
VCNet: A self-explaining model for

realistic counterfactual generation

Victor Guyomard1,2, Françoise Fessant1, Thomas Guyet3

Tassadit Bouadi2, Alexandre Termier2

1. Orange Labs, Lannion, France
victor.guyomard@orange.com

2. Univ Rennes, Inria, CNRS, IRISA, Rennes, France
3. Inria, Centre de Lyon, France

Counterfactual explanation is a common class of methods to make local ex-
planations of machine learning decisions. For a given instance, these meth-
ods aim to find the smallest modification of feature values that changes
the predicted decision made by a machine learning model. One of the
challenges of counterfactual explanation is the efficient generation of re-
alistic counterfactuals. To address this challenge, we propose VCNet –
Variational Counter Net – a model architecture that combines a predic-
tor and a counterfactual generator that are jointly trained, for regression
or classification tasks. VCNet is able to both generate predictions, and
to generate counterfactual explanations without having to solve another
minimisation problem. Our contribution is the generation of counterfac-
tuals that are close to the distribution of the predicted class. This is done
by learning a variational autoencoder conditionally to the output of the
predictor in a join-training fashion. We present an empirical evaluation on
tabular datasets and across several interpretability metrics. The results
are competitive with the state-of-the-art method.

1 Introduction

Improvements of machine learning techniques for decision systems has led to the rise of applications
in various domains such as healthcare, credit or justice. The eventual sensitivity of such domains,
as well as the black-box nature of the algorithms, has motivated the need for methods that explain
why some prediction was made. For example, if a person’s loan is rejected as a result of a model
decision, the bank must be able to explain why. In such a context, it might be interesting to
provide an explanation of what that person should change to influence the model’s decision. As
suggested by Wachter et al. [27], one way to build this type of explanation is through the use of
counterfactual explanations. A counterfactual is defined as the smallest modification of feature
values that changes the prediction of a model to a given output. In addition, the explanation also
provides important feedback to the user. In the context of a denied credit, a counterfactual is
a close individual for whom his credit is accepted and the feature modifications suggested by a
counterfactual acts as recourse for the user. For privacy reason or simply because there is no similar
individual with an opposite decision, we aim to generate synthetic individuals as counterfactuals.

1

mailto:victor.guyomard@orange.com

VCNet: A self-explaining model for realistic counterfactual generation V. Guyomard et al.

In order to provide a meaningful recourse, the counterfactual is expected to be realistic, i.e. close
to the existing examples and respecting the observed correlation among features. Furthermore,
in order to be representative of its predicted class, it is interesting to obtain a counterfactual
close to the existing examples but relative to the counterfactual class. A counterfactual instance
is usually found by iteratively perturbing the input characteristics of the original example until
the desired prediction is achieved, which is like minimizing a loss function using an optimization
algorithm. Many methods proceed in this way, but differ in their definition of the loss function and
optimization method [17]. These approaches appear to be computationally expensive. Indeed, for
each instance to explain, a new optimisation problem has to be solved. Most of the counterfactual
methods apply to already trained decision models and treat them as black boxes in the post-hoc
paradigm. However, dissociating the prediction of the model from its explanation can lead to an
explanation of poor quality [22].

Self-explaining models which incorporate an explanation generation module into their archi-
tecture, such that they provide explanations for their own predictions, can be an alternative to
the previous approaches. In general, the predictor and explanation generator are trained jointly,
hence the presence of the explanation generator is influencing the training of the predictor [7]. In
this spirit, Guo et al. [9] propose CounterNet, a neural network based architecture for the predic-
tion and counterfactual generation along with a novel variant of back propagation to ensure the
stabilization of the training process. Compared to a post-hoc approach, they are able to produce
counterfactuals with higher validity. A counterfactual is said to be valid if it succeeds in reaching a
different prediction. A limitation of the CounterNet approach is that counterfactuals it generates
may lack realism w.r.t. the data points of the class where they are positioned. The proposed
approach, VCNet, tackles this issue: similarly to CounterNet, it combines a predictor and a coun-
terfactual generator that are jointly trained. The difference lies in the counterfactual generator
based on conditional variational autoencoder (cVAE) whose latent space can be controlled and
tweaked to generate realistic counterfactuals. Our approach is inspired from John et al. work
about learning disentangled latent spaces in the context of text style transfer [10].

