit (Qiagen, Crawley,

UK), following the manufacturers protocol. Quantitative

PCR was carried out using an ABI 7700 sequence

analyser (Applied Biosystems, Warrington, UK). Reac-

tions were performed using the Applied Biosystems

universal master mix according to the manufacturers

instructions. The Taqman probe / primers used were:

VASH1 (Hs00208609_m1), SOX18 (Hs00746079_s1), PTX3

(Hs00173615_m1), FAM78A (Hs00604618_m1), PPARA

(Hs00231882_m1), SLC7A2 (Hs00952727_m1), BDNF

(Hs00542425_s1), MTSS1 (Hs00207341_m1), BTG2

(Hs00198887_m1), TNFSF-12 (Hs00356411_m1), FLT4

(Hs01047677_m1) and NTRK2 (Hs00178811_m1), all

from Applied Biosystems.

Previosuly generated microarray datasets used in this

study

The siRNA targeting of 351 different mRNA transcripts,

chosen for their importance in EC biology, including

transcription factors, signalling molecules, receptors and

ligands is described by Hurley et. al. [11]. The microarray

data from these 351 siRNA experiments is available from

Gene Expression Omnibus, reference GSE27869.

The generation of triplicated microarray data from an

eight time point HUVEC SFD time course has been

described previously [18]. Briefly, HUVEC RNA was

extracted at time points 0, 0.5, 1.5, 3, 6, 9, 12 and 24

hours after survival factor withdrawal (i.e. transfer from

complete media to basal EBM-2 media with no supple-

ments apart from 2% charcoal stripped serum), and

hybridised onto CodeLink Human Uniset 20K microar-

rays. The raw and normalised triplicate time course

microarray data has been deposited in Gene Expression

Omnibus, accession number GSE23067.

Data processing

CodeLink microarray quality was assessed using the

CodeLink Expression analysis software v4.0. The array

data were filtered to remove probes that did not contain

“Good” flags in 90% of the arrays, as measured by the

CodeLink Expression analysis software. The log base2

(log2)–transformed apoptosis time course data and 351

siRNA disruptant data were then both normalised using

the Loess method [32,33]. For the disruptant dataset

log2 ratios against a virtual median array were calculated

and these ratios were then z-transformed within each

microarray prior to network inference.

For the SFD time course data, we selected transcripts

concordantly regulated in abundance across the time-

course to used for GRN generation as previously

described [18]. Briefly, log ratios between each time

point and the first time point were calculated for all

transcripts. For each transcript at each time point

z-scores were then calculated by subtracting the log2

ratios from the mean of log2 ratios for that time point,

and dividing by the standard deviation of log2 ratios for

that time point. Transcripts were then selected that

had −2 ≤ z ≤+2 at ≥ two adjacent time points in the trip-

licate data set. This analysis was repeated using the last

time point instead of the first time point, and the union

of the RNA lists prodced by the analyses that used the

first and last timepoints was taken as the final list of

concordantly expresed RNAs. For comparison to this

z-score method, ANOVA was used to identify RNAs sig-

nificantly differntially expressed at two adjacent time

points relative to either the first or last time point, and

the empirical Bayes method of Tai and Speed [34] was

also applied. In addition, a statistically more complex

method was used to identify RNAs significantly differn-

tially expressed across the timecourse; generalised esti-

mating equations with a Markov correlation model were

fitted to the timecourse data. Contrasts were used to

identify linear relationships and quadratic trends within

the data using Matlab's GEEQBOX toolbox (http://www.

mathworks.com/products/matlab/). Thresholds for con-

cordant regulation were set using an absolute linear

coefficient of >21 (and linear q value <0.01) OR an abso-

lute quadratic coefficient of > 7 (and q value <0.01).

All other bioinformatic manipulations used the R soft-

ware package, (http://www.R-project.org), and unless

otherwise stated, multiple testing corrections were ap-

plied using the Benjamini and Hochberg method. Gene

ontology/pathway enrichment analyses were carried out

using Fatigo software [35], GeneSetDB [36], GATHER

(http://gather.genome.duke.edu/) and IPA (Ingenuity sys-

tems, www.ingenuity.com).

