
VC Dimension of an Integrate-and-Fire Neuron
Model

Anthony M. Zador
�

Barak A. Pearlmutter
�

To appear (1996) in Neural Computation 8(3)

Abstract

We compute the VC dimension of a leaky integrate-and-fire neuron model. The VC
dimension quantifies the ability of a function class to partition an input pattern space,
and can be considered a measure of computational capacity. In this case, the function
class is the class of integrate-and-fire models generated by varying the integration
time constant τ and the threshold θ , the input space they partition is the space of
continuous-time signals, and the binary partition is specified by whether or not the
model reaches threshold at some specified time. We show that the VC dimension
diverges only logarithmically with the input signal bandwidth N. We also extend this
approach to arbitrary passive dendritic trees. The main contributions of this work are
(1) it offers a novel treatment of the computational capacity of this class of dynamic
system; and (2) it provides a framework for analyzing the computational capabilities
of the dynamical systems defined by networks of spiking neurons.

1 Introduction
A central concern in computational neuroscience is understanding the functional signifi-
cance of single neuron complexity. On the one hand, the success of artificial neural network
models, which begin with the notion that brain-like computation can be well described
by large interconnected networks of very simple elements, argues that the computational
capabilities of the individual elements can be neglected. On the other hand, a vast body
of research (see e.g. McKenna et al. (1992)) supports the notion that single neurons are
complex dynamical systems, able to perform a wide range of interesting computations.
Brown et al. (1992) have argued for a synthesis of these positions: if individual neurons
have computational significance, then perhaps each should be considered a micronet in its
own right.

In order to assess the computational signficance of single neurons, it would be
useful to have a quantitative measure of computational capacity. The Vapnik-Chervonenkis�
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dimension (1971) can be considered such a measure for static neural networks (or, more
generally, for any boolean function class.) It is a measure of the richness of the mappings
possible within a class of functions, and typically increases as the size of the network (i.e.
number of free parameters) increases. Such measures have not been applied to models of
real neurons, in part because real neurons are dynamical systems.

There is as yet no satisfactory general theory of computation in dynamical systems.
As a step in that direction, we have extended the notion of the VC dimension to dynamical
systems. We consider the class of noiseless leaky integrate-and-fire threshold models with
time constant τ and threshold θ driven by continuous-time inputs; we then extend our
analysis to noisy inputs. These models have been developed as simplified descriptions of
the more complex dynamics of real neurons. We define the VC dimension in terms of the
ability of this class to assign an arbitrary boolean “label” to each input signal; the largest
number of signals to which every possible labeling can be assigned is its VC dimension.
We show that the VC dimension diverges logarithmically with the input signal bandwidth
N.

2 Review of VC dimension
The VC dimension Vapnik and Chervonenkis (1971) is a measure of the richness of a class
of boolean functions. It gives an upper bound on the number of exemplars required to
guarantee that a set of parameters fit to data will provide a good fit for new data (Blumer
et al. 1989). It has been applied in the neural network literature to give a measure of the
number of patterns needed to train a network of a given size. Here we present a brief
overview of the VC dimension in the context of neural networks (see Abu-Mostafa (1989)
for an introduction.)

Let F � ℜN � � 0, 1 � , and fw � F be some member of that class. For example, F
could be the class of all 3-layer feedforward threshold networks with N inputs, 12 hidden
units, and one output, parameterized by c = 12N + 25 weights, and fw would be some partic-
ular choice of the c-dimensional weight vector w. For every set 	 = (I (1), . . . , I(M)) of inputs,
any choice of w = w 
 specifies an M-digit binary string Yw � = fw � ( 	 ) = (fw � (I(1)), . . . , fw � (I(M)))
in which the mth digit corresponds to the output of fw on the mth input I(m); varying w will
in general produce a different binary string. Yw � , which is actually a function of the inputs,
Yw � (I(1), . . . , I(M)), can be thought of as the truth table for a particular choice of w = w 
 on
the inputs. Now in principle Yw can take on 2M possible values; but for large M there may
not be choices of w that instantiate every possible binary number. When there exist 2M

values of w such that Yw takes on all the 2M possible values, the function class F is said to
shatter the set of inputs I. This leads to the VC dimension dVC of F: the VC dimension is
the largest number M for which there exists a set of inputs (I (1), . . . , I(M)) which is shattered
by F.