Our main contribution is the proposal of a cVAE for counterfactual generation in order to
generate realistic counterfactuals. Our second contribution is a self-explainable architecture of a
classifier that embeds a cVAE, used as a counterfactual generator. In this architecture, both the
model and the cVAE, are jointly trained with an efficient single back-propagation procedure. After
recalling the properties of the variational autoencoder models (Section 3) that interest us in the
context of this paper, we describe our proposal (Section 4). Then we present extensive experimental
studies on synthetic and real data (Section 5). We compare the quality of the counterfactuals
produced with those of CounterNet on different datasets through state-of-the-art metrics. The
focus is on tabular data but we also show that our architecture is interesting on images.

2 Related Work

Our work is concerned with the search for counterfactual explanation that is usually found by
iteratively perturbing the input features of the instance of interest until the desired prediction is
reached. In practice, the search of counterfactuals is usually posed as an optimization problem.
It consists of minimizing an objective function which encodes desirable properties of the coun-
terfactual instance with respect to the perturbations. Wachter et al. [27] propose the generation
of counterfactual instances by minimizing the distance between the instance to be explained and
the counterfactual while pushing the new prediction toward the desired class. Other algorithms
optimize other aspects with additional terms in the objective function such as actionability [25],
diversity [18, 23], realism [26].

2

V. Guyomard et al. VCNet: A self-explaining model for realistic counterfactual generation

All aforementioned techniques search for counterfactual example by solving a separate opti-
mization problem for each instance to be explained. This optimization problem is computationally
intensive, making it impractical for large numbers of instances. To address this issue, several
frameworks based on generative models have been proposed. A generative counterfactual model is
trained to predict the counterfactual perturbations or instances directly. Many of these frameworks
use the latent space of variational autoencoder models to generate counterfactuals with linear in-
terpolation [2], latent feature selection [6], perturbation [21] or incorporation of the target class in
the latent space [19]).

All these counterfactual generation techniques are post-hoc as they assume that the explaining
task is done after the decision task with a fixed black-box model. In this post-hoc paradigm,
the counterfactual search process is completely uninformed from the decision process. Post-hoc
explanations may be the only option for already-trained models.

Another approach is to design models that optimize both the decision and an explanation
of that decision during the learning process [1]. In the context of counterfactual explanations,
such a strategy has been recently proposed by Guo et al. [9] with CounterNet, a framework in
which prediction and explanation are jointly learned. The optimization of the counterfactual
example generation only once together with the predictive model allows a better alignment between
predictions and counterfactual explanations. This leads to explanations of better quality and
significantly reduces the generation process time. Our architecture is inspired by theirs but we
have chosen to use a conditional variational autoencoder as a generative model of counterfactuals
allowing us to exploit text style-transfer techniques [10, 19].

3 Backgrounds

In this section, we introduce some notations, problematic and backgrounds necessary for the pre-
sentation of the VCNet architecture in the next section.

Let X ⊆ Rp represents the p-dimensional feature space and l ≥ 2 a number of classes. A
training dataset, denoted D = {(xi, yi)}ni=1, is such that xi ∈ X and yi ∈ {1, . . . , l} for each
i ∈ {1, . . . , n}. For a new example x, the prediction consists in deciding to which class ŷ the
example x belongs. For more generality, we consider probabilistic prediction: the prediction is a
probability vector, denoted p̂ ∈ [0, 1]p. Then, the predicted class is the most likely class according
to p̂. The counterfactual generation yields an example x′ which is close to x and whose prediction
ŷ′ is different from ŷ in case the counterfactual is valid.

Our problem is both to learn from D an accurate predictor, denoted f , and a generator of
counterfactual, denoted g.

Now that we have presented our problem, we introduce the notion of VAE [12] and cVAE [24]
which our proposal relies on.

3.1 Variational Autoencoder (VAE)

A variational autoencoder is a generative model where a latent parameterized distribution is
learned. If samples are drawn in the latent space according to this distribution, the decoded
samples are expected to be distributed according to the training data distribution (an approxi-
mate distribution of the training data distribution is learned) [12]. Formally, let z be a latent vector
(drawn from the latent distribution) and x be an example, we denote by qφ (z | x) the encoder
distribution and by pθ (x | z) the decoder distribution. Training a VAE is finding the parameters
θ and φ that minimize the following objective function, i.e. the opposite of the Evidence Lower

3

VCNet: A self-explaining model for realistic counterfactual generation V. Guyomard et al.