Apoptosis bayesian GRN generation and analysis

Apoptosis Bayesian networks were generated using the

methods of [37], with some modifications. Given the

relative sizes of the time-course and siRNA data sets, a

dynamic GRN generated from the time-course data was

used as a prior for GRN generated from the siRNA data

as described [37].

When estimating the time-course GRN from the apop-

tosis time course microaray data, a method of bootstrap-

ping was applied to the data. With 8 time points

(obtained 0, 0.5, 1.5, 3, 6, 9, 12 and 24hrs after serum

withdrawal) and 3 replicate microarray time course

experiments, there are 38 = 6561 possible combinations

to create combinatorial apoptosis time course datasets.

With such a large number of combinations, it is not

computationally viable to fit regression curves through

all combinations. Therefore the time course data used

for network estimation was generated from the random

resampling of 25 of the possible 6561 combinations as
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follows: Let D be the combinatorial time course data of

all genes. If D(c) is the 8 time points, with each time

point consisting of one of 3 replicates, then D(c) can be

randomly resampled with replacement 25 times from

the 6561 combinations so that D(c) (1 ≤ c ≤ 6561).

The bootstrap sample can therefore be defined as D* =

{D* (1),. . .., D* (25)}. Using this sample of 8 x 25 = 200

randomly resampled microarrays, the apoptosis GRN

was estimated. This bootstrapping procedure was

repeated 100 times to generate 100 different GRNs;

Ĝ
*
T
1,. . . .. Ĝ*

T
100, where Ĝ

*
T
B is the estimated graph based

on the B-th bootstrap sample. To estimate the reliability

of the edges to be used as prior information, the boot-

strap probability of each edge was calculated as follows:

the reliability of the edge between the i-th gene to the

j-th gene (termed the bootstrap probability) is z
1ð Þ
ij ¼

B e i; jð Þ∈Ĝ
�B

T ;B ¼ 1; . . . ; 100
�

�

�

on
�

�

�=100
�

�

� . A bootstrap prob-

ability threshold value was set at P = 0.8 and only those

edges that passed this threshold value were included in

the prior, Z1.

As described [37], a second prior (named the "array

prior", Z2), was also generated. This prior was based on

the up- or down-regulation of the abundance of all

mRNAs, represented as z-scores, analysed by the microar-

rays following siRNA-medaited targeting of the 351 genes.

Priors Z1 and Z2, were used when inferring a static

Bayesian network based on the disruptant dataset [37].

Again bootstrap resampling of the microarrays (100

times with replacement) was applied to improve the reli-

ability of edges included in the final network. The GRNs

were viewed and analysed using Cell Illustrator 5.0,

freely available software that can be downloaded from

http://www.cellillustrator.com.

Quantification of apoptosis

Passage 3 HUVEC pools comprising equal numbers of

cells from 10 independant isolates were plated at 5 × 103

cells per well in a 96-well plate and cultured for 24 hrs

before siRNA transfection. Three different pools of 10

isolates were used for each assay. Cells were then left for

a further 24hrs before treatment with either survival fac-

tor deprived conditions of basal media without supple-

ments (EBM-2) or fully supplemented media without

antibiotics (EGM-2) for 24 hrs. Active caspase-3 and −7

were quantified using the Caspase-Glo 3/7 assay system,

following the manufacturer’s instructions (Promega,

Southampton, UK). The ADP:ATP ratio was calculated

using the Apo Glow assay (Lonza, Cambridge, UK),

according to the manufacture’s protocol. Assays were

carried out using a Fluostar Optima luminometer (BMG

Labtech, Aylesbury, UK). Statistical analysis was carried

out using a paired two-tailed t-test.

Results
Gene selection methods for generating a bayesian GRN

to model EC apoptosis

For GRN modelling, we first identified mRNA transcripts

that were significantly regulated over the timecourse of

EC apoptosis. A z-score-based method for analysis of

timecourse data that we have reported previously ([18]

and see Methods) identified 486 significantly regulated

transcripts. We analysed these 486 RNAs using the Gene-

SetDB web tool [36] with the Gene Ontology (GO) and

WikiPathways databases. The RNAs were significantly

enriched for four main categories of annotation: (i) 'cell

cycle' (GO:0007049, 87 RNAs, p<0.0001 and WikiPath-

ways:WP179, 30 RNAs, p<0.0001), (ii) 'response to stress'

(GO:0006950, 39 RNAs, p<0.0001), (iii) 'apoptosis' (Wiki-

pathways:WP254, 7 RNAs, p=0.016) and (iv) 'immune

response' (GO:0006955, 21 RNAs, p<0.0001).

