
Copyedited by: MANUSCRIPT CATEGORY: APPLICATIONS NOTE

[11:30 9/8/2012 Bioinformatics-bts368.tex] Page: 2267 2267–2269

BIOINFORMATICS APPLICATIONS NOTE Vol. 28 no. 17 2012, pages 2267–2269
doi:10.1093/bioinformatics/bts368

Genome analysis Advance Access publication June 28, 2012

VAT: a computational framework to functionally annotate variants
in personal genomes within a cloud-computing environment
Lukas Habegger1,∗,†, Suganthi Balasubramanian1,2,†, David Z. Chen3,†, Ekta Khurana1,2,
Andrea Sboner4,5, Arif Harmanci1,2, Joel Rozowsky1,2, Declan Clarke6, Michael Snyder7

and Mark Gerstein1,2,3,∗
1Program in Computational Biology and Bioinformatics, 2Department of Molecular Biophysics and Biochemistry,
3Department of Computer Science, Yale University, New Haven, CT 06520, USA, 4Department of Pathology and
Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065, 5Institute for Computational Biomedicine,
Weill Cornell Medical College, New York, NY 10021, 6Department of Chemistry, Yale University, New Haven,
CT 06520 and 7Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
Associate Editor: Michael Brudno

ABSTRACT

Summary: The functional annotation of variants obtained through
sequencing projects is generally assumed to be a simple
intersection of genomic coordinates with genomic features. However,
complexities arise for several reasons, including the differential
effects of a variant on alternatively spliced transcripts, as well as the
difficulty in assessing the impact of small insertions/deletions and
large structural variants. Taking these factors into consideration, we
developed the Variant Annotation Tool (VAT) to functionally annotate
variants from multiple personal genomes at the transcript level as
well as obtain summary statistics across genes and individuals. VAT
also allows visualization of the effects of different variants, integrates
allele frequencies and genotype data from the underlying individuals
and facilitates comparative analysis between different groups of
individuals. VAT can either be run through a command-line interface
or as a web application. Finally, in order to enable on-demand access
and to minimize unnecessary transfers of large data files, VAT can be
run as a virtual machine in a cloud-computing environment.
Availability and Implementation: VAT is implemented in C and PHP.
The VAT web service, Amazon Machine Image, source code and
detailed documentation are available at vat.gersteinlab.org.
Contact: lukas.habegger@yale.edu or mark.gerstein@yale.edu
Supplementary Information: Supplementary data are available at
Bioinformatics online.

Received on January 6, 2012; revised on May 25, 2012; accepted on
June 24, 2012

1 INTRODUCTION
Recent technological advances have significantly reduced the cost
of DNA sequencing and have made it possible to sequence complete
genomes on a large scale. Currently, a number of efforts aim
to sequence and genotype large numbers of individual genomes
(The 1000 Genomes Project Consortium, 2010). These studies
have already revealed many novel single nucleotide polymorphisms

∗
To whom correspondence should be addressed.

†The authors wish it to be known that, in their opinion, the first three authors
should be regarded as joint First Authors.

(SNPs), multi-nucleotide polymorphisms (MNPs), small insertions
and deletions (indels) and structural variants (SVs). In order to assess
the functional impact of identified variants, a key objective is to
determine whether those variants intersect with annotated elements.
However, the intersection of variants with a gene annotation set is
non-trivial (Balasubramanian et al., 2011). First, a variant may affect
only a subset of the possible transcript isoforms of a given gene or
it may have different effects on alternatively spliced transcripts. For
example, a variant can affect the coding region of one transcript and
overlap the canonical splice site of another. In addition, for cases
in which neighboring SNPs (i.e. MNPs) lie within the same codon,
one must assess both SNPs simultaneously to evaluate the resultant
codon change, as considering each independently could give rise
to erroneous codon changes. Second, indels in coding regions can
either preserve the frame or introduce frameshifts. They can also
partially overlap coding exons, thereby impairing splice sites as well
as coding regions. Assessing the functional impact in such cases is
especially challenging. Lastly, large SVs can have drastic effects on
the structure of a gene if exons are removed in whole or in part. As
a result, it can be difficult to assess the overall functional impact of
different types of variants on gene structures without having visual
representations (Supplementary Fig. 1).

