
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Departmental Papers (CIS) Department of Computer & Information Science

4-2017

vCAT: Dynamic Cache Management Using CAT Virtualization vCAT: Dynamic Cache Management Using CAT Virtualization

Meng Xu
University of Pennsylvania, mengxu@cis.upenn.edu

Linh T.X. Phan
University of Pennsylvania, linhphan@cis.upenn.edu

Hyon-Young Choi
University of Pennsylvania

Insup Lee
University of Pennsylvania, lee@cis.upenn.edu

Follow this and additional works at: https://repository.upenn.edu/cis_papers

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation Recommended Citation
Meng Xu, Linh T.X. Phan, Hyon-Young Choi, and Insup Lee, "vCAT: Dynamic Cache Management Using
CAT Virtualization", 23th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS'
17) . April 2017.

23th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS' 17), Pittsburgh, PA, April 2017

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_papers/829
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_papers
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F829&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=repository.upenn.edu%2Fcis_papers%2F829&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=repository.upenn.edu%2Fcis_papers%2F829&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_papers/829
mailto:repository@pobox.upenn.edu

vCAT: Dynamic Cache Management Using CAT Virtualization vCAT: Dynamic Cache Management Using CAT Virtualization

Abstract Abstract
This paper presents vCAT, a novel design for dynamic shared cache management on multicore
virtualization platforms based on Intel’s Cache Allocation Technology (CAT). Our design achieves strong
isolation at both task and VM levels through cache partition virtualization, which works in a similar way as
memory virtualization, but has challenges that are unique to cache and CAT. To demonstrate the
feasibility and benefits of our design, we provide a prototype implementation of vCAT, and we present an
extensive set of microbenchmarks and performance evaluation results on the PARSEC benchmarks and
synthetic workloads, for both static and dynamic allocations. The evaluation results show that (i) vCAT
can be implemented with minimal overhead, (ii) it can be used to mitigate shared cache interference,
which could have caused task WCET increased by up to 7.2 x, (iii) static management in vCAT can
increase system utilization by up to 7 x compared to a system without cache management; and (iv)
dynamic management substantially outperforms static management in terms of schedulable utilization
(increase by up to 3 x in our multi-mode example use case).

Disciplines Disciplines
Computer Engineering | Computer Sciences

Comments Comments
23th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS' 17), Pittsburgh, PA,
April 2017

This conference paper is available at ScholarlyCommons: https://repository.upenn.edu/cis_papers/829

https://repository.upenn.edu/cis_papers/829

vCAT: Dynamic Cache Management using CAT Virtualization
Meng Xu Linh Thi Xuan Phan Hyon-Young Choi Insup Lee

University of Pennsylvania

Abstract—This paper presents vCAT, a novel design for
dynamic shared cache management on multicore virtualization
platforms based on Intel’s Cache Allocation Technology (CAT).
Our design achieves strong isolation at both task and VM levels
through cache partition virtualization, which works in a similar
way as memory virtualization, but has challenges that are unique
to cache and CAT. To demonstrate the feasibility and benefits of
our design, we provide a prototype implementation of vCAT, and
we present an extensive set of microbenchmarks and performance
evaluation results on the PARSEC benchmarks and synthetic
workloads, for both static and dynamic allocations. The evalua-
tion results show that (i) vCAT can be implemented with minimal
overhead, (ii) it can be used to mitigate shared cache interference,
which could have caused task WCET increased by up to 7.2×,
(iii) static management in vCAT can increase system utilization
by up to 7× compared to a system without cache management;
and (iv) dynamic management substantially outperforms static
management in terms of schedulable utilization (increase by up
to 3× in our multi-mode example use case).

I. INTRODUCTION

Modern real-time systems are becoming increasingly complex:
they perform a variety of functions that are diverse in re-
source demands and often dynamic in nature. Traditionally,
these systems have been implemented on dedicated hardware;
however, increasingly their functionality is moving into virtual
machines (VMs) that run on a shared virtualization platform,
such as Xen, on powerful multicore servers. This trend towards
virtualization of real-time systems has many potential benefits
– including consolidation, elasticity, and better scalability.
However, today’s virtualization technology is not a perfect
match for real-time systems, as it cannot yet deliver strong
timing isolation among VMs and tasks.

An important challenge towards timing isolation in virtu-
alization on multicore hardware is that of the shared cache
interference: two concurrently running tasks (within the same
VM or from different VMs) may interfere with one another
by accessing memory addresses that are mapped to the same
cache set, resulting in cache misses that could cause deadline
misses. At first, it seems that one can always take such over-
head into account in the timing analysis; however, precisely
accounting for this overhead is theoretically challenging and
would require fine-grained information about the layouts of
the tasks in the cache and their access patterns. Further, even
if precise analyses were possible, they would still not give the
“cache isolation” guarantee that applications require.

Therefore, recent research has begun to develop ways to
mitigate this type of interference, most notably through cache
partitioning. The idea is to divide the cache into multiple non-
overlapped partitions and assign them to tasks; if concurrently
running tasks are assigned different disjoint sets of partitions
and they use only those, then they cannot interfere with each
other via concurrent cache accesses. (Note that two sequential

tasks using a common partition could still interfere with each
other via preemption or migration. However, there is already
a rich real-time literature in handling this type of interference,
which we expect can be adapted here. Therefore, we will
focus only on handling the interference caused by concurrent
accesses to the last level shared cache in this paper.)

Existing work in this domain relies on software-based
solutions, such as page coloring [17], for cache partitioning.
Most previous solutions focus on improving the average per-
formance of the system (e.g., [10, 11, 24]) and thus are not
suitable for real-time systems that require worst-case perfor-
mance guarantees. Recent work from the real-time systems
community has developed methods for achieving cache-level
task isolation using page coloring (e.g., [15, 30]); however, it
is restricted to static cache partitioning, where a fixed set of
partitions is statically assigned to each task at initialization.
While this approach is simple and easy to implement, it can
substantially under-utilize the cache and CPU resources, and
it does not work well for systems where the tasks’ timing
constraints and CPU/cache demands vary dynamically at run
time, such as in multi-mode systems (as we shall illustrate in
Section VI-D).

To bridge this gap, we present a new approach to cache
management of real-time virtualization systems that can de-
liver strong (shared) cache isolation at both VM and task
levels, and that can be configured for both static and dynamic
allocations. Unlike existing work, which is software-based, our
approach takes advantage of the Cache Allocation Technology
(CAT), a hardware feature recently added in Intel multicore
hardware for achieving core-level cache partitioning; therefore,
it is much more efficient than software-based techniques. Since
CAT only provides core-level cache isolation, we introduce
vCAT, a novel design for CAT virtualization that can be
used to achieve hypervisor- and VM-level cache allocations.
Our approach to virtualizing cache partitions is analogous to
memory virtualization: as the hardware provides a number of
(indistinguishable) physical partitions, we can expose some
number of “virtual partitions” to each VM and then transpar-
ently map them to physical partitions in the hypervisor; each
VM can then allocate its virtual partitions to its tasks statically
or dynamically at run time.

Virtualizing cache partitions also presents unique differ-
ences and new challenges that need to be considered in our de-
sign: First, although cache partitions can be “preempted” just
like physical pages, the hypervisor needs not (and cannot) save
the contents of the preempted partition; instead, it can rely on
the tasks to repopulate the partitions they are being assigned.
Second, the current hardware requires that partitions mapped
to a core must be contiguous; this needs to be enforced when
allocating partitions at the hypervisor and VM levels, and it
necessitates a procedure for handling partition fragmentation.

Finally, to provide strong cache isolation among tasks, we need
to guarantee that a task never accesses its old partitions that are
currently allocated to another task. Therefore, the guest kernel
may need to flush the partitions when it changes the partition
allocations to the tasks, and we need an efficient method for
flushing to minimize overhead.

To illustrate the feasibility of our approach, we provide
a proof-of-concept prototype of vCAT on top of Xen and
LITMUSRT . Our microbenchmarks show that our vCAT
prototype introduces only a small overhead. Our extensive
evaluations on PARSEC benchmarks and synthetic real-time
workloads show that, compared to the vanilla LITMUSRT /Xen,
static cache management in vCAT can reduce the task WCET
in the presence of interfering tasks (by up to 7.2×) and
increase the system’s schedulable utilization by up to 7×.
In addition, dynamic allocation outperforms static allocation
substantially; it improves schedulable utilization by 3× in
an example system with dynamic cache demands and timing
requirements.