In the context of learning theory the VC dimension is useful because of a relation
between the number of labeled exemplars in a training set and the probability of generating
the correct output on a new exemplar (Vapnik and Chervonenkis 1971). If the number of
exemplars is greater than the VC dimension, then the probability of producing an incorrect
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Figure 1: The model. An input signal I(t) is convolved with a kernel and passed through
a threshold to produce a binary output. The output of three distinct kernels, differing only
by the time constant τ, to the same input is shown. The input has been constructed so
that for low (τ = 1 � 3) and high (τ = 1) values, V(t) remains below the threshold θ . For
an intermediate value (τ = 1 � 2) V(t) exceeds θ at the * and emits a spike. Note that the
fluctations around the threshold are very small, indicating a high sensitivity of the system
to noise.

response decreases exponentially with the number of exemplars. Much work has gone into
computing the VC dimension of certain classes of neural networks (Baum and Haussler
1989; Anthony 1994; Maass 1995).

3 An Integrate-and-fire Classifier
The classifier we consider is a leaky integrate-and-fire unit with two free parameters: a
single time constant τ and a threshold θ , as shown in figure 1. The inputs are continuous
time signals, and the output is a binary variable determined by whether the voltage exceeds
the threshold at any time t.
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The voltage V(t) of the unit at time t is given by the convolution of the input I(t)
with a single exponential kernel w(t) = e  t � τ ,

V(t) = � t

0
I(t � ξ) e  ξ � τ dξ . (1)

The convolution kernel has only a single exponential; this corresponds to the output of a
single RC integrator.

We now define Ṽ as the voltage at the end of the interval [0, tf ],

Ṽ = V(tf ).

The output Y of the unit over this interval is a binary variable, obtained by applying a
threshold θ to Ṽ ,

Y = sgn(Ṽ � θ). (2)

Notice that the voltage V(t), t < tf does not involve thresholding; the threshold is imposed
only at t = tf , so the present model is an integrate-and-fire model without reset. Only when
V(t) remains subthreshold over the interval does it give the the same output as standard
integrate-and-fire models, which reset after each threshold-crossing. If we would like our
results to carry over to resetting models, we must be careful to consider inputs that do not
cause V(t) to exceed threshold prematurely.

4 Convolution as a product
We now consider the temporal discretization into evenly spaced intervals, t0, . . . , tN 1,

Ṽ =
N  1�
i=0

Iiwi, (3)

where Ii = I(tN  1 � ti) and N is the signal bandwidth, with

wi = e  ti � τ . (4)

This is simply the discrete convolution of the input Ii with a kernel wi. Note that this
equation can be interpreted as a one-output perceptron with an N-dimensional input vector	 and a weight vector � . We observe that due to the physical constraints of positive time
constants τ > 0, and ti ≥ 0, we find a constraint on wi,

0 ≤ wi ≤ 1. (5)

In eq. (3), we used the conventional represention of the discrete convolution as a
sum. In assessing the VC dimension it will be convenient to work with an equivalent
representation as a product. We observe that the convolution eq. (3) is polynomial in w1,
since

wi = e  i∆t � τ = (w1)i, (6)
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where ∆t = ti+1 � ti. We can therefore write

Ṽ =
N�

i=0
Ii(w1)i = IN

N  1�
i=0

(w1 � ri) (7)

where ri are the N = tf � ∆t + 1 roots of the polynomial.
Eq. (7) expresses the output Ṽ of the integrate-and-fireunit as a polynomial of degree

N in the weight kernel wi, specified by the parameter w1. The output is a function of τ, since
the weight kernel is related to τ by eq. (6). The coefficients wi of the sum, and therefore
the locations ri of the roots, are determined by the inputs. Different integrate-and-fire units
may assign different outputs to a given input as the parameter w1 is varied. The advantage
of the product representation is that it allows us to see explicitly the critical values of w1 at
which the output in response to a given input changes. Specifically, the critical values are
the roots ri of the polynomial. Since the roots are determined by the input signal itself, the
critical values of w1 depend on the input itself, and will in general be different for different
inputs.