Bayesian GRN inference

In an attempt to better understand the relationships be-

tween the mRNAs concordantly regulated in abundance

during SFD, a Bayesian GRN was inferred. In theory, the

more data that GRN are based on, the the more accurate

their predictions can be. Therefore, for GRN generation

we used a combination of the SFD timecourse data and

a library of 351 siRNA disruptant microarrays. A total of

694 RNAs were used for GRN generation; the union of

the 486 RNAs concordantly regulated in abundance dur-

ing SFD and the 351 RNAs that were targeted by siRNA.

The methodology used to generate this Bayesian net-

work has been previously described [37] and is illu-

strated in Figure 1. An xml file describing this GRN can

be found in Additional file 1, which can be viewed using

the freely available software Cell Illustrator, and a text

file listing parent and child genes for the network edges

is given in Additional file 2.

Identification of GRN hubs

Hubs are highly connected nodes in GRNs and are can-

didate master regulators within the network structure.

In a directional GRN such as the Bayesian networks gen-

erated here, they can be identified on the basis of having

large numbers of downstream children. The distribution

of the number of children of all nodes in the GRN is

shown in the histogram in Additional file 3: Figure S1. A

list of the 50 hub genes with the largest number of chil-

dren (all with ≥20 children) in the network is shown in

Additional file 4. Given that the set of RNAs used for

GRN inference was already enriched for cell cycle and

stress response functions as described above, it is not

surprising that many of the GRN hubs appeared to be

involved in these processes. Only 53 of the 351 genes

that were targetted by siRNA knock-down to generate

the prior microarray data were significantly concordantly
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regulated in abundance over the survival factor deprivation

timecourse (according to the same z-score criteria that

were used to select the 486 RNAs). Of these 53 RNAs, 10

are in the list of the to 50 hubs (ranked by the number of

downstream children).

We looked specifically at apoptosis-associated RNAs

in the GRN. Analaysis using the Fatigo software (http://

www.fatigo.org/) identified 505 probes in the Codelink

array data that encoded proteins involved in apoptosis,

58 of these probes were included as nodes in the

apoptosis gene network (highlighted in Additional file 5);

two of these (HSPE1 and BUB1B, with 28 and 23 chil-

dren respectively) were found in the top 50 hubs ranked

by number of downstream network children.

We also looked specifically at cell cycle-associated

RNAs in the GRN, since SFD induces cell cycle arrest in

addition to programmed cell death [29]. Of the 596 tran-

scripts on the Codelink array associated with cell cycle

regulation, 109 of these were included as nodes in the

network, with 9 located within the top 50 network hubs

ranked by number of downstream children.

Downstream children of some GRN Hubs share common

functions

We assessed whether any of GRN hubs had downstream

children significantly enriched for specific biological

functions by comparing the downstream children of

each hub to the datatbases GO, KEGG and Transfac

using the GATHER web tool. The results of this analysis

are shown in Additional file 4 and examples are given

below. The hub transcript BLM (7th largest hub, 33 chil-

dren) encodes a DNA helicase that is important for mi-

totic DNA replication and DNA repair, and is mutated

in a broad range of cancers [38]. 16 of the 31 children of

BLM encoded proteins involved in aspects of cell cycle

regulation (GO:0008283, GATHER Bayes Factor = 22.3,

p = 3x10-9). Another hub gene encodes the cyclin

dependent kinase-binding protein CKS1B, which has 16

of its 49 GRN children associated with cell cycle control

(GO:0007049, GATHER Bayes Factor = 7.5 p = 0.007).

