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Abstract Motivated by statistical learning theoretic treatment of principal compo-
nent analysis, we are concerned with the set of points in R

d that are within a certain
distance from a k-dimensional affine subspace. We prove that the VC dimension of
the class of such sets is within a constant factor of (k + 1)(d − k + 1), and then dis-
cuss the distribution of eigenvalues of a data covariance matrix by using our bounds
of the VC dimensions and Vapnik’s statistical learning theory. In the course of the
upper bound proof, we provide a simple proof of Warren’s bound of the number of
sign sequences of real polynomials.

Keywords VC dimensions · Principal component analysis · Warren’s bound

1 Introduction

Given a set of data x1, . . . , xn ∈ R
d , one may wish, for the sake of analysis, to trans-

form them into a space of lower dimension, say k < d . A commonly used transform
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is principal component analysis (PCA, [4, p. 111]), which projects the data into the k-
dimensional affine subspace H ⊆ R

d that minimizes the mean square distance from
the data

1

n

n∑

i=1

dist(xi,H)2, (1)

where dist denotes the Euclidean distance. The minimum squared distance remp is
the sum of the k largest eigenvalues of a symmetric matrix, called data “covariance
matrix,” made from the data.

If the data are drawn independently from some fixed probability distribution, then,
according to Vapnik’s statistical learning theory [12], as the number l of data goes
to infinity, the affine subspace H that minimizes the mean (1) does not necessarily
converge, but remp does converge in probability to infH Ex[dist(x,H)2], where the
expectation is with respect to the distribution of the data x. In fact, the convergence
can be slow, if the set system induced by PCA has large Vapnik–Chervonenkis dimen-
sion (VC dimension). The upper bound of the VC dimension gives non-asymptotic,
distribution-independent evaluations both for the convergence rates, and for the sam-
ple complexity in the style of computational learning theory [3].

Definition 1.1 For sets X ⊆ R
d and Y ⊆ X, we say that a set B ⊆ R

d cuts Y out
of X if Y = X ∩ B . A class C of subsets of R

d is said to shatter a set X ⊆ R
d if

every Y ⊆ X is cut out of X by some B ∈ C . The VC dimension of C , denoted by
VCdim(C), is defined to be the maximum n (or ∞ if no such maximum exists) for
which some subset of R

d of cardinality n is shattered by C .

The set system induced by PCA in the sense of [12, Theorem 5.4] is Cd
k defined

below. For example, Cd
0 , C 2

1 , C 3
1 , and C 3

2 are the classes of balls, usual bands, cylinders,
and slabs, respectively.

Definition 1.2 Let d and k < d be nonnegative integers. For a k-dimensional affine
subspace H of R

d and a nonnegative real number r , the set {x ∈ R
d : dist(x,H) ≤ r }

is called the band with center H and radius r . Define Cd
k to be the class of all such

bands.

Since this set system is described uniformly by real polynomials, an upper bound
of VC dimension is derivable by Milnor–Thom bound [10] for the number of con-
nected components of algebraic varieties, or Warren’s bound [13, Theorem 3] on the
number of sign sequence of real polynomials. Unfortunately, a direct application of
such theorems is not enough to yield our upper bound (2).

However, we will establish a sharp upper bound, which does not follow from a di-
rect application of the Milnor–Thom bound or Warren’s bound, and will additionally
establish a lower bound from which VCdim(Cd

k ) = Θ((d − k + 1)(k + 1)) follows.

(d − k + 1)(k + 1) ≤ VCdim
(

Cd
k

) ≤ (8.740 . . .)(d − k + 1)(k + 1). (2)

The coefficient 8.740 . . . in the upper bound of VCdim(Cd
k ) comes from a refined

version of Warren’s bound which will be stated in Sect. 3 and proved more succinctly
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with Sard’s theorem rather than Warren’s, where Sard’s theorem is a basic and com-
mon tool for differential geometry. We will also try to make explicit methodologi-
cal difference between our evaluation of the number of sign sequences and Basu–
Pollack–Roy’s homological approach [1, 2] to a more general problem.

For the better order (k + 1)(d − k + 1) of the upper bound of VCdim(Cd
k ), we

choose a more concise description for an affine subspace, based on a fact that any
linear space is represented as the image of a linear mapping as well as the kernel of
another.