Bound (ELBO):

LVAE(θ, φ) = −Eqφ(z|x) [log(pθ (x | z))] + DKL

[
qφ (z | x)

∥∥∥ p(z)
]

(1)

Generally, distributions are chosen to be Gaussian, meaning that qφ (z | x) ∼ N (µφ,Σφ) and
pθ (x | z) ∼ N (x | µθ,Σθ) and distribution parameters are estimated thanks to back-propagation.
The first term of Eq. 1 encourages reconstructing x at the output of the decoder (x̂). The second
term encourages the regularization of the latent space by pushing qφ (z | x) to a Gaussian prior
p ∼ N (0, I).

3.2 Conditional Variational Autoencoder (cVAE)

A conditional variational autoencoder is a VAE where distributions are conditioned on a given
variable c [24]. The architecture is the same as a standard VAE but c is given as input of the
encoder and also as input of the decoder. Then the objective function of Eq. 1 can be rewritten
as:

LcVAE (θ, φ) = −Eqφ(z|x,c) [log(pθ (x | z, c))] + DKL

[
qφ (z | x, c)

∥∥∥ p(z)
]

(2)

The encoder distribution becomes qφ (z | x, c) and is pushed to the Gaussian prior p ∼ N (z | 0, I)
by the regularization term regardless of the value of c. The decoder reconstructs x from the
concatenation of z with c.

The initial objective of conditional variational autoencoder is to enrich the expressiveness of
the model in supervised settings. In this article, we use a property of the cVAE to disentangle the
class specification from the content of the data [13].1 Intuitively, the latent variable z does not
need to model the example category, then it can focus on modeling the content of the examples,
which is shared by all the categories. To illustrate the effective disentanglement of category and
content, Kingma et al. show that the decoder pθ (x | z, c) can be used to generate images of the ten
digits with the same shared content (let say the handwriting) by changing the class c and keeping
the same random values for z. The same property has been applied to text style transfer [10].
In this context, the style is the category, and the content is the wording. For tabular data, the
notion of “content” and “style” can be illustrated in the context of the loan decision. The “style”
characterizes the category of people loan (accepted or rejected) and the “content” characterizes
the other features. More specifically, the later models correlations between variables that are
independent from the loan decisions.

In our proposal, we exploit the modeling properties of a cVAE to generate counterfactuals.
Considering that the cVAE disentangles the category and the content, the decoder of a cVAE can
be tweaked in a flexible way. For z the encoding of an example x of class c, pθ (x | z, c′) generates
examples of a category c′ 6= c. In addition, (z, c′) is likely the element of class c that is the closest
to (z, c) in the latent space. As this space is regularized, pθ (x | z, c′) generates examples that are
similar to x, but belonging to a different class. This fits exactly the expectations of counterfactuals
and will be assessed in Section 5.1.

1For Kingma et al [13], what we call the “content” in this paper is denoted the “style”. It refers to the writing
style of digits in MNIST-like datasets.

4

V. Guyomard et al. VCNet: A self-explaining model for realistic counterfactual generation

4 A Join Training Model

VCNet is a self-explainable 2 model through counterfactual generation. Inspired by CounterNet [9],
the VCNet model is made of a predictor, f(·), and a counterfactual generator, g(·, ·), that are jointly
trained. In the inference phase, each part can be used on demand: on the one side, to get the
prediction f(x) for some new example x and, on the other side, to generate its counterfactual g(x, c)
for another class c. VCNet can be used as a self-explainable model and generates (f (x) , g (x, c)),
i.e. the couple of the prediction and its counterfactual.

The trick of VCNet is to not train a counterfactual generator, but a supervised autoencoder,
i.e. a cVAE. The cVAE is trained as an autoencoder and used as a counterfactual generator in
inference.

We start by presenting the architecture of our network, then we detail the training problem by
defining the loss which is optimized and finally, we detail how the trained model is used to generate
counterfactuals.

4.1 VCNet Architecture

VCNet is a neural network architecture. Figure 1 illustrates this architecture made of three main
blocks:

1. Shared layers, sβ , that transform the input into a dense latent representation. We use fully
connected layers with ELU activation functions.

2. A predictor network fα that takes the shared latent representation and returns a probability
vector corresponding to the probabilistic prediction. We use fully connected layers with ELU
activation functions.

3. A conditional variational autoencoder that takes as input the shared latent representation
and also the probability vector given by the predictor. The cVAE reconstructs examples and
integrates additional layers to handle categorical variables (see details below).