The hub KNTC2 encodes a kinetochore complex com-

ponent that functions as a spindle checkpoint signalling

molecule, and has 10 of its 18 children associated with

serum withdrawal 

treatment of cells

siRNA treatment 

of cells

siRNA

siRNA

siRNA

replicated siRNA 

expression data

replicated 

timecourse 

expression data

dynamic Bayesian 

network inferred from 

time course data

directed relationships 

from siRNA data

KD1 KD2

prior

Bayesian network 

inferrence

prior

(1) (2) (3)

Figure 1 Inference of a static Bayesian GRN. Bayesian GRNs were generated from two microarray datasets (1) time course of primary ECs in

conditions of SFD for 24 hours (8 time points in triplicate) to induce apoptosis and (2) disruptant dataset generated from the siRNA-mediated

knockdown of 351 transcripts. These two datasets were used in network inference. Bayesian GRNs were generated to maximise the posterior

probability, which consists of two priors; (a) the dynamic Bayesian GRN prior (generated from the time course data) and (b) the array prior

(measuring the relationships between the gene knockdowns and their regulatees, as measured by z-score in the 351 disruptant dataset), as well

as the marginal likelihood. This is the non-parametric regression through estimated edges based on the 351-disruptant dataset. The gene list of

694 transcripts chosen for network inference was selected based on (1) the transcripts regulated during the apoptosis time course and (2) the

351 siRNA targeted transcripts. Using the dynamic Bayesian GRN as a prior for the disruptant dataset, the relationships for the 694 transcripts

within the 351 disruptant dataset were inferred. Bootstrapping of the network prior and the estimated static network helped improve edge

reliability in the final network. The static apoptosis Bayesian GRN can be viewed using Cell Illustrator, which can be freely downloaded from

http://www.cellillustrator.com.
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the cell cycle (GO:0007049, GATHER Bayes Factor = 16

p = 7.5 × 10-7). Another hub is GRN, encoding the gran-

ulin glycoprotein, a secreted regulator of cell growth and

survival. 10 of GRN’s 28 children are associated with the

response to cell stress (GO:0006950, GATHER Bayes

Factor = 8.6 p = 0.0005), and 5 with the regulation of

apoptosis (GO:0042981, GATHER Bayes Factor = 5.3

p = 0.004). The children emenating from the apoptosis-

associated hubs HSPE1 and BUB1B mentioned above

also shared comon functions, however the degree of en-

richment for these functions was not statistically signifi-

cant. Four of the 28 children of BUB1B were involved in

cell cycle regulation (CDC16, TPX2, NUSAP and BUB1)

and two in the regualtion of apoptosis (PIK3R1 and

CTNAL1). Similarly, three of the 23 children of HSPE1

were involved in cell cycle processes (RAD1, E2F4 and

MCM2) and two with cell death (TBP and FOSL2).

Identification of a novel GRN hub gene for further study

Evaluation of the literature revealed that several of the

most highly connected hubs (such as CKS1, 49 children

and MDK, 36 children), already had well-characterised

roles in cellular proliferation and apoptosis [39-41]. In

contrast, for VASH1 (9th ranked hub with 31 children)

there was no literature characterising its involvement in

EC apoptosis or cellular proliferation at the time of this

study. Several of the predicted GRN children of VASH1

are involved in the regulation of angiogenesis (e.g. FLT4,

BDNF, TIE1), apoptosis (e.g. TNFSF12, PPAR-α, CDC2L6)

and cell division (e.g. BTG2, CDKN1C). Therefore, given

that the purpose of this current study was to identifiy

novel regulators of EC apoptosis and since VASH1 had

previously been identified as a negative regulator of

angiogenesis [42,43] (suggesting a possible role in EC

apoptosis), VASH1 was selected as a candidate for fur-

ther investigation. Due to resource limitations no other

uncharacterised hubs were investigated in this study.

Figure 2 illustrates the positioning of the VASH1 hub in

the GRN, the 31 children eminating from this hub, and

its expression profile over the SFD time course.

VASH1 would not have been prioritised as a candidate

gene for further study by using traditional statistical

methods that quantified the degree and variance of con-

cordant regulation of abundance over the SFD time

course. For example, when the concordant regulation of

RNAs were ranked using the z-score method or using

traditional ANOVA analysis to compare expression in

the first and last timepoints to all other timepoints,

VASH1 was ranked 71st and 63rd, respectively. The

empirical Bayes method of Tai and Speed using the

Hotelling T2-statistic [34] ranked VASH1 as 286th in

terms of evidence of non-constant temporal expression.

A more sophisticated method was also used, in which

generalised estimating equations (with Markov correl-

ation models) were fitted to the SFD time course data.