The lower bound (2) of VCdim(Cd
k ) is derived in Sect. 2 from a recurrence formula

for VCdim(Cd
k ), and is independently derived from a specific geometric configuration

of (k + 1)(d − k + 1) points in R
d , shattered by Cd

k .
Although these bounds are not tight because of an easy fact (1 + 1)(2 − 1 + 1) =

4 < VCdim(C 2
1) = 5 and so on, our asymptotically tight order VCdim(Cd

k ) = Θ((k +
1)(d −k+1)) explains that approximating data by a k-dimensional affine subspace is
equally hard as approximating data by an orthogonal complement of a k-dimensional
affine subspace. This suggests a strategy of structural risk minimization [12] for PCA.

Another implication of our evaluation of VCdim(Cd
k ) is related to a study of John-

stone [6] on the distribution of the largest eigenvalue of the data “covariance matrix”
where the data are drawn from the multi-dimensional standard normal distribution.
In the final section, by using (2) with Vapnik’s statistical learning theory [12], we
will discuss the tail probabilities of the distribution of any k eigenvalues of the data
“covariance matrix” for the same situation, and then we will mention possible future
work.

2 The Lower Bounds

A simple observation comes in handy for the later use: if Cd
k shatters a finite set

X ⊆ R
d , then it does so with margins; more precisely, there is a margin δ > 0 such

that each Y ⊆ X is cut out of X by some element of Cd
k whose boundary is at least δ

apart from every point of X.

Lemma 2.1 Let X ⊆ R
d be a set of affinely independent d + 1 points. Then there is

r0 > 0 such that for all r > r0, the class of closed balls with radius r shatters X with
margins.

Proof For any Y ⊆ X, it is easy to see that there is an open half-space H that cuts Y

out of X. Let l be a line orthogonal to the boundary of H . For each r > 1, let Br be
the closed ball of radius r − 1/r whose center lies on l at a distance r from H . Since
H = ⋃

r>1 Br , we have Y ⊆ BrY for some rY > 0. For each r > rY , the interior B◦
r of

Br contains BrY , and hence Br cuts Y from X with margins. Thus, r0 = maxY⊆X rY
satisfies the condition. �

Theorem 2.2 For any nonnegative integers d and k < d , we have

VCdim
(

Cd+1
k+1

) ≥ VCdim
(

Cd
k

) + d − k + 1.
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Proof Let X ⊆ R
d be any set of size VCdim(Cd

k ) that is shattered by Cd
k . In the next

paragraph, we will construct a set Z ⊆ R
d of d − k + 1 points with the following

property: for each Y ⊆ X and W ⊆ Z, there are bands A, B ∈ Cd
k that are parallel,

have equal radii, and cut out Y and W from X and Z, respectively. Once this is done,
we choose a number λ > 0 and show that Cd+1

k+1 shatters (X × {0}) ∪ (Z × {λ}), thus
proving the first bound.

Since X is shattered by Cd
k , each Y ⊆ X is cut out by some AY ∈ Cd

k . Let NY be the
(d − k)-dimensional linear subspace of R

d orthogonal to the center of AY . Let Z ⊆
R

d be a set of d − k +1 points that are mapped to distinct affinely independent points
by each orthogonal projection πY : R

d → NY . By Lemma 2.1, each image πY (Z) is
shattered with a margin by closed balls of radius r , whenever r is greater than some
r0. Since there are only finitely many Y ⊆ X, this r0 can be taken uniformly. By
scaling Z down if necessary, we may assume that r0 is less than the radius of AY for
any Y ⊆ X. Then for each W ⊆ Z, the image πY (W) is cut out of πY (Z) by some
(d − k)-dimensional closed ball EY,W ⊆ NY with the same radius as AY . We have
thus found bands A = AY and B = π−1

Y (EY,W ) as desired above.
Now let λ > 0 be a large number to be determined later. To show that (X × {0}) ∪

(Z×{λ}) is shattered by Cd+1
k+1 , let (Y ×{0})∪(W ×{λ}) be arbitrary subset of it. Take

A, B ∈ Cd
k as above that correspond to these Y , W . Let HA and HB be their centers.

Let C ∈ Cd+1
k+1 be the band whose center passes through HA × {0} and HB × {λ}

and which has the same radius as A and B . As λ increases, the sections C0 = {x ∈
R

d : (x,0) ∈ C } and Cλ = { z ∈ R
d : (z, λ) ∈ C } approach A and B , respectively.