4.1 Constructing a shatterable set of inputs
The key construction of this section (illustrated in figure 2) is a procedure for “inverting” the
integrate-and-fire neuron, by constructing an input signal I(t) given a list of w1 values and
corresponding responses (spike vs. no spike.)1 For now we consider only the zero-threshold
case.

Before proceeding, let us specify the elements of the construction. We will form a
set of input vectors 	 (1), . . . , 	 (M). Each N-dimensional input vector is obtained by sampling
a continuous waveform I(t) at N uniformly spaced points. For any given value of w1, eqs. (2)
and (3) determine the binary value of the output Y (m) in response to input 	 (m). Thus each
value of w1 specifies an M-digit binary number, in which the mth digit is the output Y (m) in
response to input 	 (m). We call Y (m) the label associated to the input 	 (m) by a given value
of w1, and Y is the M-digit label associated by a given value of w1 to the set of M inputs.
There are 2M possible such labels associated with any set of M inputs. Recall that if a set
of 2M values of w1 can be specified, such that this set associates all possible labels Y to the
input set, then this set is said to shatter the inputs. The VC dimension is the largest value
of M for which a shattering set of w1s can be found.

Our task is therefore to construct set of M inputs and specify a corresponding set of
2M values of w1 such that the input set is shattered. We begin by considering how the labeling
of a given input varies with w1. That is, what is the mth digit, considered as a function

1If a finer temporal discretization is desired, adding extraneous roots gives the inputwaveform more sample
points without introducing extra sign changes. If explicitly continuous-time inputs are to be constructed, one
can consider the Laplace transform of the input, and note that the desired outputs correspond to simple sign
constraints in the Laplace domain. A function in the Laplace domain that meets the constraints can be
concocted, and an inverse Laplace transform gives the corresponding time-domain input. There is a great deal
of freedom in this concocting, but one natural class of inputs resulting from the inverse Laplace transform is
a series of modulated delta pulses. It is interesting to note that the inputs neurons typically receive consist of
a series of action potentials.
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Figure 2: Diagrammatic representation of the construction of an input which results in
output spikes at particular desired neuronal time constants τi. Given a set of time constants
τi and associated binary desired outputs, a single temporal input is constructed which has
the property that, when the neuron’s time constant is set to τi, the associated desired output
is produced. The construction proceeds in stages: the time constants are passed through
a function, the transitions in the desired outputs are marked and arbitrary points in the
corresponding intervals are chosen, a polynomial with these points as roots is constructed,
and the coefficients of this polynomial form the desired temporal input. To construct a set
of 2M shatterable inputs, this construction is used 2M times.

of w1, of the label Y associated with the input 	 (m)? Using the product representation of
the convolution from the previous section, we observe that the label changes whenever w1

passes through a root. Within the interval between two roots, ri < w1 < ri+1, the label
remains unchanged. We can therefore conveniently manipulate the labeling associated with
a given input by judicious placement of the roots. In fact, once the roots are specified, the
input is obtained simply by multiplying out the product in eq. (7) to obtain the coefficients
Ii.

Now we turn to the M-digit label Y associated with a specified value of w1. For this
we hold w1 fixed, and consider the label associated with each input 	 (1), . . . , 	 (M) in turn;
these are the digits of Y . But since we have already shown how to obtain the desired label
for any particular input—by placing the roots appropriately—obtaining the desired label Y
for a given w1 merely requires choosing the roots associated with each input in turn. Thus
we have a procedure for constructing an input set that associates a specified label Y with
the input set for a particular value of w1.
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4.2 VC dimension depends on signal bandwidth
So far we have shown how to construct an input set labeled by a specified Y for a given
value of w1. The final step requires constructing an input set that is shatterable—a set for
which Y assumes all 2M possible values, at 2M values of w1, 0 < w1 < 1. That is, we must
partition the w1-axis into 2M regions. The boundaries between the regions are determined
by the roots: the presence of a root at some w1 for the mth input means that the mth digit of
Y changes at that value of w1. The number of digit changes is NM: N roots/input times M
inputs.