From this regression model contrasts were used to iden-

tify linear relationships and quadratic trends within the

data, and VASH1 ranked 175th.

Independent validation of directed edges emanating from

the VASH1 hub

To evaluate the RNAs hypothesised by the GRN to be

downstream of the VASH1 hub, 10 of the 31 children

were selected for independent validation using siRNA

knock-down and quantitative PCR. The selection was

based on known biological importance and reagent avail-

ability. The left column of panels in Figure 3 illustrates

the transcript profiles of VASH1 and selected children

over the SFD time course. In the case of MTSS1 (3a)

and SOX18 (3d), the children are positively co-regulated

with VASH1 over the apoptosis time course. In contrast,

BDNF (3g) and SLC7A2 (3j) are negatively co-regulated

with VASH1 over the time course. Correlation analysis

across the 351 siRNA disruptant dataset revealed that all

10 children correlated with VASH1 (correlation coeffi-

cients range from 0.5 – 0.8); the relationships between

Figure 2 The VASH1 hub in the Bayesian GRN. The VASH1 hub represents the 9th largest hub in the GRN. (a) Positioning of the VASH1 hub

(highlighted in red) in the GRN topology. (b) Focussed analysis of the VASH1 hub, illustrating the parents and children emanating from this hub

gene. (c) The normlaised non-log transformed expression profile of VASH1 mRNA in the three replicates across the SFD time course.
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Figure 3 Regulation of selected VASH1 predicted children (a) Co-regulation of predicted child MTSS1 with VASH1 over the median

expression value of the triplicate apoptosis time course (b) Correlation of predicted child MTSS1 expression with VASH1 across the 351

disruptant dataset (c) Relative level of predicted child MTSS1 mRNA when VASH1 mRNA abundance is knocked down to ≤ 20% of its

initial value. The knockdown of VASG1 was carried out in both fully supplemented conditions (EGM2) and survival factor deprived conditions

(SFD), to assess the impact of the knockdown in both conditions. (d – f) as above for predicted child SOX18. (g – i) as above for predicted child

BDNF. (j – l) as above for predicted child SLC7A2.

Affara et al. BMC Genomics 2013, 14:23 Page 7 of 12

http://www.biomedcentral.com/1471-2164/14/23



VASH1 and these downstream children across the 351

siRNA disruptant microarrays are illustrated in scatter

plots in the middle panels of Figure 3. VASH1-SLC7A2

and VASH1-BDNF associated with negative correlation,

while the remaining children correlate positively with

VASH1 (Figure 3b, e, h and k). This correlation across

the 351 siRNA disruptant dataset concurred with the

co-regulation observed over the apoptosis time course in

Figure 3a, d, g and j.

Using siRNA to knockdown VASH1 mRNA to ≤ 20%

of its initial level appeared to significantly regulate 7 of

the 10 transcripts tested, in the direction predicted by

the GRN (Table 1). For example, MTSS1 and SOX18,

which were positively correlated with VASH1, were down-

regulated after knockdown of VASH1 (Figure 3c and 3f re-

spectively). In contrast, but as predicted by the GRN,

knockdown of VASH1 resulted in the up-regulation of

BDNF and SLC7A2, which were negatively correlated with

VASH1 (Figure 3i and Figure 3l). TNFSF12, PTX3 and

FAM78A did not show a clear result due to variable regu-

lation between EC replicate pools.

Regulation of apoptosis by VASH1

To evaluate whether the VASH1 hub is involved in the

process or regulation of EC apoptosis, siRNA was used

to knockdown VASH1 in three different pools of 10

HUVEC isolates for 24 hours before treatment with SFD

to induce apoptosis. After the 24 hour anti-VASH1

siRNA incubation, VASH1 mRNA abundance was

reduced to ≤ 20% of its initial level (Figure 4). Following

SFD there was a mean of 2.2 fold (t-test, p = 0.0009) less

active caspase-3 and −7 in the VASH1 knockdown EC

compared to the EC teated with non-targeting siRNA

controls (Figure 5a). Repetition of this assay in two add-

itional pools of HUVEC isolates in which VASH1 was

once again knocked down to ≤ 20% of its initial level

produced a similar result - following SFD there was on

average 1.8 fold (p = 0.03) less active caspase-3 and −7

following VASH1 knockdown than in control cells (data

not shown). The observed level of active caspase-3 and −7

in HUVEC in fully supplemented conditions was similar

in VASH1 knockdown and control cells (data not shown).