During training, an example xi is passed through the shared layers to generate a dense latent
representation hi = sβ(xi). This representation is then shared with both the predictor network
and the autoencoder. On the one hand, hi is passed through the predictor fα in order to obtain
the probability vector p̂i. Then, the prediction of an example xi is obtained by the function
fα,β(xi) = fα ◦ sβ(xi). On the other hand, hi is passed through the cVAE. It is first concatenated
with p̂i and then is passed through the encoder of the cVAE and samples a latent vector zi. This
latent vector concatenated with p̂i is passed through the decoder, so as to obtain a reconstructed
example x̂i.

It can be noticed that the cVAE slightly differs from the original cVAE [24]. Indeed, formally,
the encoder of an end-to-end cVAE includes the shared layer, sβ . In our architecture, the condition
is introduced at an intermediary latent representation of the examples. The idea behind this
architecture is to enforce the dense latent representation to be as independent of the class as
possible.

In addition, we adopt the same preprocessing as Guo et al. [9] to handle categorical variables.
At the input of the network, each categorical variable is encoded with a one-hot. At the output of
the cVAE, we add a softmax activation function for each one-hot categorical variable in order to
obtain a one-hot encoding format by taking the argmax. Finally, continuous variables are scaled
to have all variables in [0, 1].

2By Self-explainable model here we mean that the predictor is constrained by the counterfactual generator during
training but the explanation is not directly used to produce model output as in [1].

5

VCNet: A self-explaining model for realistic counterfactual generation V. Guyomard et al.

Shared layers

Predictor

cVAE

Forward during training and testing

Forward during training only
Copy

Concatenate

Softmax activation

One-hot encoding

Continuous
variables

Categoricals
variables

p̂ip̂i

p̂i

f α(.)

Softmax

Softmax

Softmax

Figure 1: VCNet architecture is composed of three blocks: Shared layers that transform the input
into a latent representation (blue square), a predictor that outputs the prediction (brown square),
and a conditional variational autoencoder that acts as a counterfactual generator during testing
(red square).

4.2 Loss Function and Training Procedure

The objective of the training is to jointly learn the predictor and the cVAE. Then, the loss to
minimize is made of two terms.

The first term is derived from the loss of a cVAE defined in Eq. 2. In our case, the cVAE is
conditioned by the probability vector obtained at the output of the predictor. Then we can rewrite
the objective function as:

LcV AE (θ, φ, β;xi) = −λ3Eqφ(zi|sβ(xi),p̂i) [log(pθ (xi | zi, p̂i))]

+ λ1DKL

[
qφ (zi | sβ (xi) , p̂i)

∥∥∥ p(zi)] (3)

λ1 and λ3 are weights to control the impact of each term during the training phase.

The second term enables us to learn the predictor. We use cross-entropy as classification loss
between the output of the predictor p̂i = fα ◦ sβ(xi) and the true label yi:

Lpred (α, β;xi, yi) =

l∑
k=1

−1[yi=k] log
(
[fα ◦ sβ(xi)]k

)
(4)

where [fα ◦ sβ(xi)]k denotes the predicted probability that xi belongs to the k-th class.

Then, the loss function on the training set (D) is a weighted sum of the losses from Eq. 4 and

6

V. Guyomard et al. VCNet: A self-explaining model for realistic counterfactual generation

Eq. 3 as follows:

L (θ, α, β, φ;D) =

n∑
i=1

LcV AE (θ, φ, β;xi) + λ2
1

n

n∑
i=1

Lpred (α, β;xi, yi)

As mentioned at the beginning of this section, it is worth noticing that our problem is not to
learn to generate counterfactuals. Then, contrary to CounterNet that has divergent objectives to
optimize, the minimization of L is a simple optimization problem solved by back-propagation.

Note that λ1,λ2,λ3 are hyperparameters to tune for training.