In summary, we make the following contributions:
• The design of CAT virtualization for cache management

in real-time multicore virtualization systems;
• a prototype implementation of our CAT virtualization;
• extensive evaluation of the prototype’s overhead; and
• extensive empirical evaluation of the WCET and perfor-

mance benefits of static and dynamic managements.
The paper is organized as follows. We discuss related work

in Section II and an empirical study of the CAT technology
in Section II. The design and implementation of our approach
are in Sections IV and V, and we present evaluation results in
Section VI before concluding.

II. RELATED WORK

There is a rich literature on accounting techniques for cache-
related overhead in real-time systems. This line of work
focuses on private caches [3] and on analyzing the overhead
caused by preemptions or migrations [4] [6], rather than on
mitigating the overhead due to shared cache interference.
However, we expect that compositional approaches, such
as [22, 28], can be applied on top of our design to establish
cache-aware schedulability (which is an interesting research
problem but out of scope of this paper).

In non-virtualization settings, cache management has been
extensively studied for improving systems’ real-time perfor-
mance. Software-based approaches have been used to provide
both static [14, 21] and dynamic [25, 29] allocations. Previous
work has also explored hardware-based approaches to dynam-
ically allocate cache partitions to tasks, e.g., using the PL310
cache controller [27] or the Intel’s CAT [32]. Some techniques
also combine software and hardware approaches to support
finer-granularity partitions [8, 16]. However, these techniques
cannot be directly applied to virtualization platforms.

In the virtualization setting, prior research focuses primar-
ily on improving average performance [10, 11, 24], and it
considers only the hypervisor-level allocation and not VM-
level allocation. To improve worst-case real-time performance,
recent research [15, 30] has developed software-based tech-
niques that can provide task-level cache isolation; however, it

is limited to only static management, which can substantially
under-utilize cache and CPU resources, especially in cases
where tasks’ timing behavior can change dynamically at run
time. Kim et al. [13] proposed vCache, a new hardware
design for the last-level shared cache that allows a guest OS
to control the cache allocation for tasks; however, vCache
requires hardware modification and thus cannot be supported
by current commodity hardware. In contrast, vCAT introduces
a new virtualization layer for cache partitions on top of the
Intel’s CAT to provide support for dynamic cache allocation
at the task level, which cannot be achieved by both the
Intel’s CAT itself and the existing cache management for
virtualization settings [15, 30]. To the best of our knowledge,
vCAT is the first to provide dynamic cache management
for real-time virtualization systems on commodity multicore
platform that can deliver strong cache isolation among tasks
and VMs, and it is also the first that uses Intel’s CAT in a real-
time virtualization setting to achieve task-level cache isolation.

We note that the Intel’s CAT has been incorporated in Xen;
however, the current Xen CAT only supports cache allocation
at the VM level (and not tasks), does not allow more VMs with
distinct cache configurations than the number of COS registers
(i.e., four on our machine), and does not guarantee cache
isolation when the VM cache partitions are reconfigured. Due
to these limitations, we implemented a completely different
CAT management module in Xen based on our vCAT design.

An interesting use case of cache management is in de-
fending shared-cache side channel attacks [19]. We expect
that vCAT could be applied here as well, while also provid-
ing cache isolation among tasks, a property that cannot be
achieved by existing CAT-based solutions such as [18].

III. EXPERIMENTAL STUDY OF INTEL CACHE
ALLOCATION TECHNOLOGY (CAT)

The Intel’s CAT is a new hardware feature that allows the
OS or hypervisor to control the allocation of the shared last-
level cache to the physical cores. In this section, we present a
study of its behavior in the current hardware, and highlight its
implications on the design of CAT virtualization. Our study
was performed using the Intel MSR tool [2] on an Intel Xeon
E5-2618L v3 processor, which has a 20MB shared cache.

A. Background on CAT

The CAT divides the shared cache into N non-overlapped
equal-size cache partitions; for instance, N = 20 for our
experimental platform. A set of such cache partitions (specified
as an N-bit mask) can be allocated to a CPU (core) by
programming two model-specific registers: (1) The Class of
Service (COS) register, which has an N-bit Capacity Bitmask
(CBM) field to specify a particular cache partition set, and (2)
the CPU’s IA32 PQR ASSOC (PQR) register, which has a
COS field for linking a particular COS to the CPU; when this
field is set to the ID of a COS register, CAT enforces that all
cache allocation requests from the CPU will only happen in
the cache partitions specified by the CBM of that COS register.
For example, to allocate partitions 0 to 3 to a CPU, we set 1’s
for the bits 0 to 3 (and zeroing the remaining) of the CBM
field of the associated COS register.

We conducted a series of experiments to validate the oper-
ation of the Intel’s CAT. Our experiments confirmed that the
Intel’s CAT specification is correct in stating the following
constraints and in the way CAT works as advertised: (1) The
current CAT implementations only support an allocation with
at least two partitions; (2) the number of cache partitions per
CPU should not exceed the number of available partitions
(which varies across processors); and (3) the partition set of a
CPU can only be made of contiguous cache partitions.

B. Effects of cache partition configuration on WCET

To validate that any combination of contiguous partitions with
the same number of partitions has the same effect on the task’s
worst-case execution time (WCET), we constructed a task that
sequentially accesses every 64 bytes in a 1MB array for 100
times, and executed the task alone on a CPU. We enumerated
all possible combinations of two contiguous partitions; for
each combination, we allocated the corresponding partitions
to the CPU, and measured the WCET of the task across 25
runs. The results show the same WCET for the task with the
same array across all combinations.
Finding 1. Any set of contiguous partitions with the same
number of partitions have the same effect on WCET.

C. Cache lookup control

Under dynamic cache allocations, the partitions allocated to
a task can change over time. When this happens, the task
should only be allowed to access the cache lines in the newly
assigned partitions and not the old ones. The CAT ensures that
the task’s new cache allocations (which happen in cases of
cache misses) will happen in the new partitions, but the SDM
does not specify the CAT behavior for cache lookup requests
(which happen in cases of cache hits), which suggests that a
task may still be able to read from the old partitions. If so,
the task can interfere with another task that is currently using
the old partitions. To examine whether CAT controls the cache
lookup requests, we performed the following experiment using
the Intel MSR tool on Linux 3.10.31 on our implementation
platform, which has 20 cache partitions of size 1MB each.

Experiment. We reserved cache partitions 0–7 (CBM bit-
mask 0×000FF) to CPU1 and partitions 8–15 (CBM bitmask
0×0FF00) to CPU2. We flushed the entire cache initially, and
mitigated potential interference to CPU1 and CPU2 by moving
all system services to the remaining cores and assigning to
them the remaining partitions (partitions 16–19). We created
a periodic task that sequentially accesses a 4MB array. We
executed the first 10 jobs of the task on CPU1; upon comple-
tion, we migrated it to CPU2 and continued its execution until
completing the next 10 jobs. Using the Intel Cache Monitoring
Technology [1], we measured the occupied cache size in each
CPU’s cache partition set when each job finished.

Results. As shown in Fig. 1(a), the size of the occupied
cache in CPU1’s partitions is always approximately the same
as the array size (4MB), whereas the size of the occupied
cache in CPU2’s partitions is close to zero, even when the task
executed on CPU2. This can be explained as follows. When the
first job accessed the array, it experienced compulsory cache

misses and thus was allocated cache lines in CPU1’s partitions
(as enforced by CAT). However, since the entire task’s array
(4MB) fits within CPU1’s partitions (8MB), the subsequent
jobs would experience cache hits and access the array directly
from these partitions. Our experimental results show that this
happened even when the task was already migrated to CPU2
(and should no longer use CPU1’s partitions), which shows
that CAT does not control the cache lookup.

5 10 15 20
Job instance

0

1

2

3

4
4.5

O
cc

u
p

p
ie

d
 c

ac
h

e
si

ze
 (

M
B

) In CPU1's partitions In CPU2's partitions

(a) Without cache flush

5 10 15 20
Job instance

0

1

2

3

4
4.5

O
cc

u
p

p
ie

d
 c

ac
h

e
si

ze
 (

M
B

) In CPU1's partitions In CPU2's partitions

(b) With cache flush

Fig. 1: No cache lookup control in CAT.

Finding 2. The CAT does not control cache lookup requests,
and thus does not guarantee that cache accesses happen only
in the currently assigned partitions.

Challenge. Due to the lack of cache lookup control, when
a partition that was owned by a task A is re-assigned to a task
B, the previous cached items of A in this partition are simply
looked up as before. As a result, if B (the current owner)
does not happen to evict these cached items of A from the
partition, then A will continue to reference its cached items in
B’s partition.