The activation of caspase-3 and −7 only represents

one part the complex process of apoptosis. Since apop-

tosis is an energy driven process, the ADT:ATP ratio

was also calculated in the same HUVEC pools. A

marked reduction in the mean ADP:ATP ratio was

observed in the VASH1 knockdown EC relative to the

siRNA control EC following SFD in two independent

experiments (12.4 fold, P=0.004 and 3.4 fold, P=0.005,

respectively, Figure 5b). Again, no significant difference

was observed between the VASH1 knock down EC and

controls in fully supplemented conditions (data not

shown). Taken together, these results suggest that

VASH1 may play a significant role in SFD-induced apop-

tosis of HUVECs.

The inverse expression relationship between VASH1

and its validated child BDNF, and the known role of

BDNF as a survival factor, suggests the hypothesis that

up-regulation of BDNF when VASH1 is knocked down

may promote survival in these cells. However, the treat-

ment of the HUVEC pools with 100nM recombinant

BDNF at 24 hours post-transfection (at the same point

as treatment with either fully supplemented media or

SFD conditions), did not induce significant rescue from

SFD-induced cell death, as measured by both the quanti-

fication of active caspase-3 and 7 and the ADP:ATP ratio

(data not shown).

Table 1 Fold change and P values of VASH1 and its

predicted children in fully supplemented conditions and

SFD conditions, after knockdown of VASH1

Fully Supplemented Media
(EGM2)

Survival Factor deprived
Media (SFD)

Fold Change P Value Fold Change P Value

VASH1 −7.59 0.0022 −17.50 0.0025

BDNF 3.90 0.4138 12.52 0.0339

BTG2 −1.65 0.1592 −3.10 0.0005

FAM78A −1.97 0.0577 −0.69 0.5752

FLT4 −1.99 0.0404 −3.67 0.0364

MTSS1 −1.82 0.0128 −3.97 0.0708

PPARA −1.92 0.0962 −2.79 0.0034

PTX3 −1.04 0.4932 0.54 0.6942

SLC7A2 1.96 0.1087 2.30 0.0237

SOX18 −1.41 0.5587 −3.81 0.0002

TNFSF12 0.46 0.5499 −1.82 0.0223

P values are from a paired t test.

EGM2 SFD

Figure 4 Quantitative PCR of siRNA-mediated knockdown of

VASH1 mRNA abundance to <20% of its initial level in three

HUVEC pools in both fully supplemented media conditions

(EGM2) and survival factor deprived conditions (SFD).
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Discussion
This study used Bayesian GRN technology and micro-

array data to model the regulatory interactions after

serum factor deprivation of EC, which induces cell cycle

arrest and apoptosis. We applied GRN analysis to com-

bined time course microarray data following serum

deprivation-induced apoptosis of EC, and a large micro-

array data set generated from 351 targeted EC siRNA

disruptions, in order to identifiy new information about

gene regulatory relationships during EC apoptosis.

GRN topology and limitations

We have used GRN analysis to identify hubs, which po-

tentially act as master regulators of the expression of

downstream RNAs in EC. For one hub, VASH1, we then

confirmed the concordant regulation of a subset of

downstream children as hypothesised by the GRN, and

an impact on apoptosis. VASH1 protein has previously

been identified as a negative feedback regulator of angio-

genesis, and is induced through signalling via VEGFR2

and protein kinase C [43,44]. These findings are consist-

ent with a role for VASH1 as a key regulator of EC biol-

ogy, and with the position of VASH1 as a hub in the

GRN with an effect on EC apoptosis.

We suggest that GRN analysis may provide a useful

compliment to traditional analysis of microarray or

RNAseq data, especially for identifying putative master-

regulators for further study. We showed that alternative

methods to identify apoptosis-associated RNAs from

time course expression data were unlikely to have

selected VASH1 as a candidate gene for subsequent

functual analaysis. Methods based on: z-scores, ANOVA

and empirical Bayes all failed to prioritise VASH1.