4.3 Counterfactual Generation

Since our model does not directly produce counterfactuals, some modifications are needed for
inference. An example xi is passed through the prediction network to obtain both its predicted
probability vector (p̂i) and its dense vector representation (hi). This dense vector representation
(hi) and the predicted probability vector (p̂i) are given to the encoder of the cVAE to produce
a latent vector zi. Then, the decoder of the cVAE plays the role of a counterfactual generator.
Because we want to generate an example with a different predicted class we need a probability
vector pc such that the class with maximum probability is different from the one of the prediction,
i.e. arg max (p̂i) 6= arg max (pc). In a binary-classification problem setup, we decided to use a
one-hot vector where the probability is 0 for the predicted class of xi and 1 for the opposite class.
The reason for this choice is that we want to generate counterfactuals for which the confidence
in the predicted class is the highest for the predictor. In the case of a multi-class classification
problem, we propose to select the class with the second-highest probability in p̂i and to switch the
values with the predicted class. For example, if we obtain a probability vector p̂i = [0.6, 0.3, 0.1]
then pc = [0.3, 0.6, 0.1]. An alternative solution would be to let the user select the class for which
he/she is interested in having a counterfactual.

This vector pc and the dense latent representation zi are passed through the cVAE decoder
in order to infer a new predicted class to obtain a counterfactual 3 xc. As explained in Section
3.2, the intuition is to benefit from the disentanglement of the latent space of a cVAE: zi contains
non-class-specific information about xi and pc encodes information for the desired class. As such,
the decoder generates a new example xc that is similar to xi and that belongs to a different class.

5 Experiments and Results

Our experiments are organized in four steps. Our main objective is to show that VCNet generates
counterfactuals that are both valid (counterfactuals actually belong to another class) and realistic
(counterfactuals are close to examples of the same class). In the first set of experiments, we present
results of a cVAE on a synthetic dataset to confirm the actual disentanglement of the content and
the class. These experiments also aim at providing some intuition about the reason why VCNet
works. In the second set of experiments, we compare the results of VCNet with CounterNet, the
state-of-the-art algorithm for self-explainable counterfactual generation. The reader interested in
the results of more counterfactual generation systems may refer to the original article of Guo et
al. [9]. Our experiments use the same datasets and data preprocessing. In the third experiment,
we evaluate the impact of join training on the quality of counterfactuals. We propose a post-hoc
version of our framework and compare the results obtained with the jointly trained VCNet. Finally,
we present some qualitative experiments on the MNIST dataset. We choose to present experiments

3Note that the quality of the generated counterfactual depends on the quality of the learned latent space.

7

VCNet: A self-explaining model for realistic counterfactual generation V. Guyomard et al.

Figure 2: Comparison of the examples/counterfactuals distributions for synthetic data. All graph-
ics represent the projection of the examples or counterfacturals on the first two dimensions of the
examples space (R8). The graphic on the left represents the original dataset. The three other
graphics represent counterfactuals generated from the examples of the test set belonging to each
class. For this three rightmost graphics, the same examples have been used to generate counter-
factuals with the two other classes. The color/shape of the point represents a class information:
the class an example belongs to (graphic on the left) and the class requested for counterfactual
generation (3 graphics on the right).

on MNIST firstly because it has been widely used in the field of counterfactual generation and,
secondly, because it illustrates that VCNet may be applied on different types of data (tabular,
images, time series, ...).

The hyperparameters and architectures of the models used in these experiments are detailed
in Supplementary material. The code to reproduce the results of this section is also provided in
supplementary material.

5.1 cVAE for counterfactual generation

Our proposal is based on using a cVAE to generate counterfactuals. It relies on the capability of a
cVAE to actually disentangle the class and its content such that the decoder can be used to generate
counterfactual examples by changing the class conditioning.In this experiment, we generate a
synthetic dataset of examples in R8 with three classes. Each class is distributed according to a
multidimensional Gaussian distribution (see Figure 2 on the left).

A cVAE, i.e. a couple of an encoder ϕ(x, c) and a decoder ψ(z, c), is trained on a set of 10k
examples. The complete code of these experiments is available in supplementary material for the
sake of reproducibility.

Figure 2 illustrates the capability of a cVAE to generate realistic examples when changing the
class that conditions the decoder. The figure on the left illustrates the dataset. Each colored
group of point corresponds to a class. The three figures on the right illustrate datasets that have
been generated x′ = ψ(ϕ(x, c), c′) where x is an example from the test that belongs to class
c (origin class). Each figure corresponds to one origin class, the colors of the point correspond
to the conditioning class (c′). We observe that all figures look similar. This means that taking
ψ(ϕ(x, c), c′) generates an example that looks similar to an example of class c′ whatever the origin
class of x. Thus, it demonstrates that cVAE can be used to generate realistic counterfactuals.
Moreover, x′ is a good counterfactual if it is similar to x. The question is whether z = ϕ(x, c) is
a better choice to generate an example ψ(z, c′) than any other example ψ(z′, c′) (which also likely
belongs to c′). To assess this behavior, we randomly generate 10 latent representations z′ = z+ δ
for each x, and compute the Euclidean distance between x′ = ψ(z′, c′) and x.