To ensure that tasks have complete control of their parti-
tions, in certain situations it is necessary to flush the content
of a task in its old partitions when the task’s partitions are
changed. Our CAT virtualization uses this approach for real-
time tasks, thus providing strong isolation among them. Our
design also supports shared partitions (disjoint from those of
real-time tasks) for best-effort tasks, where tasks can share the
same set of partitions and no flushing is necessary.

Validation. To validate the effect of flushing, we performed
the same experiment as above, except that we flushed the cache
immediately after migrating the task from CPU1 to CPU2.
As shown in Fig. 1(b), the size of the occupied cache in
CPU1’s partitions is dropped to nearly zero as soon as the
task migrates to CPU2, whereas the size of occupied cache in
CPU2’s partitions increased to 4MB. This confirms that, with
flushing, the task only accesses its newly assigned partitions.

IV. CAT VIRTUALIZATION DESIGN

In this section, we describe the design of vCAT, as well as
the necessary changes to the guest kernel and the hypervisor.

A. Overview and roadmap

At a high level, our approach to virtualizing cache partitions
is similar to classical virtual memory; however, there are also
several important differences. We begin with the similarities:
the hardware provides a fixed number of physical cache parti-
tions that can be allocated to tasks, just like it provides a fixed
number of physical memory pages, and—just like physical

0	 1	0	 1	 2	 3	 4	 5	

Hardware

ID

0	 1	 2	 3	

VM1 (Most critical)
Global CPU scheduling

0	 1	 2	 3	

VM2 (Medium critical)
Partitioned CPU scheduling

VM3 (Low critical)
Global CPU scheduling

VM4 (Best effort)
Global CPU scheduling

s	 s	

0 1 2 3 4 5 6 7 8 9 10 11 12 13

1 1 1 1 2 2 2 2 3 3 3 3 4 4

s	 s	

VM

Tasks

VMM

OS

 T1 T2 T3

 T1

 T2

 T3

 T4
 T1 T2 T3 T1 T2 T3

Physical
partitions

Virtual
partitions

2

2 2	

2	

2

2	 2	

2	 4	 4	

Fig. 2: Dynamic cache management with CAT virtualization.
Tasks in green (white) are currently running (waiting). Parti-
tions in orange (yellow) are isolated (shared) partitions.

memory pages—the individual partitions are indistinguishable
from each other, so it should not matter to a task which specific
partitions it is using. Thus, we can simply expose some number
of “virtual partitions” to each VM (Section IV-B) and then
transparently map them to physical partitions in the hypervisor,
using a data structure that somewhat resembles a page table
(Section IV-C), and each VM can then allocate its virtual
partitions to tasks dynamically at run time (Section IV-D).
Fig. 2 shows an example of a system with CAT virtualization.

However, there are also two key differences. First, although
cache partitions can be “preempted” just like physical pages
the hypervisor needs not – and, indeed, cannot – save the
contents of the partition it is preempting. Instead, it can rely on
the tasks to repopulate the partitions they are being assigned.
Second, the CAT specification contains a requirement that
allocations are contiguous. This needs to be taken into account
when allocating partitions, and it requires a procedure for
handling partition fragmentation (Section IV-E).

The technical approach is similar to virtual memory: al-
locations are enforced at a per-core level, using the COS
registers, just like each core has a separate page-directory
base register (CR3), and the hypervisor is able to request traps
on accesses to these registers to perform a “partition context
switch” (Section IV-F). When the hypervisor or guest kernel
changes the partition allocations to the VMs or tasks, it may
need to flush the partitions if necessary (Section IV-G).

B. API changes

In order to implement a virtual CAT, we need to make four
changes to the API: (1) the VMM must be able to tell the
guest kernel how many partitions are available; (2) tasks must
be able to request partitions from the guest kernel; (3) the
guest must have a way to report the allocation, as well as any
changes, to the VMM; and (4) the operator must have a way
to control how partitions are divided up between the various
VMs and to set/modify the mapping from virtual to physical
partitions for each VM. We describe each in turn.

Since the hardware already contains a mechanism for re-
porting the number of available partitions (via the cpuid in-
struction), we can simply repurpose this mechanism to achieve
the first goal: the hypervisor can trap on the cpuid instruction
– which Xen already does – and change the relevant value. We
do not see a good reason for reporting more partitions than
are physically available, but there may be good reasons to
report fewer, e.g., if the operator has divided up the available

partitions between multiple VMs. If the guest kernel were to
allocate more virtual partitions than the hypervisor is willing
to give it, this would lead to many expensive preemptions, so
it may be preferable to report the smaller number right away.

The current Linux API does not contain a system call for
requesting cache partitions, so we added a call of our own that
simply takes a requested number of partitions as its argument.
Taking a COS-style bitmask seemed unnecessary because a
task should not need to know which specific partitions it is
being given – much like a task normally should not need to
know which physical memory pages it is using.

We achieve the third goal by providing virtual COS reg-
isters. Thus, the guest kernel can use the same procedure to
allocate partitions, whether it is running in a VM or on bare
hardware. A hypercall could be added if the guest needs to
communicate richer information to the VMM, e.g., to request
a temporary increase in the number of partitions it can use.

To achieve the fourth goal, we added several hypercalls
that can influence the partition-to-VM allocation (which we
describe next), and we provided a small command-line utility
for the operator to use.

C. Hypervisor-level partition allocation

When allocating partitions to VMs, the hypervisor can take
three basic approaches: first, it can divide up the available
physical partitions, which guarantees each VM that its par-
titions will not need to be preempted; second, it can allow
the partitions to become oversubscribed, which can lead to
preemptions; or, third, it can allow partitions to be transpar-
ently shared between VMs. The first two options are similar
to physical memory, whereas the third is unique to the cache.

The first approach is clearly preferable for tasks and VMs
with strict real-time requirements, since it achieves very good
isolation; however, given the very small number of partitions
that are available on current CPUs, it seems practical for only
the most critical tasks and VMs (e.g., VM1 in Fig. 2). We
expect the second approach to be the default choice (e.g., VM2
and VM3 in Fig. 2). The third approach could be used for best-
effort tasks: for instance, the operator could reserve 15 of the
20 partitions for hard real-time tasks and share the remaining
five among all the non-real-time tasks. This would prevent the
latter from interfering with the former. In Fig. 2, this approach
was used for tasks in VM4.

Internally, the hypervisor requires only two data structures
to implement these policies: (1) for each VM i, a mapping
from virtual partition numbers v to physical partition numbers
Pi(v), and (2) a flag for each physical partition to indicate
whether the partition is shared. For example, the system in
Fig. 2 set the shared flags (denoted as S in the figure) for
partitions 12 and 13. In Section IV-F, we describe how these
data structures are used during a partition context switch.

To meet the CAT specification, we enforce that the number
of partitions allocated to each VM i must be at least two, and
the partition numbers Pi(v) must be contiguous. In our current
prototype, these data structures must be configured manually
by the operator. (The operator can use the provided utility to
modify these data structures at run time, e.g., when a new
VM is created or an existing VM is destroyed.) However, we

note that there is a rich literature on working-set estimation [9,
31] and on memory management for real-time tasks [12, 20],
which can be adapted for use with cache partitions.

D. Guest-level partition allocation

Just like the hypervisor, the guest kernel must allocate the
available partitions to its tasks, based on the requests they have
made. However, unlike the partition-to-VM allocation which
does not change frequently, the partition-to-task allocation is
done dynamically as tasks are scheduled. In our prototype,
we simply allocate the partitions to real-time tasks based on
either a first-come-first-served basis or criticality, and we share
any unallocated partitions among all the best effort tasks.
Since allocating zero partitions would effectively disable the
cache, which would lead to an enormous slowdown, the kernel
reserves a small number of partitions for these tasks and does
not allow these partitions to be reserved by the real-time
tasks. The kernel always allocates at least two, and always
contiguous, virtual partitions to a task.

E. Partition defragmentation

Although future hardware may no longer need the contiguous
partition allocations, current hardware does. This raises the
possibility of “partition fragmentation”: it could be that there
are k total partitions available but not with contiguous partition
numbers, which would prevent a request for k partitions from
being satisfied at that point. This problem can appear both in
the hypervisor and in the guest kernel.