However, we also recognise the potential limitations of

gene network analysis. Firstly, only a few of the tran-

scripts that encode protein mediators of apoptosis are

expected to be up- or down-regulated during relatively

short time points of SFD-induced apoptosis [29] to a

sufficint degree to be included in this analysis, and SFD

is only one of many inducers of apoptosis. Therefore,

only a subset of known apoptosis-associated genes are

accessible to this type of GRN study. Secondly, many

genes known to be important in the apoptotic process

may not be “master regulators” detectable as hubs in

gene networks, which requires that they rapidly regulate

the abundance of large numbers of downstream RNAs.

Since we used timecourse microarray data from EC cells

treated with survival factor deprivation, we expected to

identify only master regulators that were specifically

related to the molecular processes that occur during this

timecourse. To be identified as a "hub" in the gene net-

work, both an RNA, and its downstream "child" RNAs,

must be significantly concordantly regulated over the

timecourse. Therefore, not all RNAs important for EC

biology will be concordantly regulated during this specia-

lised type of apoptosis, and even if they are, they will not

be identified as hubs unless they rapidly regulate the

abundance of large numbers downstream RNA tran-

scripts. Thirdly, like all in silico modelling based on micro-

array or RNAseq data, results of special interest from

GRN analysis need to be confimred using laboratory

experiments as we have done here.

Inference of local relationships within the network

Several GRN methods have proven informative for iden-

tifying regulatory hubs or cohorts of co-expressed genes

Figure 5 (a) Quantification of active caspase-3 and −7 in three independent pools of 10 HUVEC isolates treated with either a non-

targeting siRNA for 48hrs or siRNA against VASH1 for 48 hrs. HUVECs were treated 24hrs post transfection with survival factor deprived (SFD)

conditions for 24hrs before measurement. A significant difference was observed between the VASH1 knockdown and the siRNA control in the

SFD condition (P = 0.0009, paired two tailed t-test). (b) Quantification of the ADP:ATP ratio in three pools of 10 HUVEC isolates treated with either

a non-targeting siRNA for 48hrs or siRNA against VASH1 for 48hrs. HUVECs were treated 24hrs post transfection with SFD conditions for 24hrs

before measurement (P = 0.02). P = Pool.
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in complex eukaryotic cells, which are involved in im-

portant disease processes [10,45-47]. However, most of

these methods fall short of inferring directional relation-

ships at a local level. Therefore, having identified the

VASH1 hub based on network topology, we examined

the GRN predictions surrounding this hub in more de-

tail. Using siRNA we knocked down VASH1 mRNA and

determined the effect on expression levels of down-

stream mRNAs for ten out of VASH1's 31 GRN children.

Seven out of the ten children tested were significantly

up- or down-regulated in the direction predicted by the

GRN (see Table 1). The lack of clear influence of VASH1

knock-down on three child-transcripts may be due to

several factors: (i) Reducing VASH1 RNA may have little

effect on the abundance of those gene network children

of VASH1 that are strongly influenced by other parents

in addition to VASH1 - the undiminished effects of these

other parents would be expected to hide the effect of re-

ducing VASH1 expression. (ii) Regulatory relationships

that are not represented in the GRN may influence the

expression of some of VASH1's gene network children,

(iii) Despite best efforts, the effects of experimental noise

and unintended model over-fitting are likely to have

introduced error in the inference process. These issues

are further described in our recent publications [48,49].

It is possible that additional siRNA data may improve

the accuracy of GRNs around VASH1, which is a subject

for future research.

Whether the observed level of concordance between the

network predictions and the results of experimental

VASH1 knockdown only surrounds the major hubs within

the Bayesian network structure, or is randomly distributed

throughout the network, requires further investigation.

Due to resource constraints we have only evaluated a mi-

nority of edges downstream of a single hub. This is clearly

not enough to draw any general conclusions about GRNs

and their reliability. Given further resources, we would

like to evaluate the relationships between VASH1 and the

remaining 21 children that we have not yet tested, as well

as the relationships between several other nodes and their

children. To more completely test local network relation-

ships we would ultimately need to simultaneously perform

siRNA-mediated "knockdown" of all the gene network

parents of each VASH1 child then measure the effect on

VASH1 child abundance. In addition, as computational

capabilities improve, it would be interesting to re-engineer

GRNs with the inclusion of more of the replicate arrays

and compare the reliability with that of the current net-

work model. Nevertheless, given the early stage of this

technology, the fact that only one (VASH1) of several par-

ents of the evaluated VASH1 children was knocked down,

and the fact that there are data missing from the network

(due to computational constraints it contains only 694

transcripts), these current findings appear promising.