8

V. Guyomard et al. VCNet: A self-explaining model for realistic counterfactual generation

Figure 3: Distance between x, an example of class c to explain, and x′ = ψ(z+δ, c′), a counterfac-
tual for class c′ perturbed in latent space by δ. Each graphic illustrates this distance with respect
to ‖δ‖ depending on the class c and c′ (on the right: c = 0 and c′ = 1; in the middle: c = 0 and
c′ = 2; on the left: c = 1 and c′ = 2). The mean and variance are computed on 10 random δ.

Figure 3 shows three graphs: one per couple of classes (the class of the example to explain and
the class requested as counterfactual). Each graph illustrates the mean Euclidean distance between
x′ and x with respect to ‖δ‖. When ‖δ‖ = 0, it uses the latent representation of x as input of
the cVAE decoder. Intuitively, we expect to have ψ(ϕ(x, c), c′) closer to x than ψ(ϕ(x, c) + δ, c′)
and thus, that the higher ‖δ‖, the higher the mean distance to the original example. The two
graphics on the right illustrates the expected behavior. In these cases, the latent representation
of the example seems to generate a counterfactual that is the most similar among the examples of
the opposite class. Nonetheless, we observe that it is not always the case. We can note that the
distance decreases when perturbing the latent representation of examples in class 0 and regenerating
counterfactual examples in class 1. This may be explained by the proximity between the two classes.

5.2 Comparison between VCNet and CounterNet

This section compares the quality of counterfactuals of VCNet against CounterNet. We conduct
evaluations on six binary-classification datasets with various properties: Adult [14], HELOC [8],
OULAD [15], Breast Cancer Wisconsin [3], Student performance [4] and Titanic [11]. Some of these
datasets contain only numerical variables but some others, such as Adult, contain both numerical
and categorical variables. More details about the datasets can be found in the supplementary
material of the article.

To evaluate the counterfactual quality, we used the following four metrics that are classical in
the literature.
Prediction gain: The prediction gain is given by the difference between the predicted proba-
bility of the counterfactual x′ and the predicted probability of the example x, according to the
counterfactual class [20].

Gain = [fpred(x′)]yi − [fpred(x)]yi

where yi denotes the predicted class for the counterfactual. A higher prediction gain means being
more confident in the class change of the counterfactual.
Validity: A counterfactual is valid if it achieves to obtain a different predicted class [18, 5]. Then:

Validity =

{
0, if yi = y0
1, if yi 6= y0

where yi denotes the predicted class for the counterfactual and y0 the predicted class for the
example to explain.

9

VCNet: A self-explaining model for realistic counterfactual generation V. Guyomard et al.

Proximity: The proximity is the L1 distance between an example, x and its counterfactual,
x′ [18, 27].

Proximity = ‖x′ − x‖1 = ‖δ‖1
A low value indicates fewer changes of features to apply to the original example to obtain the
counterfactual.
Proximity score: This metric is inspired from Laugel et al. [16] to quantify the distance of a
counterfactual to examples of the same predicted class:

Ps(x
′) =

d (x′, a0)
1

‖H‖(‖H‖−1)/2
∑

xi,xj∈H d (xi,xj)

where d (x′, a0) is the Euclidean distance of the counterfactual to the closest example that has
the same predicted class (a0) and H is the set of existing examples that have the same predicted
class as x′. The insight behind this metric is that the counterfactual should be close to an existing
example of the same predicted class relative to the rest of the data. Note that to be evaluated,
this metric requires a set of m examples X ∈ Rm×p.

For each dataset, we choose a random sample of size 25% for counterfactual generation. Then,
we compute the mean and standard deviation of each metric for every selected random sample.

Table 1 provides results of VCNet and CounterNet [9]. More information on the reproducibility
of CounterNet results is available in Supplementary material. It is worth noting that Table 1
contains additional results for post-hoc VCNet that will be discussed in Section 5.3.

Counterfactual quality: VCNet achieves perfect validity for 4 of the 6 datasets, and a lower
validity of respectively 4.5% and 7.5% for the 2 other datasets (Student and Titanic) compared to
CounterNet.