Since A and B cut out Y and W with margins, so do C0 and Cλ, whence C cuts out
(Y × {0}) ∪ (W × {λ}), for large enough λ. Since there are only finitely many Y and
W , such a λ can be taken uniformly. �

In [5], it is stated that the VC dimension of Cd
0 is less than or equal to d + 1. By

Lemma 2.1, it is exactly d + 1. Thus we have

Corollary 2.3 For any nonnegative integers d and k < d ,

VCdim
(

Cd
k

) ≥ (k + 1)(d − k + 1).

A concrete set of size (k + 1)(d − k + 1) that is shattered by Cd
k is given below:

Theorem 2.4 For any nonnegative integers d and k < d , the class Cd
k shatters the

set R × E ⊆ R
d of (d − k + 1)(k + 1) points, for the vertex set R ⊂ R

d−k of some
sufficiently small (d − k)-dimensional regular simplex, and for some set E ⊂ R

k

consisting of k pairwise orthogonal unit vectors in R
k and the origin.

3 A Bound on the Number of Sign Sequences

It is a standard way to employ the Milnor–Thom bound [10], Warren’s bound
[13, Theorem 3] on the number of sign sequences for algebraic varieties, and so
on, to evaluate from above the VC dimension of a set system such that each set is
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uniformly described by real polynomials. The following theorem is an improvement
of Theorem 2 of Warren [13], in a sense that the coefficient is slightly better than his.
By this theorem, we prove our upper bound (2) in the next section.

Define sgnx to be +, − or 0 when x ∈ R is positive, negative or zero, respectively.

Theorem 3.1 Let m,d be positive integers, and f1, . . . , fs, g1, . . . , gt be real polyno-
mials in m variables, each of degree d ≥ 1. Suppose that equation g1 = · · · = gt = 0
define an L-dimensional smooth submanifold V of R

m. If s > m, then the number of
elements of {+,−}s that arise as (sgnf1(x), . . . , sgnfs(x)) for some x ∈ V does not
exceed

d(2d − 1)m−1
L∑

k=0

2k

(
s

k

)
. (3)

We remark that this bound (3) is smaller than (4d)m(es/L)L, because d(2d −
1)m−1 ≤ (2d)m and

∑L
k=0 2k

(
s
k

) ≤ 2m
∑L

k=0

(
s
k

) ≤ 2m(es/L)L. The last inequality is
due to, for example, Blumer et al. [3, Proposition A2.1].

Warren [13, Theorem 3] has proved Theorem 3.1 with this looser bound for the
special case where t = 0 (and thus V = R

m and L = m). His proof was based on
the observation that the number in question is bounded by the number of connected
components of R

m \ ⋃s
i=1{x ∈ R

m : fi(x) = 0 }. In general, {x ∈ R
m : fi(x) = 0 }

are not smooth manifolds, and they can intersect badly, we need technically intricate
arguments to estimate the number of these components. Here we present a simpler
proof by directly estimating the number of sign sequences.

Proof of Theorem 3.1 Let Σ ⊆ {+,−}s denote the set of such sequences. For each
I ⊆ {1, . . . , s}, let VI be the set of x ∈ V for which fi(x) = 0 for all i ∈ I .

We first claim that for almost every a = (a1, . . . , as) ∈ R
s , replacing each fi by

fi −ai makes VI empty for all sets I = {i1, . . . , iL+1} of size L+1. To see why, note
that for VI to be nonempty, the vector a must belong to the inverse image π−1

I [NI ]
of NI = { (fi1(x), . . . , fiL+1(x)) : x ∈ V } under the canonical projection πI : R

s →
R

L+1. By Sard’s Theorem [11], NI is a null set, and thus so is the union of π−1
I [NI ]

over all I . Hence the claim follows. Now, if each ai is sufficiently close to 0, replacing
fi by fi −ai removes no element from Σ . We may therefore assume that VI is empty
for all I of size greater than L.

Let Γ be the set of all triples (I, S,W) consisting of a set I ⊆ {1, . . . , s} of size L

or smaller, a mapping S from I to {+,−} and a connected component W of VI . VI

has at most d(2d − 1)m−1 components by the Milnor–Thom bound [10], because VI

is the common real zeros of m-variate real polynomials of degree at most d . So the
size of Γ is bounded by (3). It therefore suffices to give an injection ϕ from Σ into
Γ .