Since Y is an M-digit binary string that we require to assume all 2M possible values,
we can regard this as counting in binary. Now counting from 0 to 2M � 1 in standard
binary involves 2M log M digit changes. For example, the transition from 01112 = 7 to
10002 = 8 involves 4 digit changes. In order to make best use of the NM roots, we therefore
adopt a different counting scheme, a Gray’s code,2 so that only NM digit changes are
required. Figure 3 shows how to construct a shatterable set of M = 2 inputs using this
scheme. Here the requisite bandwidth is N = 2. The roots of the first input 	 (0) are placed
at r(0) = (1 � 8, 3 � 8, 6 � 8). Expanding as in eq. 7 gives the actual sampled values of 	 (0).

The number of roots of each polynomial is determined by the temporal discretization
N. For a set of M bandlimited signals, there are at most NM distinct roots, which can be
used to divide the w-axis into NM + 1 regions

number of labels = NM + 1.

Thus the VC dimension is determined by the sampling rate. To achieve dVC = M, we choose
a sufficiently large N given by

N = � 2M � 1
M � , (8)

where ����� indicates rounding up to the largest integer. This shows that with a sufficiently high
sampling rate an arbitrarily high VC dimension can be achieved. Since N is determined by
the sampling rate of a continuous signal, the VC dimension of a signal of infinite bandwidth
is unbounded. It is important to note, however, that the dependence of the VC dimension
on the signal bandwith is only logarithmic, and therefore the divergence is weak.

4.3 Threshold: Preventing Premature Discharge
The model we have been considering (eqs. 1 and 2) has no reset; Ṽ does not depend on
whether V(t) exceeds threshold at any time within the interval 0 ≤ t ≤ tf . This of course
is not the expected behavior from an integrate-and-fire model. Typically, integrate-and-fire
models reset V(t) � 0 after discharging (sometimes imposing a refractory period as well.)

The inputs we have constructed will not typically be shattered by an integrate-and-
fire model with reset. However, by using a non-zero threshold, we can construct a new

2A Gray’s code is an ordering of the binary numbers 0, . . . , 2M � 1 such that adjacent numbers differ in
only one digit. For our purposes, we choose a Gray’s code in which all digits changes state the same number
of times, namely 2M � M times.
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Figure 3: A set of shattered inputs. M = 2 input signals are constructed such that there exist
neuronal time constants τ1, τ2, τ3, τ4 that induce all 2M = 4 possible labelings.

set of inputs that is shattered. First we set the threshold to exceed the maximum over the
interval, θ > maxt<tf V(t). We now add the threshold to the final term of each input signal
(corresponding to the constant term of the associated polynomial) to create a new set of
inputs I 
 . These new inputs differ only at I0,

I 
0 = I0 + θ .

(Note that because of the definition of 	 in eq. (3), I0 corresponds to I(tf ), i.e. it is the last
point of the sampled waveform.) Since w0 = 1, this shift guarantees that digit changes,
which previously occured when Ṽ crossed zero for different values of w1, now occur when
Ṽ crosses θ .

5 Special cases and extensions

5.1 VC dimension for purely positive inputs
The VC dimension of a system with purely positive inputs is 1. This is of interest when
considering inputs generated by purely excitatory synaptic inputs. To show this, we note
first that by construction, the shattering inputs oscillate around 0. That is, for each input,
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subsequent points Ii and Ii+1 have opposite sign. This follows from eq. 7: the nth order
coefficient is generated by the sum of the products of N � n negative terms (since ri > 0),
which is positive if N � n is even and negative otherwise. Conversely, if I is purely positive,
then the roots are all negative and imaginary. They are therefore physically unrealizable
under our assumptions (eq. 5.) Thus the VC dimension is 1. Adding a threshold creates
only at most one new root.

5.2 Passive dendritic trees
In the integrate-and-fire model we have been considering, the integrating kernel consists of
a single exponential time constant, corresponding to a single RC circuit. One generalization
of this model is to passive dendritic trees. Using the classic result that the convolution kernel
(i.e. the Green’s function) can be approximated as the sum of z exponentials,

W(t) = c1e  t � τ1 + ⋅ ⋅ ⋅ + cze  t � τz .