Functional significance of the VASH1 gene network hub

To investigate whether the VASH1 hub was biologically

relevant during endothelial apoptosis, we used siRNAs

targeted against VASH1 to reduce mRNA abundance to

<20% of its initial level and quantified the level of apop-

tosis in these cells under conditions of SFD relative to

control cells transfected with an irrelevant siRNA. The

measurement of active caspase-3 and −7 and the ADP:

ATP ratio were used as end-points and the knock-down

of VASH1 conferred resistance to the pro-apoptotic

stimulus of serum deprivation. This confirms a role for

VASH1 in the process of EC apoptosis, and is consistent

with a study published since this research was conducted

that shows over expression of VASH1 induced apoptosis

in proliferating human fibroblasts [50].

Although the mechanism by which VASH1 regulates

EC survival is beyond the scope of this study, it is intri-

guing to examine the function of VASH1’s GRN children

in the anticipation that this may suggest how VASH1

acts. Ingenuity Pathways Analysis (IPA) suggested that

the VASH1 GRN children are significantly enriched for

genes associated with angiogenesis (FDR = 0.025), in-

cluding several well-known angiogenic regulators; BDNF,

DLL4 (delta-like 4), FLT4 (vegfr-3), PPARA, PTX3,

SOX18, TIE1, and TNFSF12 (tweak). Several of the

VASH1 children have previously been associated with

the linked control of proliferation and apoptosis e.g.

CDKN1C (p57/kip2), CDC2L6, GSN (gelsolin) and DLL4.

It is interesting that 20 of the 31 VASH1 children have

binding sites for members of the E2F transcription factor

family in their promoters (V$E2F1_Q3, FDR = 0.002);

experiments to assess whether E2F transactivation is

regulated by VASH1 may be worthwhile.

One mechanistic hypothesis was investigated in this

study. The autocrine action of BDNF in cellular processes

including angiogenesis, proliferation, differentiation and

survival is well documented [51-53]. Therefore, the in-

verse relationship between VASH1 and its validated child

BDNF, suggests a hypothesis that upregulation of BDNF

when VASH1 is knocked down may promote survival.

However, recombinant BDNF was unable to rescue the

cells from SFD induced death. It is possible that the

chosen concentration of recombinant BDNF (100nM) and

time point of administration were not optimal. However,

the results suggest that it is unlikely that the mechanism

of VASH1 action in EC apoptosis is as simple as up-

regulation of BDNF. The relatively low expression of the

BDNF high affinity (TrkB) and the low affinity (p75NTR)

receptors observed in the microarray data from these cells

(TrkB, percentile rank expression = 0.142113 and p75NTR,

percentile rank expression = 0.414449 in healthy HUVEC)

may also explain why exogenous BDNF was not effective.

Since this study was conducted, several publications

have described the role of VASH1 in regulating EC
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proliferation, vascular tube generation and vascular mat-

uration [50,54] [55], as well as a potentially wider func-

tional role in other cell types [56]. In addition, VASH1

may interact in complex functional networks with

related proteins such as VASH2 to regulate angiogensis

and EC survival differently in distinct angiogenic

mechanisms [57]. Whatever its mechanism of action,

VASH1 appears to be associated with angiogenesis in

pathology [43,58], and further investigation of the mo-

lecular networks that surround VASH1 seem highly

worthwhile.

Conclusion
GRN analysis is able to supplement the reductionist

methods of traditional molecular biology, providing test-

able hypotheses about the synergistic actions and inter-

actions of multiple molecules [59]. We therefore applied

Bayesian GRN methods to further our understanding of

the regulation of EC apoptosis and proliferation. The

SFD Bayesian GRN generated in this study identified

VASH1 as a candidate master regulator, which we found

was functionally important during EC apoptosis. We also

found that several individual directed edges emanating

from VASH1 in the GRN appeared to operate in ECs. We

hope that in future studies the datasets we describe here

can be used by other researchers to identify additional

candidate master regulators for laboratory evaluation.
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