However, there is an easy way to fix this problem when
it appears: the kernel or hypervisor can “defragment” the
partitions by preempting some allocations and by replacing
them with others, so that the unallocated partition numbers
are again contiguous. The caveat is that this can cause a
temporary loss of performance as the tasks are repopulating
their preempted partitions, which can lead to deadline misses.
This can be alleviated somewhat by moving the partitions
of less critical tasks first, or by carefully configuring the
virtual-to-physical mappings. In our prototype, we disable
automatic defragmentation in the highly critical VMs and at
the hypervisor (since reallocating partitions to VMs requires
flushing the addresses of some VMs); the operator can trigger
defragmentation manually when she considers it to be safe.

F. Partition context switch

In order to enforce the partition allocation at the VM level,
the hypervisor must update the COS registers whenever it
performs a partition context switch. To this end, the hypervisor
maintains, for each physical partition n, the ID I(n) of the VM
that is currently using that partition.

A partition context switch from a VCPU of VM i to a VCPU
vcpu j of VM j is done as follows: the hypervisor first iterates
over all of the target’s virtual partition numbers n = 0 . . .k;
if the n.th bit of vcpu j’s virtual COS is set, the hypervisor
looks up the corresponding physical partition number Pj(n)
and checks whether (1) I(Pj(n)) 6= j, and (2) the partition
Pj(n) is not shared. If the preemption-based strategy is set
and VM j has higher criticality than every VM I(Pj(n)) for
which both conditions (1) and (2) hold, then the hypervisor

preempts the VCPU that is currently using Pj(n) and clearing
all bits of the COS register of the core on which that VCPU
is running. Next, the hypervisor updates the physical COS
register of the core on which vcpu j is scheduled (by setting
only Pj(n), n = 0 . . .k and clears all the other bits), setting
the ID I(Pj(n)) = j for all n = 0 . . .k. In addition, if it did
preempt a VCPU, it also then invokes a rescheduling event
to the scheduler. Notice that a preemption happens only in
cases where a partition is assigned to more than one VM,
but is not shared. In Fig. 2, physical partitions 6 and 7 are
oversubscribed by both VM2 and VM3; since VM2 has higher
criticality than VM3, its VCPUs can preempt VM3’s VCPUs.
Here, the hypervisor preempts the VCPU currently executing
T1 of VM3, and switches the partitions’ owner to the VCPU
on which T3 of VM2 will execute.

If the guest kernel is not CAT-aware, it will not modify
its virtual COS from the default value (all partitions active),
and the above process is sufficient. If the guest does modify
the virtual COS (e.g., during a guest-level partition context
switch), the kernel must intercept these accesses and modify
the physical COS register and the ID of the physical partitions.
Fortunately, the COS registers are machine-specific registers;
they are updated with the wrmsr instruction, which is privi-
leged and causes a guest exit when invoked. When the hypervi-
sor intercepts an access, the procedure is analogous to an inter-
VM partition context switch. Notice that the hypervisor cannot
know whether the guest kernel is reassigning a partition from
one task to another; hence, the guest must keep ownership
information for the virtual partitions similar to the hypervisor’s
I(n).
G. Flushing
At first glance, it may seem that, when a cache partition is
reassigned from one VM or task to another, updating the
COS register is all that is required. However, as discussed
in Section III-C, if the new owner does not happen to evict
all cached content of the previous owner from the partition,
the previous owner will continue to reference its cached items
and prevent the new owner from gaining full control over the
partition. To reliably avoid this, it is necessary to flush the
previous owner’s content from the cache when it is assigned
a new set of partitions that is not a superset of its previous
partitions, if the previously-assigned partitions are not shared.1

For this purpose, we maintain for each task τi its currently
assigned set of virtual partition numbers Si. A flushing is
initiated when τi is scheduled to run and if it is assigned a new
set of partition numbers S′i such that S′i + Si and there exists
v∈ Si−(Si∩S′i) where the shared flag of v is 0. Consider VM1
in Fig. 2, for instance, which has two VCPUs. Suppose T3 was
previously assigned partitions S3 = {0,1}, but it is preempted
by T1. Suppose later, T2 finishes, then the kernel will assign
partitions S′3 = {2,3}+ S3 to T3. Since T3 may still access its
old partitions 0 and 1 via cache hits, which are now owned
by T1, we need to flush the content of T3 in these partitions.

Notice that partitions are only re-allocated at the hypervisor
level when a mapping of virtual-to-physical partition numbers

1If the previous owner’s new partitions include all of its old partitions, it
experiences cache hits only in its own (old/new) partitions, and thus cannot
access the partitions currently assigned to another running task.

changes; therefore, flushing at the hypervisor level happens
only very infrequently (i.e., during defragmentation or trig-
gered by the operator when a VM joins or leaves the system,
or when some VMs request more partitions).

Ideally, we would like to simply flush the specific partition
whose ownership is changing (e.g., partitions 0 and 1 in the
above example). However, the current CAT does not provide a
way to do this, so our only option is to flush the cache contents
of the entire VM or task that is being replaced. The Intel CPUs
offer two ways to do this: the clflush instruction, which
flushes the cache line that contains a specific linear address,
and the wbinvd instruction, which writes back any modified
data in the cache and then invalidates the entire shared cache.
(A third option, the invd instruction, would simply discard
modified cache lines, so it is not an option here.) When the
clflush instruction is used to flush the cache content of a
task, it is issued on all valid linear addresses (not the entire
virtual address space) of the task, with a step of a cache line
(i.e., 64B). The linear addresses of a task can be found in the
task’s control block.

Neither option is strictly better than the other: clflush
can avoid side effects on other tasks by flushing specific con-
tent, and it is potentially faster than wbinvd if the previous
owner’s working set is small; however, it can also be slower
if there are a lot of addresses to be flushed. For simplicity,
our implementation uses wbinvd for the hypervisor-level
flushing. At the guest level, it uses a simple heuristic to choose
the option to use: if the previous owner’s working set is
smaller than a threshold Thresh, it uses clflush, otherwise
wbinvd. In Section V, we will discuss in more detail how
this threshold can be chosen.

V. IMPLEMENTATION

Next, we describe a prototype of vCAT that we have built for
our experiments. Our prototype extends the Xen hypervisor
(version 4.6) and LITMUSRT 2015.1 guest kernel, running on
top of the Intel Xeon CPU E5-2618L v3 processor.

A. Extended data structures and API

We extended the task structure to include a field for specifying
the number of partitions a task requests, a execOnFewer
flag that is set when the task can execute even if it receives
fewer (non-zero) partitions than the requested number, and a
set of currently allocated partition numbers. By default, a real-
time task can only execute if it is allocated partitions, and
concurrently running real-time tasks do not share partitions to
ensure isolation. We added a system call that allows a task (or
the operator) to request a different number of partitions from
the guest kernel at run time.

A VCPU’s virtual COS register in a VM has the same
format (bit mask) and operation as that of a physical COS
register, except that it specifies the virtual partitions allocated
to the VCPU’s currently running task. Like physical partitions,
each virtual partition has a shared flag that is set if the
partition can be shared among concurrent tasks; this is useful
for allocating a shared set of virtual partitions to concurrent
tasks (e.g., the standard global EDF scheduling without cache
allocation within a VM).

B. Partition allocation and partition context switch

Hypervisor-level allocation: We implemented a command-
line utility for the operator to configure the virtual-to-physical
mappings Pi and the shared flags of the physical/virtual par-
titions.2 For simplicity, we require the operator to configure
these data structures when a new VM is created; she can also
modify them at run time if desired. To fully utilize the cache,
our prototype allows the physical partitions oversubscribed by
VMs (and performs a VM partition context switch, if needed).

We also implemented a hypercall that allows a guest to
release some unused partitions or request more partitions at run
time. In our prototype, the hypervisor simply puts the released
partitions in an unused pool and later allocates them to any VM
that requests additional partitions. Internally, whenever there
is a change in the virtual-to-physical mappings, the hypervisor
invokes the mapping procedure, which updates the mapping Pi
for each (relevant) VM and the physical COS registers, as well
as performs a VM partition context switch and/or flushes the
cache, if necessary (c.f. Sections IV-F and IV-G, respectively).
Guest-level allocation: The kernel allocates the VM’s avail-
able virtual partitions to tasks based on their requests. It
reserves a small (configurable) number of partitions to be
shared among all best-effort tasks, and uses all the rest for
real-time tasks. We implemented two strategies for allocation:
the first allocates partitions to tasks in a first-come-first-served
basis, as they are scheduled on the VCPUs; and the second
gives priority to a more critical task, i.e., allows it to preempt
lower-criticality tasks to acquire sufficient partitions, similar
to the approach used in [27]. In both cases, if the task’s
execOnFewer flag is set, and if the VM has some but fewer
than the requested number, the kernel simply allocates the
available partitions to the task (and let it execute) to maximize
core utilization and to minimize preemption overhead.