Then the voltage can be represented by

V(t) = � t

0
I(t � ξ) W(ξ) dξ .

Discretizing as before, we have

Ṽ =
N  1�
i=0

IiWi,

where
Wi = c1(w1)i + ⋅ ⋅ ⋅ + cz(wz)i.

The effect of the dendritic tree is therefore to increase the number of roots for a given
bandwidth from NM to NzM, since now for each of the M inputs there are now zN rather
than N roots. The requisite bandwidth N to shatter M inputs is now

N = � 2M � 1
zM � , (9)

where as before ��� indicates rounding up to the largest integer. This is less by a factor of z
than in the case of a single exponential.

5.3 The effect of input noise
Finding that a concept class has unbounded VC dimension should be taken as a sign
that issues of noise, precision, and physical realizability are the only bounds on PAC
generalization. For instance, convex polygons in the plane have unbounded VC dimension.
This is in contrast to a finite VC dimension, which means that even with unlimited precision
and zero noise, there is a PAC generalization bound.

Here we consider the effect of noise added to the inputs. In general, noise in a
system with signal power constraints determines a maximum resolvable frequency, which
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in the present context determines N, the signal bandwidth. The VC dimension depends
only logarithmically on N, so although eq. 8 is formally a divergence of the VC dimension,
actually this divergence is only logarithmic, and therefore weak. In practice, for any
physically realizable system, the VC dimension given by eq. 8 will be quite small.

Another way to think about this is to suppose that	 
 = 	 + � (10)

where � is gaussian white noise. From eq. (7), we have

Ṽ 
 =
N  1�
i=0

I 
i(w1)i (11)

=
N  1�
i=0

ni(w1)i +
N  1�
i=0

Ii(w1)i (12)

= z + Ṽ (13)

where ni and Ii are the ith components of the input and noise, respectively. The first term (the
random variable z) is the weighted sum of N iid gaussian variables, so it is also a gaussian,
with variance σ2

z ; the second term is just Ṽ in the noise-free case.
So how does this effect the VC dimension? Noise in this sense does not fall into the

classical VC framework (but see Bartlett, Long, and Williamson (1994).) Nevertheless, the
effect is clear: there is some probability Pm of misclassifying each input. This probability
depends on Ṽ and on z: it is the probability that sgn(Ṽ + z) ≠ sgn(Ṽ). If both z and Ṽ are
0-mean, then this is just Prob( � Ṽ � �!� z � < 0) � 2 (we divide by 2 because half the time z has
the same sign as Ṽ and so doesn’t change its sign.)

What is the misclassification error associated with z? This depends on the ratio Ṽ � z,
which looks like a kind of signal to noise ratio. However, the natural measure of the signal
strength is " I2

i , and it is this quantity that should participate in the signal to noise ratio.
Because of the manner in which they are constructed, for typical signals Ii is largest around
N � 2. If the roots are uniformly distributed between 0 and 1, we can actually estimate the
typical signal strength as a function of N just by multiplying out the polynomial.

Numerical simulations suggest that very large signal to noise ratios are required to
keep the error reasonable for even moderate values of N, even larger than those called for
by the bandwidth requirements, which after all constitutes only an upper bound.

6 Discussion
This is to our knowledge the first application of the VC dimension to a dynamical system.
We consider the thresholded output of an integrate-and-fire model to impose a binary
partition on a set of continuous-time input signals. We have shown that the VC dimension
of this model diverges logarithmically with the input signal bandwidth N.

Because our analysis is stronger than the usual VC dimension calculation, the
consequences for generalization are slightly more robust to prior knowlege than the generic
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PAC bound.3

6.1 Implications for single neuron computation
There is an extensive literature demonstrating the computational potential of single neurons
and networks. Koch et al. (1982) showed how an AND-NOT of two inputs could be
performed in the passive dendritic tree of a retinal ganglion cell, and suggested that this
might play a role in the computation of directional selectivity. Shepherd and Brayton
(1987) implemented a complete set of logic operations at single spines using Hodgkin-
Huxley channels and inhibitory inputs for NOT. Zador et al. (1992) showed how calcium-
and voltage-dependent channels could implement a kind of temporal XOR in the dendritic
tree, without additional inhibitory inputs. Maass (1996) has shown that networks of simple
spiking neurons possess rich computational properties, in the sense of complexity theory.