To address these challenges, we have developed the Variant
Annotation Tool (VAT). Like VAT, other tools have been
implemented to assess the functional impact of variants (Ng and
Henikoff, 2003; Ramensky et al., 2002; Wang et al., 2010). One
issue with these tools is that they are not cloud enabled.

Cloud-computing provides immense storage capacity and scalable
compute resources as well as the ability to share data and perform
collaborative analyses. Given the increasing rate of data production,
many foresee that sequencing reads will be stored on the cloud. In
addition, the importance of software residing in the same space as
the data on which it operates requires that the analysis pipelines
processing these reads migrate to the cloud as well. Thus, as VAT
will constitute an integral part of such pipelines, having it reside on
the cloud will be necessary.

Thus, we provide VAT as a virtual machine (VM) that can be run
within a cloud-computing environment (including that operated by
Amazon) to take advantage of the scalability and unlimited storage

© The Author(s) 2012. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/28/17/2267/245662 by U
.S. D

epartm
ent of Justice user on 16 August 2022

lukas.habegger@yale.edu
mark.gerstein@yale.edu
http://bioinformatics.oxfordjournals.org/cgi/content/full/bts386/DC1
http://bioinformatics.oxfordjournals.org/cgi/content/full/bts386/DC1

Copyedited by: MANUSCRIPT CATEGORY: APPLICATIONS NOTE

[11:30 9/8/2012 Bioinformatics-bts368.tex] Page: 2268 2267–2269

L.Habegger et al.

Annotation Set

VAT Executables

Variants Calls

snpMapper, indelMapper, svMapper genericMapper

Detailed Summary of Annotated Variants

A

B

VAT

Executables

VAT Web Application

 Public HTML / API

S3 enabled

S3 disabled

Local Disk

Non-coding ElementsCoding Elements

Virtual Machine (VM)

Web Server / EC2 Instance

C

VM 1

VM 2

VM n

Master

UserScalable VAT

Cloud Service

 Input

Bucket

Output

Bucket

I/O LayerI/O

Layer

VAT

Executables

VAT

Executables

VAT Auxiliary Utilities
Preprocessing of Annotation Sets, Visualization & Summarization of Annotated Variants

Fig. 1. (A) VAT comprises a number of modules that relate variants to both
protein-coding genes and non-coding elements. These modules use a set
of variants and an annotation set as inputs to generate annotated VCFs.
(B) Architecture of the VAT web application. The web application may be
accessed through the browser or a JSON-based interface. The I/O layer of
VAT takes advantage of the Amazon S3 service and stores all data in S3
buckets or, if S3 support is disabled, simply writes to a local disk. This
architecture may also be easily scaled to use more sophisticated storage
schemes, such as hashing across multiple input and output buckets. (C) The
VAT EC2 cloud service is implemented in a service-oriented architecture
consisting of a master node and a number of worker nodes. The master node
hosts the user-facing interface and delegates tasks on behalf of the user to
the worker nodes

capacity offered by this framework. The utility of VAT has been
demonstrated by its extensive use in annotating the loss-of-function
variants obtained as part of the 1000 Genomes Project (MacArthur
et al., 2012).

2 FEATURES AND METHODS
VAT is implemented in C for efficiency, and consists of a number
of modules to pre-process gene annotation sets, intersect variants
from multiple individuals with both coding and non-coding genes,
generate summary statistics across these individuals and at the
single gene level and provide clear visualization summarizing the
functional impact of the annotated variants. The overall workflow
is depicted in Figure 1A.

A number of modules in VAT relate variants to protein-coding
genes (snpMapper, indelMapper and svMapper) and non-coding
elements (genericMapper). These four core modules use an
annotation set and a set of variants from multiple individuals as
inputs. The variants are typically represented using the Variant Call
Format (VCF; Danecek et al., 2011). A key feature of VAT is that the
annotation is performed at the transcript level to determine whether
all or only a subset of the transcript isoforms of a gene is affected.

Therefore, the output explicitly shows which isoforms are affected
by each variant and provides detailed information about the location
of a given variant within a transcript as well as the variant’s effect
on its coding potential. In addition, a principal advantage of VAT
lies in its ability to annotate MNPs. Moreover, VAT can be executed
using gene annotation sets and genome builds beyond human, such
as Arabidopsis thaliana.