Whenever the kernel of VM i (re-)allocates partitions to a
task, it would update the relevant data structures (the task’s
assigned partition set, the ID I(v) of each allocated virtual
partition v the task is assigned), and flush the task’s content
in the old partition sets if required (c.f. Section IV-G). If
necessary, it would also modify COS registers of its VCPU
and the VCPUs of the preempted tasks (if any) by executing
the wrmsr instruction. We extended the hypervisor to trap
on this instruction and modify the physical COS registers
of these VCPUs’ cores (based on the mapping Pi). Notice
that, when the physical partitions are oversubscribed, it is
possible that VM i might set a virtual COS bit representing a
virtual partition that is mapped to a physical partition currently
used by another VM j. If the partition is not shared, the
hypervisor simply returns failure to VM i by default, thus
allocating the oversubscribed partitions in a first-come-first-
served basis. However, we also implemented a preemption-
based mechanism, where the hypervisor preempts VM j and
reassigns the partition to VM i, if VM i has higher priority than
VM j, according to some algorithm. Our prototype uses static
priority when this choice is configured, but it can easily be
extended to include other algorithms for deciding the priority.

2Determining the best number of partitions to reserve for each VM is an
interesting but orthogonal research question; one promising direction here is
to extend the cache-aware compositional analysis in [27].

When a preemption occurs, the hypervisor will perform a VM-
level partition context switch (as described in Section IV-F).

C. Flushing heuristics

For simplicity, our prototype always uses the wbinvd in-
struction for the hypervisor-level flushing, since this operation
often involves flushing the working sets of several tasks in
one or more VMs and thus clflush can take a long time.
At the guest level, we implemented a simple heuristics that
uses clflush if the working set size (WSS) of the task is
smaller than a threshold Thresh, and uses wbinvd otherwise.
Intuitively, Thresh is the smallest WSS for which the overhead
when using clflush is larger than that when using wbinvd.
(If the strong isolation requirement flag is set, we always use
clflush at the guest level. Otherwise, we use the heuristic.)

At a high level, the overhead of each approach includes
(1) the latency of the cache flush operations, and (2) the extra
latency when tasks access the content that was but is no longer
in the cache because of flushing. For clflush, our empirical
evaluation shows that the overhead of cache flush operation is
approximately linear to the task’s WSS, and the cache reload
overhead is linear to the WSS but converges to DreloadLLC (the
overhead of reloading the entire cache) once the WSS exceeds
the cache size. Thus, the estimated overhead is

Overhead(clflush)= Dclflush +DreloadLLC

≈ k1 ·WSS+min{k2 ·WSS, DloadLLC}.

where k1 ≈ 1.58 (ms/MB), k2 = 1.65 (ms/MB), and
DloadLLC = 26.63 (ms) on our platform.

For wbinvd, the cache flush operation overhead depends on
the status of the cache when the instruction is invoked, and our
evaluation shows that it is upper bounded by DwbFflush = 0.7
(ms). Since wbinvd flushes the entire cache, and without
knowledge of which data need to be reloaded, we assume
the worst-case scenario where we need to reload the en-
tire cache; thus, the overhead is at most DloadLLC. In other
words, the overhead when using wbinvd is approximately
Overhead(wbinvd)≈ DwbFlush +DloadLLC.

Based on the above analysis, we can derive Thresh
as the smallest WSS such that Overhead(clflush) >
Overhead(wbinvd), i.e.,

Thresh≈max{(DwbFlush +DloadLLC)/(k1+k2), DwbFlush/k1}.

On our experimental platform, Thresh≈ 8.46 (MB).

D. Overhead introduced by CAT virtualization

We ran a series of micro benchmarks to evaluate the extra
overhead introduced by CAT virtualization based on our proto-
type. The results show that our design introduces only minimal
overhead in terms of partition context switch and partition
allocations (within a few microseconds), and the overhead
caused by flushing and defragmentation in general depends
on the tasks’ WSS but is always less than 27.35ms on our
experimental platform (which has a 20MB shared cache). Due
to space constraints, we include the details in the appendix.

VI. PERFORMANCE EVALUATION

To illustrate the applicability and benefits of CAT virtualiza-
tion, we conducted an extensive set of experiments on our
prototype using the PARSEC benchmarks [5] and synthetic
workloads. Our goal is to evaluate (i) how well task-level cache
isolation using CAT virtualization can protect a task’s WCET
from other concurrently running tasks, and (ii) how much CAT
virtualization can improve the system’s real-time performance
in two use cases (static and dynamic cache allocations).

A. Experimental setup

Hardware. Our prototype ran on a CAT-capable Intel Xeon
CPU E5-2618L v3 processor, which has a 20MB 20-way set-
associative L3 shared cache (divided into 20 partitions of 1MB
each) and 32GB main memory, and with four cores enabled.
Like in most existing real-time research [15], we disabled
hyper-threading, SpeedStep, and hardware cache prefetcher
features to avoid non-deterministic timing behavior. To min-
imize interference with the experimental workload, we shut
down all non-essential system services during our experiments.
System configuration. We booted the hypervisor with the
RTDS scheduler and the VMs with LITMUSRT as the guest
kernel, which uses the PSN-EDF scheduler. We created two
user VMs, benchVM and polluteVM, which execute the
tasks under evaluation and the interfering tasks, respectively.
benchVM’s tasks are statically partitioned into two full-
capacity VCPUs, each of which is pinned to a dedicated
core. Similarly, polluteVM’s are also statically assigned into
two full-capacity VCPUs, which are pinned to two remaining
cores. To minimize interference to benchVM, we allocated
two VCPUs to the high-privilege VM (Domain 0) and directly
pinned them to the two cores used by polluteVM. (Further
necessary details will be described in the relevant evaluation.)

Workload. We considered two types of workload: the PAR-
SEC benchmark suite [5] and synthetic workload. For the
PARSEC benchmarks, we used simsmall as the default input
for our WCET-related evaluation. For our real-time perfor-
mance evaluation, for each benchmark, we first explored the
influence of different input sets provided by the benchmark
suite (i.e., test, simdev, simsmall, simmedium, and simlarge)
on the WCET performance, and then selected the one that
most influences the WCET performance for using in the
schedulability evaluation.

The synthetic workload consists of two types of programs
(similar to the ones used in [23]): (1) cache-bench, which uses
a linked list to sequentially access every 64 bytes (i.e., cache
line size) of an 8MB array for 50 times; and (2) cache-bomb,
which uses the array index to sequentially access every 64
bytes of a 40MB array for 240 times.

To evaluate the relationship between the number of parti-
tions and WCET, we measured the WCET of each workload
program across 25 runs when the number of partitions it
is allocated varies. As expected, as the number of allocated
partitions increases, task’s WCET also tends to decrease.
(Details are available in the appendix.) This observed rela-
tionship provides useful information for selecting the number
of partitions for a task to optimize schedulability.

B. Benefits of task-level cache isolation on WCET

Experiment. This experiment aims to evaluate how well task-
level cache isolation with CAT virtualization can protect a
task’s WCET from being affected by concurrent accesses to
the cache by other co-running tasks. For this, we executed
the task-under-test (a PARSEC benchmark or a cache-bench
task) alone on one VCPU of benchVM, and we executed a
cache-bomb task in the second VCPU of benchVM and in
each of polluteVM’s VCPUs. (Recall that these four VCPUs
are pinned to four different cores.) We configured the cache
allocation data structures in our prototype to statically allocate
14 exclusive partitions for the task-under-test and 2 exclusive
partitions for each of the three cache-bomb tasks. We then
measured the WCET of the task-under-test across 25 runs,
which we refer to as WCET under the PolluteCAT setting.

For comparison, we conducted the same experiment for (i)
the Alone setting, where we disabled all three cache-bomb
tasks; and (ii) the Pollute, where we ran the tasks in vanilla
LITMUSRT /Xen, which does not support cache allocation and
thus all tasks share the entire cache.

0.8

1

1.2

1.4

1.6

1.8

S
lo

w
d

o
w

n

ca
nnea

l

fre
qm

in
e

flu
id

an
im

at
e

fa
ce

simx2
64

vip
s
fe

rre
t

bodyt
ra

ck

blac
ks

ch
oles

ded
up

sw
ap

tio
ns

st
re

am
clu

st
er

Alone
Pollute
PolluteCAT

Fig. 3: Measured WCETs of PARSEC benchmarks.