For each σ = (σ1, . . . , σs) ∈ Σ , let I ⊆ {1, . . . , s} be a maximal set (with respect
to set inclusion) for which there is x ∈ VI that satisfies sgnfi(x) = σi for all i /∈ I .
Choose such an x and call it xσ . As assumed above, I is of size at most L. This
justifies defining ϕ(σ) = (I, S,W), where S(i) = σi for each i ∈ I and W ⊆ VI is
the component containing xσ .
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To see that ϕ is injective, suppose ϕ(σ) = ϕ(σ ′) = (I, S,W). Since W is con-
nected, there is a continuous path c : [0,1] → W from xσ = c(0) to xσ ′ = c(1). Let T

be the set of t ∈ [0,1] such that sgnfi(c(t)) = σi for some i /∈ I . Since T is closed,
it has a minimum element t0 unless it is empty. But then fi(c(t0)) would be 0 for
one or more i /∈ I and have sign σi for all other i /∈ I , contradicting the maximality
of I . Hence, T must be empty, and thus σi = σ ′

i for all i /∈ I . Since σi = S(i) = σ ′
i

for i ∈ I as well, σ = σ ′. �

To end this section, we put some remark. In [1], Basu–Roy–Pollack evaluate from
above the total number of the ith Betti numbers of the realizations of all realizable
sign conditions of f1, . . . , fs over the set {x ∈ R

m : g1(x) = · · · = gt (x) = 0} by
the Oleinik–Petrovski–Milnor–Thom bound and an elaborated inductive argument
with the Mayer–Vietoris long exact sequence (for a more homological treatment, see
another paper [2] of theirs.) Since a realizable sign sequence contributes to the 0th
Betti numbers of the realizations, their evaluation implies Theorem 3.1, however,
with a larger base, which results in a looser upper bound of the VC dimensions we
are concerned with. But by counting directly the number of sign sequences with the
help of Sard’s Theorem, we derive a slightly refined version of Warren’s theorem with
a simple proof which is more elementary than Warren’s.

4 The Upper Bounds

In [8, Proposition 10.3.2], it is stated that the class Qd of sets {x ∈ R
d : p(x) ≥ 0 }

such that p is any real polynomial of total degree at most 2, has the VC dimension
less than or equal to (d + 1)(d + 2)/2. Because Cd

k ⊆ Qd , we have a trivial upper
bound (d + 1)(d + 2)/2 of VCdim(Cd

k ). The following upper bound is improvement
when k is close to either 0 or d .

Theorem 4.1 VCdim(Cd
k ) ≤ (8.740 . . .)(k + 1)(d − k + 1).

This evaluation is used in the next section. First, we prove technical lemmas. For
terminology about manifolds, see [11].

Lemma 4.2 Let a ≤ b be positive integers. Let V be the set of b × a real matrices F

such that

(1) The column vectors of F are orthonormal; and
(2) The (i, j)-component Fij of F is 0 for any 1 ≤ i < j ≤ a.

Then V is a nonempty a(b − a)-dimensional smooth submanifold of R
b×a .

Proof The set V is nonempty, as it contains the b×a matrix (δij )1≤i≤b,1≤j≤a , where
δij is Kronecker’s delta. Let M be the set of all b × a real matrices F satisfying (2).
Clearly, M can be identified with R

ab−a(a−1)/2. Define ϕ : M → R
a(a+1)/2 by ϕ =

(ϕν)ν , where ν ranges over all pairs (l,m) such that 1 ≤ l ≤ m ≤ a, and

ϕν(F ) =
∑

u

FulFum − δlm.
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Then V = ϕ−1({0}). So the proof will be complete by implicit function theorem, if
we show that the Jacobian matrix Jϕ at F is full-rank, i.e., rankJϕ = a(a + 1)/2.
Here the Jacobian matrix is

(Jϕ)νμ = ∂ϕν

∂Fμ

= ∂

∂Fuv

(
∑

w

FwlFwm − δlm

)
= δvlFum + δvmFul,

where μ is any pair (u, v) such that 1 ≤ v ≤ a, v ≤ u ≤ b, and Fμ is Fuv . Let
F ∈ ϕ−1({0}). For each λ = (i, j) with 1 ≤ i ≤ j ≤ a, define p(λ) ∈ R

ab−a(a−1)/2

by (p(λ))μ = δviFuj . Then
∑

μ(Jϕ)νμ(p(λ))μ = δil

∑
u FumFuj + δim

∑
u FulFuj ,

where u ranges over 1 ≤ u ≤ b. It is δilδmj + δimδlj because F ∈ ϕ−1({0}). Thus∑
μ(Jϕ)νμ(p(λ))μ is 1 + δij > 0 for λ = ν, and 0 otherwise. Hence, rankJϕ =

a(a + 1)/2. �

Let (Cd
k )� be the set of elements of Cd

k whose center intersects with the
(d − k)-dimensional subspace x1 = · · · = xk = 0 at exactly one point. Note that
VCdim(Cd

k ) = VCdim((Cd
k )�) because if some set of points is shattered by Cd

k then
it is shattered with margins by Cd

k , which implies that it is shattered by (Cd
k )� by

appropriate perturbation.