None of these demonstrations attempted a quantification of the overall computational
capacity of a single neuron. To our knowledge, the only attempt to quantify the ability of
a single neuron to partition an input space is Mel (1992). He implemented a model of
a cortical neuron with nonlinear NMDA conductances in the dendritic tree, and with a
biologically-motivated Hebb rule trained it to partition 100 high-dimensional patterns into
two classes. The error rate on this set using various measures was about 10%. Note
that the model class we consider—purely passive dendritic trees with integrate-and-fire
nonlinearities—is more restricted than the NMDA-based nonlinearities considered by Mel
(1992).

We have described a more formal approach to the analysis of single neuron compu-
tation. This approach takes into account the temporal structure of inputs. It puts a bound
on the ability of a simple model to partition an input space. Because of the exponential
dependence of the signal bandwidth required to achieve a given VC dimension (eq. 8), un-
der reasonable physical assumptions the VC dimension must be quite small. The exquisite
sensitivity to noise in the inputs further limits the number of inputs that could be shattered
by any physically realizable system. This number can be considered to be less than 10.

The model we consider is of course a caricature of a real neuron—the dynamics
of real neurons are much more complex (see e.g. McKenna et al. (1992).) The leaky
integrate-and-fire model with reset is nevertheless a standard starting point for considering
dynamical aspects of neuron behavior. A recent careful examination of its validity (Koch,
Bernander, and Douglas 1995) supports the notion that for rapidly varying input signals of
the kind considered here it offers a good first approximation.

3In order to show that the VC dimension of a concept class is at least M, one must show that there exists
some set of 2M concepts which shatters some set of M inputs. Here we have shown something more general,
since our construction proceeds for any set of 2M concepts from our concept class. Given any set of 2M

concepts, we can find a set of M inputs that these concepts shatter. This has consequences in the application to
PAC learning (Valiant 1984), where it corresponds to generalizing one of the two worst-case assumptions of
the PAC criterion. So the PAC lower bound on generalization here requires the usual worst-case assumption
over distributions of inputs, but remains true for any reasonable distribution over concepts.
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6.2 The VC dimension and dynamical systems
A useful rule of thumb is that the VC dimension often turns out to be roughly proportional
to the number of free parameters. This is true, for example, in feedforward linear threshold
networkss, where the VC dimension is equal to the number of free weights, up to a
logarithmic factor (Baum and Haussler 1989). In our case, we expected the VC dimension
to be about two, since there were two free parameters (θ and τ.) Furthermore, a small VC
dimension for the integrate-and-fire model conforms to our intuitive notion of the simplicity
of this model. In fact, eq. (3) shows that the integrate-and-fire model can be considered as
a kind of perceptron, and thus can only impose linear partitions on the input space.

We were therefore surprised to find that for noiseless inputs, the VC dimension
was unbounded. However, the apparent power of the integrate-and-fire unit arises not
from a nonlinear partitioning, but rather from a linear partitioning in a space of unbounded
dimension.4 A similar dilemma arises when the discrete formulation of Shannon entropy
is applied to continous variables: the information content of a noiseless random variable is
infinite (since, for example, any message can be encoded in its decimal expansion.) Any
finite noise, of course, renders finite the discrete entropy of the continuous variable.

Just as the discrete entropy of a continuous variable becomes finite in the presense
of noise, so the unbounded VC dimension collapses when any notion of noise is included.
We considered two ways noise could limit the VC dimension. First, the bandwidth of
the signal is implicitly due to noise, and the VC dimension diverges logarithmically with
the input signal bandwidth. Second, we considered the effect of noise added explicitly
to the signal, and found that the probability of misclassification was a very steep function
of the VC dimension. In both cases, the apparent VC dimension in the presense of noise
conformed much more closely with our intuitive notion that it should be rather small.

It will be interesting to see whether related notions of computational capacity, such
as those derived from work on average generalization (Haussler, Kearns, Seung, and Tishby
1994), can be extended to dynamical systems in a similar way.
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