5 10 15 20 25 30 35 40
Array size (MB)

0

2

4

6

8

S
lo

w
d

o
w

n

Alone
Pollute
PolluteCAT

Fig. 4: Measured WCETs of the cache-bench workload.

Results for PARSEC benchmarks. Fig. 3 shows the
slowdown factor of each PARSEC benchmark task for the
three settings, where the slowdown factor for a setting is
the ratio of the task’s WCET obtained in that setting to that
was obtained in the Alone setting. The results show that the
WCET of the benchmark task can increase substantially (up
to 1.65×) in the Pollute setting; this is because there is no
cache management in this setting and thus other co-running
tasks may interfere with the benchmark task by accessing the
cache. It is also worth noting that the obtained slowdown
factor is with respect to a default input and not the worst-case
slowdown. In contrast, the benchmark task has approximately
the same or only slightly increased WCET in the PolluteCAT
setting as in the Alone setting across most benchmarks. (One
reason for the slight increase in WCET could be because we

did not isolate the main memory in our experiments and thus,
tasks may still interfere with one another due to memory bus
or bank contention.) In summary, the results demonstrate that
cache isolation with CAT virtualization can effectively avoid
the WCET slowdown caused by cache interference.
Results for the synthetic workload. Fig. 4 shows the WCET
slowdown of the cache-bench task under each setting when
we varied the task’s array size from 1MB to 40MB. The
results further confirm that, without cache management, the
shared cache interference can increase the task’s WCET by
a significant factor, e.g., up to 7.2× (when the array size is
between 3MB and 5MB). On the contrary, CAT virtualiza-
tion can effectively mitigate this problem, as evident by the
slowdown factor of close to 1. Notice that when the array
size is larger than the cache size (20MB), the task begins
to experience cache misses even when it executes alone; as
a result, the WCET in the Alone setting begins to increase,
leading to a decrease in the slowdown in the Pollute setting.

C. Real-time performance: static cache management
Next, we evaluate how much CAT virtualization can help
improve the system’s schedulability compared to the cache-
agnostic vanilla LITMUSRT /Xen system. To this end, we con-
sider two use cases of CAT virtualization: one for static cache
management, and the other for dynamic cache management.
We focus on the former in this section.
Allocation configuration. Our experiments used task sets that
each consist of two workload types: (1) either the PARSEC
benchmark or the cache-bench program, and (2) the cache-
bomb program. We used the same configuration as in the
preceding experiment: the benchmark (cache-bench) tasks are
scheduled on one VCPU (pinned to a dedicated core) with
14 partitions; the cache-bomb tasks are statically partitioned
into three VCPUs, each of which is allocated 2 partitions.
We measured the WCET of each PARSEC benchmark, cache-
bench, or cache-bomb task under this cache allocation.
Task set creation. We first converted the PARSEC bench-
marks into LITMUSRT -compatible real-time tasks. While do-
ing so, we found that three benchmarks (facesim, vips and
freqmine) contained memory leak bugs; unfortunately, we
could not fix the bug in the freqmine benchmark and thus
could not use it for our schedulability experiments. In addition,
the facesim benchmark took too long to complete; we omitted
it due to time constraints. We conducted the schedulability
experiments for all the remaining ten PARSEC benchmarks.

To generate a real-time task τi, we first randomly generated
a harmonic period pi, and then computed the task’s utilization
ui based on both pi and its WCET (determined above).

A task set for the benchmark VCPU was created based
on a chosen target VCPU utilization Uvcpu. Specifically, we
randomly generated real-time tasks for the benchmark VCPU
until the total utilization of the generated tasks reaches Uvcpu.
We repeated this generation 10 times to create 10 task sets
per Uvcpu, where Uvcpu ranges from 0.1 to 1.0, with a step of
0.1; this led to a total of 10 × 10 = 100 task sets. For each
task set, we executed it for two minutes both on the vanilla
LITMUSRT /Xen and on our prototype, and we measured the
schedulability of the task set in each setting.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

0.5

1

No management
Static management

(a) streamcluster.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

0.5

1

No management
Static management

(b) canneal.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

0.5

1

No management
Static management

(c) x264.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

0.5

1

No management
Static management

(d) vips.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

0.5

1

No management
Static management

(e) bodytrack.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

0.5

1

No management
Static management

(f) ferret.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

0.5

1

No management
Static management

(g) fluidanimate.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

0.5

1

No management
Static management

(h) blackscholes.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

0.5

1

No management
Static management

(i) swaptions.

Fig. 5: Schedulability of PARSEC benchmarks. The x-axis shows the VCPU utilization, and the y-axis shows the fraction of
schedulable tasksets.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
VCPU utilization

0

0.2

0.4

0.6

0.8

1

F
ra

ct
io

n
 o

f
sc

h
ed

u
la

b
le

 t
as

ks
et

s

No management
Static management

(a) Static.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
VCPU utilization

0

0.2

0.4

0.6

0.8

1

F
ra

ct
io

n
 o

f
sc

h
ed

u
la

b
le

 t
as

ks
et

s

No management
Static management
Dynamic management

(b) Dynamic.

Fig. 6: Schedulability of synthetic benchmarks.

Benchmark results. Fig. 5 shows the fraction of schedulable
task sets of the PARSEC benchmarks when varying the target
VCPU utilization.3 The results across all benchmarks show
that our vCAT cache management can substantially improve
the system’s schedulability. It can also be observed from
Fig. 5(a) that, for the streamcluster benchmark, on the vanilla
LITMUSRT /Xen, the fraction of schedulable task sets begins
to decrease quickly once the target VCPU utilization Uvcpu is
more than 0.3, and all task sets become unschedulable when
Uvcpu ≥ 0.4. In contrast, with static cache allocation, all task
sets remain schedulable even when each VCPU’s utilization
is at 1.0. The static management in vCAT can increase system
utilization by up to 1.0

0.3 = 3.3×.

Synthetic results. Fig. 6(a) shows the schedulability results
for task sets with the cache-bench workload, which further
highlights the performance benefits of and the needs for static
cache allocation. Without cache management, tasks begin to
miss deadlines as soon as Uvcpu > 0.1, whereas a task is only

3Due to space constraint, we omit the results of the dedup benchmark, since
all task sets are schedulable across all utilizations for both techniques.

become unschedulable when Uvcpu > 0.7 under cache alloca-
tion. In other words, the static cache allocation enabled by our
CAT virtualization can help increase schedulable utilization by
up to 7 times.

D. Real-time performance: dynamic cache management

In the previous use case, cache allocation is performed stati-
cally, where each task is always allocated a fixed number and a
fixed set of partitions (and thus has a fixed WCET). While this
approach is a preferred and more efficient choice in systems
with relatively static timing behavior, it may substantially
underutilize the cache when the task’s timing constraints (such
as deadline, period, and cache demand) vary dynamically
at run time. In this section, we investigate the performance
benefits of our dynamic cache management enabled by CAT
virtualization, using a multi-mode system use case.
Dual-mode task sets. We constructed multi-mode tasks based
on unimodal cache-bench tasks as follows. We first generated
a unimodal cache-bench task as in the static use case, and
then created two dual-mode versions: the cache-bench-mm1
version uses the same unimodal task parameters for both
modes, except that the task period (deadline) in Mode 2 is K
times the unimodal period; and the cache-bench-mm2 version
also uses the unimodal parameters for both modes, except
that the period in Mode 1 is K times the unimodal period.
Intuitively, K captures the degree of dynamism in the task’s
WCET when varying the number of allocated cache partitions.
We set K to be the ratio of the WCET of cache-bench when
requesting two (the minimum possible) partitions to its WCET
when requesting 20 (the maximum possible) partitions; in
our experiments, K = 707

114 ≈ 6.202. In addition to multi-mode

cache-bench tasks, we also used the unimodal cache-bomb
tasks generated as in the static use case.

All cache-bench-mm1 tasks and all cache-bench-mm2 tasks
are executed on the first VCPUs of benchVM and polluteVM,
respectively. We statically partitioned the cache-bomb tasks
into the second VCPUs of both VMs. We generated 10
task sets for each target VCPU utilization, using the same
procedure as in the static use case.
Experiment. We ran each task set for two minutes on our
prototype with dynamic cache allocation and measured its
schedulability. The cache allocation was configured dynam-
ically as follows. Each VCPU running cache-bomb tasks is
always allocated two partitions. We configured each multi-
mode task to execute in Mode 1 during the first minute, but in
Mode 2 during the second minute. The VCPU running cache-
bench-mm1 tasks is allocated 14 partitions in Mode 1 and
2 partitions in Mode 2, whereas the VCPU running cache-
bench-mm2 tasks is allocated 2 partitions in Mode 1 and 14
partitions in Mode 2. This configuration was chosen to balance
the VCPU utilization across the two modes.