VAT contains a number of utilities for the downstream analysis
of annotated variants. For instance, an auxiliary module generates
detailed summaries of annotated variants across multiple individuals
as well as at the level of single genes. For variants intersecting
protein-coding genes, VAT includes a module for generating an
image for each gene to give a clear overview. This schematic
representation displays the various transcript isoforms of a gene,
which are superimposed with the annotated variants (Fig. 1A).

As shown in Figure 1B, VAT uses the Amazon web services
cloud-computing platform. Each instance comprises a command-
line executable of the VAT pipeline and a PHP web application,
which serves as the user interface and driver for the pipeline. The
VAT I/O abstraction layer may be customized using the configuration
file to take advantage of Amazon’s simple storage service (S3). With
S3 support enabled, VAT reads input from a bucket storing raw VCF
files and stores output in another bucket. Otherwise, VAT reads and
writes locally.

The VAT cloud service uses the Amazon Elastic Compute
Cloud (EC2) platform, and it is implemented in a service-oriented
architecture consisting of a master node and a number of worker
nodes. Each node consists of a VAT installation running on an EC2
VM (Fig. 1C). The master node hosts user-facing web components
and serves as a load balancer for the worker nodes. A user action
is forwarded by the master node as a request to one of the worker
nodes. Each worker node communicates with the S3 buckets and
reports updates to the master node asynchronously. VAT also uses
the Amazon EC2 API to allow the master node to dynamically create
worker instances. Intensive batch requests may thus be parallelized
and handled efficiently. The S3 buckets’ growing data are then
available for further analyses.

3 CONCLUSIONS
In summary, VAT offers a combination of unique advantages in
variant annotation. First, VAT operates as a VM in a cloud-
computing environment, which is likely to serve as the future
framework for the collaborative analysis of rapidly growing datasets.
Second, VAT provides a novel means of clearly visualizing the
functional impact of variants across different transcript isoforms of a
given gene. Third, VAT can be used to functionally annotate MNPs,
which has often been challenging. Fourth, VAT provides output files
in VCF format. This readily facilitates the post-processing of output
files with tools that are already widely used by the community,
such as those used for variant filtering. Given that VAT has been
an integral part of many analyses conducted as part of the 1000
Genomes Project, we believe that it will be of broad utility in other
research contexts.

ACKNOWLEDGEMENT
We thank Raymond Auerbach for critical reading of this article.

2268

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/28/17/2267/245662 by U
.S. D

epartm
ent of Justice user on 16 August 2022

Copyedited by: MANUSCRIPT CATEGORY: APPLICATIONS NOTE

[11:30 9/8/2012 Bioinformatics-bts368.tex] Page: 2269 2267–2269

VAT

Funding: National Institutes of Health.

Conflict of Interest: none declared.

REFERENCES
Balasubramanian,S. et al. (2011) Gene inactivation and its implications for annotation

in the era of personal genomics. Genes Dev., 25, 1–10.
Danecek,P. et al. (2011) The variant call format and VCFtools. Bioinformatics, 27,

2156–2158.

MacArthur,D.G. et al. (2012) A systematic survey of loss-of-function variants in human
protein-coding genes. Science, 335, 823–828.

Ng,P.C. and Henikoff,S. (2003) SIFT: predicting amino acid changes that affect protein
function. Nucleic Acids Res., 31, 3812–3814.

Ramensky,V. et al. (2002) Human non-synonymous SNPs: server and survey. Nucleic
Acids Res., 30, 3894–3900.

The 1000 Genomes Project Consortium. (2010) A map of human genome variation from
population-scale sequencing. Nature, 467, 1061–1073.

Wang,K. et al. (2010) ANNOVAR: functional annotation of genetic variants from high-
throughput sequencing data. Nucleic Acids Res., 38, e164.

2269

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/28/17/2267/245662 by U
.S. D

epartm
ent of Justice user on 16 August 2022

	VAT: a computational framework to functionally annotate variants in personal genomes within a cloud-computing environment
	1 INTRODUCTION
	2 FEATURES AND METHODS
	3 CONCLUSIONS