Lemma 4.3 Let L = (k + 1)(d − k) + 1. Then, there exist a positive integer
m ≤ 2L, an L-dimensional smooth submanifold V in R

m defined by m−L quadratic
equations in m variables, and Φ : V → Cd

k with the following properties:

(a) VCdim(Cd
k ) = VCdim(Φ(V )); and

(b) For each p ∈ R
d , there exists a quadratic polynomial in m variables fp such that

for all x ∈ V , fp(x) > 0 if p belongs to the interior of Φ(x), while fp(x) < 0 if
p /∈ Φ(x).

Proof First, we consider the case k ≥ d/2. Let m = (d − k)(d + 1) + 1. Then it is
indeed m ≤ 2L. For (F, b, r) ∈ R

m where F is a d × (d − k) real matrix, b ∈ R
d−k

and r ∈ R, we consider a system of (d − k)2 = m − L quadratic equations
∑

u

FuiFuj − δij = 0 (1 ≤ i ≤ j ≤ d − k),

Fi+k, j = 0 (1 ≤ i < j ≤ d − k).

This defines an L-dimensional smooth submanifold V of R
m by the previous lemma.

For (F, b, r) ∈ V where F ∈ R
d×(d−k), b ∈ R

d−k and r ∈ R, define Φ(F,b, r) ∈
Cd

k to be the band with center { z ∈ R
d : (F�)z = b } and radius |r|. Here � is the

transpose of a matrix. Then Φ satisfies (a), since Φ(V ) ⊆ Cd
k contains (Cd

k )�. More-
over, for p ∈ R

d , define fp by

fp(F,b, r) = r2 − ∥∥(
F�)

p − b
∥∥2

.

This satisfies (b) because ‖(F�)p − b‖2 is equal to the square of the distance from p

to the center of Φ(F,b, r).
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Next we consider the case k < d/2. Let m = dk+d +1. Then it is indeed m ≤ 2L.
For (E, t, r) ∈ R

m where E is a d × k real matrix, t ∈ R
d and r ∈ R, we consider a

system of k + k2 = m − L quadratic equations, consisting of k equations

∑

u

tuEuj = 0 (1 ≤ j ≤ k) (4)

and k2 equations

∑

u

EuiEuj − δij = 0 (1 ≤ i ≤ j ≤ k), Eij = 0 (1 ≤ i < j ≤ k).

We can prove that the system defines an L-dimensional smooth submanifold V of
R

m, as we proved the previous lemma. For any (E, t, r) ∈ V with E ∈ R
d×k, t ∈

R
d, r ∈ R, define Φ(E, t, r) to be the band with center {Ex + t : x ∈ R

k} and ra-
dius |r|. Then Φ satisfies (a), since Φ(V ) contains (Cd

k )�. Moreover, for p ∈ R
d ,

define fp by

fp(E, t, r) = r2 − ‖p − t‖2 + ∥∥(
p�)

E
∥∥2

.

Then fp is clearly quadratic. By (4), we have ‖p − t‖2 − ‖(p�)E‖2 = ‖p − t‖2 −
‖(p − t)�E‖2, which is equal to the square of the distance from p to the center of
Φ(E, t, r). Thus we have (b). �

Now we will complete the proof of the upper bound.

Proof of Theorem 4.1 Take m,L,V,Φ as in the previous lemma. Take quadratic
polynomials g1, . . . , gm−L in m variables so that equations g1 = · · · = gm−L = 0
define V . Let {p1, . . . , ps} ⊆ R

d be a set shattered by Cd
k . By (a) of the previous

lemma, it is shattered by Φ(V ) with margins. Suppose s ≤ m. Then because the
previous lemma implies m ≤ 2L, we have s ≤ m ≤ 2L < (8.740 . . . )L as desired. If
s > m, then fp1, . . . , fps , g1, . . . , gm−L satisfy the assumption of Theorem 3.1 (here
we put m − L for t), and all 2s elements of {+,−}s must appear as a sign pattern
of fp1 , . . . , fps over V . As V is an L-dimensional submanifold of R

m, we have
L ≤ m from which L ≤ s follows by the premise s ≤ m. Hence, by Theorem 3.1, 2s ≤
2 · 3m−1 ∑L

j=0 2j
(
s
j

) ≤ 2 · 32L−1 · 2L
∑L

j=0

(
s
j

) ≤ 18L( es
L

)L, where the last inequality

is again by Blumer et al. [3, Proposition A2.1]. This gives 2s/L ≤ 18e(s/L), or s/L ≤
8.740 . . . , as desired. �

5 Discussion and Future Work—Distributions of Eigenvalues of Data
Covariance Matrix

Let x1, . . . , xn be any i.i.d. sample from the d-dimensional standard normal distrib-
ution Nd(0, Id), where the mean is the column zero vector, the covariance matrix is
the identity matrix Id of size d , and each xi is a d-dimensional column vector. John-
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stone [6] proved that if the largest eigenvalue of a d × d real matrix (
∑n

i=1 xix
�
i )

is appropriately centered and scaled, then the distribution approaches to the Tracy–
Widom law of order 1, as n/d tends to a fixed γ ≥ 1.

On the other hand, for the data covariance matrix S = 1
n

∑n
i=1 xix

�
i , as n → ∞

with d being fixed, the sum of any k eigenvalues of S tends to k almost surely, because
the law of large numbers guarantees that S converges to Id almost surely.

Below, the left and the right tail probabilities for the sum of any k eigenvalues of
S is uniformly evaluated non-asymptotically from above, by using our upper bound
(Theorem 4.1) of the VC dimensions and a theorem [12, (5.27)] of Vapnik’s statistical
learning theory. But for the right tail probability, we represent a subspace with the
kernel of a linear mapping and then employ a concentration inequality [7, (4.17)] for
the chi-square distributions.

Recall that the chi-square distribution of degree k of freedom has the pth noncen-
tral moment m(k,p) = k(k + 2)(k + 4) · · · (k + 2p − 2).

Theorem 5.1 Let x1, . . . , xn be an i.i.d. sample from the d-dimensional standard nor-
mal distribution Nd(0, Id), λ1, . . . , λk (k ≤ d) be any eigenvalues of the data covari-
ance d × d matrix ( 1

n

∑n
i=1 xix

�
i ), p > 2, and ε, δ > 0. Then, the left tail probability

of
∑k

i=1 λi satisfies the following:

P

(
k −

k∑

i=1

λi ≥ ε

(
m(k,p)

2

(
p − 1

p − 2

)p−1
) 1

p
)

≤ 4 exp

{(GCd
d−k

(2n)

n
− ε2

4

)
n

}
.

The right tail probability of
∑k

i=1 λi satisfies the following:

P

(
k∑

i=1

λi − k ≥ ε

(
m(d − k,p)

2

(
p − 1

p − 2

)p−1
) 1

p

+ δ

)

≤ 4 exp

{(GCd
k
(2n)

n
− ε2

4

)
n

}
+ exp

(
−1

2
nd

(√
1 + δ

d
− 1

)2)
.

Here GCd
d−k

and GCd
k

are the so-called growth functions of Cd
d−k and Cd

k , respectively.

In particular, if n > v/2 with v being (8.740 . . . )(k + 1)(d − k + 1), then the in-
equalities can be made concrete by replacing the two growth functions GCd

d−k
(2n)

and GCd
k
(2n) in the inequalities with v(log 2n

v
+ 1).

We put some remark on related work and future work. We are suggested by an
anonymous referee to refer papers of the local theory of Banach spaces on concen-
tration of measure that is directly relevant (e.g., [9]), and to add a comment on Tala-
grand’s work on concentration of measure. Talagrand’s inequalities for concentration
of measure are recently employed in [7, Chap. 8] for statistical learning problems
with the class of loss function being bounded, as follows:
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(1) Bousquet’s version of Talagrand’s concentration inequality for empirical proces-
ses is used to derive a new general upper bound of the difference between the
expected risk and the empirical risk.

(2) A concentration inequality is used to analyze Vapnik’s structural risk minimiza-
tion [12], a model selection method in terms of VC dimensions.

PCA has the unbounded class of loss functions x ∈ R
d �→ dist(x,H)2 where H

is any k-dimensional affine subspace. We hope for similar concentration inequalities
which improve: (1) previous Theorem for PCA and (2) model selection (i.e., selecting
k) for PCA. Anyway, it may be one of interesting directions for future work.
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