For comparison, we also ran each task set on Vanilla
LITMUSRT /Xen and on our prototype with static allocation,
where we statically allocated 8 partitions to each VCPU
running multi-mode tasks, and 2 partitions to each VCPU
running cache-bomb tasks.
Results. Fig. 6(b) shows the fraction of schedulable task
sets per VCPU utilization for each of the three settings. As
expected, both static and dynamic cache management can help
improve the schedulability of the task sets substantially. The
results also show that dynamic cache management outperforms
static management by a substantial factor in terms of improv-
ing schedulable utilization (3×), which is expected since it
is much more effective in handling workloads with dynamic
timing constraints.

VII. CONCLUSION

We have presented a novel approach to shared cache manage-
ment in multicore virtualization systems, through an integra-
tion of Intel CAT and cache partition virtualization. Our CAT
virtualization design is highly general: it can be configured
to provide strong isolation among tasks and/or VMs, to sup-
port both real-time tasks—potentially with different criticality
levels – and best-effort tasks, and to achieve both static and
dynamic cache allocations. We implemented a prototype of the
design on top of Xen and LITMUSRT . Experimental results us-
ing both PARSEC benchmarks and synthetic workloads show
that our prototype introduces only a small overhead while
improving both the WCET and the schedulability of the system
significantly. The results also show that dynamic allocation is
much more effective in improving schedulability than static
allocation, especially under dynamic task sets. In future work,
we plan to apply our design to several other settings, as well
as develop new compositional analysis techniques for cache-
aware schedulability test and VM interfaces’ computation.

REFERENCES
[1] Cache monitoring technology and cache allocation technology. https:

//github.com/01org/intel-cmt-cat. Accessed: 2015-11-19.

[2] MSR-tools. https://01.org/msr-tools. Accessed: 2016-02-01.
[3] S. Altmeyer and C. Burguiere. A new notion of useful cache block to

improve the bounds of cache-related preemption delay. In ECRTS, 2009.
[4] A. Bastoni, B. B. Brandenburg, and J. H. Anderson. Cache-Related

Preemption and Migration Delays: Empirical Approximation and Impact
on Schedulability. In OSPERT 2010, Brussels, Belgium, 2010.

[5] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC benchmark
suite: Characterization and architectural implications. In PACT, 2008.

[6] B. B. Brandenburg. Scheduling and locking in multiprocessor real-time
operating systems. PhD thesis, The University of North Carolina at
Chapel Hill, 2011.

[7] B. B. Brandenburg and J. H. Anderson. Feather-trace: A light-weight
event tracing toolkit, 2007.

[8] M. Caccamo, M. Cesati, R. Pellizzoni, E. Betti, R. Dudko, and
R. Mancuso. Real-time cache management framework for multi-core
architectures. In RTAS, 2013.

[9] A. M. Dani, B. Amrutur, and Y. N. Srikant. Toward a scalable working
set size estimation method and its application for chip multiprocessors.
IEEE Transactions on Computers, 63(6):1567–1579, June 2014.

[10] L. Funaro, O. A. Ben-Yehuda, and A. Schuster. Ginseng: Market-driven
llc allocation. In USENIX ATC, 2016.

[11] X. Jin, H. Chen, X. Wang, Z. Wang, X. Wen, Y. Luo, and X. Li. A
simple cache partitioning approach in a virtualized environment. In
ISPA, 2009.

[12] S. Kato, Y. Ishikawa, and R. R. Rajkumar. CPU scheduling and memory
management for interactive real-time applications. Real-Time Syst.,
47(5):454–488, Sept. 2011.

[13] D. Kim, H. Kim, N. S. Kim, and J. Huh. vCache: Architectural support
for transparent and isolated virtual LLCs in virtualized environments.
In MICRO, 2015.

[14] H. Kim, A. Kandhalu, and R. R. Rajkumar. A coordinated approach for
practical OS-level cache management in multi-core real-time systems.
In ECRTS, 2013.

[15] H. Kim and R. R. Rajkumar. Real-time cache management for multi-
core virtualization. In EMSOFT, 2016.

[16] N. Kim, B. C. Ward, M. Chisholm, C. Y. Fu, J. H. Anderson, and F. D.
Smith. Attacking the one-out-of-m multicore problem by combining
hardware management with mixed-criticality provisioning. In RTAS,
2016.

[17] J. Liedtke, H. Haertig, and M. Hohmuth. OS-controlled cache pre-
dictability for real-time systems. In RTAS, 1997.

[18] F. Liu, Q. Ge, Y. Yarom, F. Mckeen, C. Rozas, G. Heiser, and R. B.
Lee. Catalyst: Defeating last-level cache side channel attacks in cloud
computing. In HPCA, 2016.

[19] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee. Last-level cache
side-channel attacks are practical. In S&P, 2015.

[20] A. Marchand, P. Balbastre, I. Ripoll, M. Masmano, and A. Crespo.
Memory resource management for real-time systems. In ECRTS, 2007.

[21] F. Mueller. Compiler support for software-based cache partitioning. In
LCTES, 1995.

[22] L. T. X. Phan, M. Xu, J. Lee, I. Lee, and O. Sokolsky. Overhead-aware
compositional analysis of real-time systems. In RTAS, 2013.

[23] P. K. Valsan, H. Yun, and F. Farshchi. Taming non-blocking caches to
improve isolation in multicore real-time systems. In RTAS, 2016.

[24] X. Wang, X. Wen, Y. Li, Z. Wang, Y. Luo, and X. Li. Dynamic cache
partitioning based on hot page migration. Frontiers of Computer Science,
6(4):363–372, 2012.

[25] B. Ward, J. Herman, C. Kenna, and J. Anderson. Making shared caches
more predictable on multicore platforms. In ECRTS, 2013.

[26] S. Xi, M. Xu, C. Lu, L. T. X. Phan, C. Gill, O. Sokolsky, and I. Lee.
Real-time multi-core virtual machine scheduling in xen. In EMSOFT,
2014.

[27] M. Xu, L. T. X. Phan, H.-Y. Choi, and I. Lee. Analysis and imple-
mentation of global preemptive fixed-priority scheduling with dynamic
cache allocation. In RTAS, 2016.

[28] M. Xu, L. T. X. Phan, I. Lee, O. Sokolsky, S. Xi, C. Lu, and C. Gill.
Cache-aware compositional analysis of real-time multicore virtualization
platforms. In RTSS, 2013.

[29] Y. Ye, R. West, Z. Cheng, and Y. Li. Coloris: A dynamic cache
partitioning system using page coloring. In PACT, 2014.

[30] Y. Ye, R. West, J. Zhang, and Z. Cheng. Maracas: A real-time multicore
vcpu scheduling framework. In RTSS, 2016.

[31] W. Zhao, X. Jin, Z. Wang, X. Wang, Y. Luo, and X. Li. Low cost
working set size tracking. In USENIX ATC, 2011.

[32] H. Zhu and M. Erez. Dirigent: Enforcing QoS for latency-critical tasks
on shared multicore systems. In ASPLOS, 2016.

ACKNOWLEDGEMENT

We would like to thank the RTAS reviewers and our shepherd
for their constructive feedback and helpful suggestions, and
Chao Peng for his clarification of the Xen CAT. This work
was supported in part by NSF CNS-1505799, CNS 1563873
and CNS 1329984, ONR N00014-16-1-2195, Global Research
Laboratory Program (2013K1A1A2A02078326) through NRF,
the DGIST Research and Development Program (CPS Global
Center), the Intel-NSF Partnership for Cyber-Physical Systems
Security and Privacy, and the Defense Advanced Research
Projects Agency (DARPA) under Contract No. HR0011-16-
C-0056.

APPENDIX A: OVERHEAD OF CAT VIRTUALIZATION

In this appendix, we present the benchmarking results for our
overhead evaluation of the vCAT. We consider five different
(but intertwined) types of overhead that our design introduces:
cache flush, cache reload, context switch, partition allocations,
and defragmentation. We describe each in turn.

A. Cache flush operation latency

Recall that Intel CPUs offer two ways for cache flushing:
the clflush instruction, which flushes the cache line
that contains a specific linear address; and the wbinvd
instruction, which writes back any modified data in the cache
and then invalidates the entire shared cache. We measured
the latency for each operation, as follows.
Latency of the clfush approach. We created a synthetic
task that sequentially accessed (i.e., either read or write) an
array. We varied the task’s array size from 1MB to 40MB
with a step of 1MB. The task first accesses its array, and
then the system flushes the task out of the cache by using
the clflush instruction. We achieved this by enumerating
all linear addresses of the task, and invoked the clflush
instruction on all these addresses. We measured the latency of
the cache flush operation when the task either reads from or
writes to its array. The result is shown in Fig. 7.

The measured result shows that the latency of the cache
flush operation with the clflush approach, denoted as Dclflush,
is proportional to the task’s working set size (WSS), i.e.,

Dclflush = k1 ·WSS

where k1 = Dclflush/WSS≤ Dclflush/array size i ≤
62.89ms/40MB≤ 1.58ms/MB.
Latency of the wbinvd approach. We repeated the same
experiment as above, but we used wbinvd (instead of clflush)
to flush the task. The results show that the latency of the cache
flush operation with the wbinvd approach, denoted as DwbFflush,
is not affected by the task’s WSS, and DwbFflush ≤ 0.7ms.

B. Cache reload latency

The cache reload latency is determined by the size of the
content that was but is no longer in the cache because of
flushing. The size of the content to reload is upper bounded
by the shared cache size.

We created a synthetic task that uses a linked list to access
(i.e., read or write) every 64 bytes in an array for three times.

The task does the following steps sequentially: (1) access the
entire array for two consecutive times; (2) flush the task’s
content out of the cache; and (3) access the entire array for
the third time. We measured the latency of accessing the array
at the second time (i.e., when the array is already cached) and
at the third time (i.e., when the array is not cached). Then,
the time difference between the two measured latencies is the
cache reload latency because of flushing. We varied the size
of the array from 1MB to 20MB (i.e., the shared cache size)
with a step of 1MB, and we measured the cache reload latency
under each array size. The result is shown in the Fig. 8.

We also repeated the same experiment but changed the
synthetic task to use array index to iterate the same array.
The result is illustrated in Fig. 9.

We observed that the cache reload latency is proportional
to the size of the content to reload. When a task is flushed,
the cache reload latency for the task, denoted as DreloadLLC, is
upper bounded by

DreloadLLC ≤min{k2 ·WSS, DloadLLC}
Where k2 = DreloadLLC/WSS ≤ DreloadLLC/array size i ≤
24.64ms/15MB≤ 1.65ms/MB, and DloadLLC = 26.63ms is the
maximum latency of reloading the entire LLC.

We also observe, by comparing Fig. 8 and Fig. 9, that
the cache reload overhead drops by 89.67% (from 26.63 ms
to 2.75 ms) when the task changed the way of accessing
its array from linked list to array index. This is because
changing from linked list to array index for the task eliminates
the data dependence in accessing each element of the task’s
array. Therefore, the task can benefit from the Memory Level
Parallelism (MLP) in accessing or reloading its array.

C. Partition context switch overhead
We measured the partition context switch overhead both in
the vCAT and in the vanilla LITMUSRT /Xen system. The
overhead difference is the extra context switch overhead the
vCAT introduces in managing the partition context.

We boot 4 guests, each with 4 full-capacity VCPUs. We
randomly generated periodic task sets whose size is 50 or
450 tasks, for each domain. We generated 10 task sets per
task set size. Under each environment, we used the feather-
trace tool [7] to measure the context switch overhead in a
VM (running LITMUSRT), as in earlier LITMUSRT -based
studies [15] [4]. We used the Xentrace tool to measure the
context switch overhead in the VMM (i.e., Xen), as in earlier
RT-Xen study [26]. The result is shown in Table 1.

We observe the extra context switch overhead incurred by
our vCAT prototype is very small (upper bounded by 0.25µs).

TABLE 1: Partition context switch overhead (µs).
Taskset size: 50 Taskset size: 450

Vanilla vCAT Overhead Vanilla vCAT Overhead
VM 5.49 5.74 0.25 5.02 5.17 0.15
VMM 0.8 0.81 0.01 0.7 0.73 0.03

For completeness, we also measured other types of
scheduling-related overhead in VM and VMM. Table 2 shows
the task release overhead (REL) and the scheduling overhead
(SCH1) within a VM, as well as the scheduling overhead
(SCH2) in the VMM. The results show that vCAT incurs
negligible extra overhead for all these three types.

0 10 20 30 40
Array size (MB)

0

10

20

30

40

50

60

70

C
ac

h
e

fl
u

sh
 o

ve
rh

ea
d

 (
m

s)

Read
Write

Fig. 7: Cache flush overhead.

0 5 10 15 20
Array size (MB)

0

5

10

15

20

25

30

C
ac

h
e

re
lo

ad
 o

ve
rh

ea
d

 (
m

s)

Read
Write

Fig. 8: Cache reload overhead without
MLP (Access via linked list).

0 5 10 15 20
Array size (MB)

0

0.5

1

1.5

2

2.5

3

C
ac

h
e

re
lo

ad
 o

ve
rh

ea
d

 (
m

s)

Read
Write

Fig. 9: Cache reload overhead with MLP
(Access via array index)

5 10 15 20
Number of cache partitions

0

500

1000

1500

2000

W
C

E
T

 (
m

s)

(a) canneal benchmark.

5 10 15 20
Number of cache partitions

0

200

400

600

800
W

C
E

T
 (

m
s)

(b) cache-bench program.

5 10 15 20
Number of cache partitions

0

500

1000

1500

2000

2500

W
C

E
T

 (
m

s)

(c) cache-bomb program.

Fig. 10: WCET vs. Number of allocated cache partitions.

TABLE 2: Average scheduling-related overhead (µs).
Taskset size: 50 Taskset size: 450

Vanilla vCAT Overhead Vanilla vCAT Overhead
REL 1.77 1.96 0.19 1.13 1.31 0.18
SCH1 2.74 2.80 0.06 3.23 3.33 0.10
SCH2 0.37 0.39 0.02 0.32 0.33 0.01

D. Partition allocation and deallocation overhead

In order to measure the partition allocation and deallocation
overhead, we extended the feather-trace tool by adding these
two overhead events in LITMUSRT .

We booted one VM with 4 full-capacity VCPUs pinned to
4 cores. We randomly generated periodic task sets whose size
is 50 or 450 tasks. We generated 10 task sets per task set size.
We measured the average and the maximum latency the vCAT
takes to allocate or deallocate cache partitions for tasks. The
result is shown in Table. 3.

We observed that the partition allocation and deallocation
overheads are negligible. The cache allocation and deallocation
overheads are respectively upper bounded by 550ns and 318ns.

TABLE 3: Partition allocation and deallocation overhead (ns).
Taskset size: 50 Taskset size: 450

Average Maximum Average Maximum
Allocation 175 550 178 463
Deallocation 102 318 96 301

E. Defragmentation overhead

When the defragmentation procedure happens, it involves
two operations: (1) Reallocating partitions for tasks, which
involves deallocating old partitions and then allocating new

partitions for tasks; this overhead is upper bounded by the sum
of the maximum allocation and deallocation overheads, i.e.,
550ns+ 318ns = 868ns. (2) Flushing the entire cache, which
has an overhead of at most DwbFflush ≤ 0.7ms.

The defragmentation overhead is the sum of the overhead of
reallocating partitions for tasks and the overhead of flushing
the entire cache. Therefore, it is upper bounded by 868ns+
0.7ms≤ 0.701ms.

APPENDIX B: WCET WITH RESPECT TO THE NUMBER OF
ALLOCATED PARTITIONS

Since the WCET of a task when it executes alone in the system
can highly depend on how much cache it is allocated, we
first measured the WCET of each workload program (canneal,
cache-bench and cache-bomb) across 25 runs when the number
of partitions it is allocated varies. The results are shown in
Fig. 10.

As expected, as the number of allocated partitions increases,
task’s WCET also tends to decrease, which is the case for
the canneal benchmark and the cache-bench program. Note,
however, that the WCET of the cache-bomb program is
relatively stable regardless of the number of partitions; this
is because its array size is twice the entire cache’s size, and
thus all accesses to its array elements are cache misses even if
it is allocated the entire cache. This observed relationship be-
tween WCET and the allocated number of partitions provides
useful information for selecting, or dynamically modifying,
the number of partitions allocated to each task to optimize the
overall system’s performance (e.g., schedulability).

	vCAT: Dynamic Cache Management Using CAT Virtualization
	Recommended Citation

	vCAT: Dynamic Cache Management Using CAT Virtualization
	Abstract
	Disciplines
	Comments

	tmp.1489420926.pdf.28VfR