As far as prediction gain and proximity score are concerned, VCNet outperforms CounterNet
for all the 6 datasets. The higher the prediction gain, the more confidence one can have in the
prediction related to the class change of the counterfactual. At the same time, a low proximity
score reflects the achievement of counterfactuals that are close to real examples belonging to the
same class as predicted for the counterfactual.

For the last evaluated metric that is proximity, we observe that VCNet achieves higher values
than CounterNet on 5 of the 6 datasets. A larger proximity value means that the counterfactuals
are obtained at the cost of larger changes in the input space.

Predictive accuracy: Both CounterNet and VCNet are self-explainable models, and if the
previous results show that VCNet generates better counterfactuals, it can not be at the expense
of the prediction accuracy. Thus, Table 1 also presents model accuracies. We observe that VCNet
achieved similar performances on 3 of the 6 datasets. On the other hand, the accuracies for the
other datasets are lower by 0.4% (HELOC) to 2% (Student), which shows that our method still
performs very well in terms of prediction.

5.3 Impact of join-training on counterfactual quality

We derived our architecture to a post-hoc version (see Figure 4). Its training procedure is the
following: 1) we first train a prediction model. For our comparisons here, it is composed of the
concatenation of the shared layers block and the predictor block of VCNet, but in practice it can
be any machine learning model that outputs a probability score. Once the model is trained, we
obtain a probability vector p̂i by forwarding an example xi to the model. 2) then we train a cVAE
model conditionally to the probability vector (p̂i) output by the predictor learned during Step 1.
The cVAE is composed of the same shared layers block than VCNet, but it is not shared with the
predictor.

10

V. Guyomard et al. VCNet: A self-explaining model for realistic counterfactual generation

Table 1: Comparison of quality metrics of counterfactuals and predictive accuracy for three meth-
ods : VCNet, CounterNet and Post-hoc VCNet. Bold items give the best metric values among the
three methods.

Datasets Metrics Methods

VCNet CounterNet Post-hoc VCNet
Adult Validity 1.0 0.99 0.84

Proximity 7.71 ± 2.11 7.16± 2.13 7.28± 2.23
Prediction gain 0.76 ± 0.15 0.61±0.17 0.47±0.35
Proximity score 0.04 ± 0.11 0.31± 0.28 0.06±0.14
Accuracy 0.83 0.83 0.83

OULAD Validity 1.0 0.99 0.74
Proximity 11.66±2.46 11.96±2.40 11.22±2.54
Prediction gain 0.93±0.12 0.74±0.13 0.66±0.44
Proximity score 0.38±0.18 0.46±0.16 0.38±0.18
Accuracy 0.93 0.93 0.93

HELOC Validity 1.0 0.99 0.77
Proximity 5.60±2.11 4.41±1.80 5.09±1.71
Prediction gain 0.64±0.13 0.56±0.15 0.24±0.25
Proximity score 0.23±0.21 0.49±0.35 0.40±0.32
Accuracy 0.71 0.72 0.71

Student Validity 0.96 1.0 0.46
Proximity 19.90±3.21 19.86±2.78 19.68 ±3.03
Prediction gain 0.86±0.27 0.76±0.05 0.41±0.46
Proximity score 0.70±0.08 0.73±0.06 0.75±0.08
Accuracy 0.90 0.92 0.90

Titanic Validity 0.92 0.99 0.38
Proximity 15.43±3.79 15.15±4.05 15.56±5.23
Prediction gain 0.69±0.31 0.66±0.15 0.26±0.36
Proximity score 0.71±0.21 0.80± 0.16 1.21±0.26
Accuracy 0.82 0.83 0.82

Breast- Validity 1.0 1.0 0.59
cancer Proximity 5.27±1.47 1.51±1.01 7.71±1.67

Prediction gain 0.95 ± 0.11 0.69±0.15 0.60±0.45
Proximity score 0.28±0.03 0.72±0.48 0.94± 0.07
Accuracy 0.96 0.96 0.96

Figure 4: Post-hoc version of VCNet. (1) is the prediction model and (2) is the cVAE model.

We compare VCNet with its post-hoc version (Post-hoc VCNet) in order to study the impact of
join-training on counterfactuals. Table 1 provides the results of the post-hoc version compared to
those obtained previously with the join-training approach. We observe a drop of validity for every
dataset, which justifies that the join-training approach allows a better alignment of the explanation
task with the prediction task. We also observe a significant decrease in prediction gain for all
datasets, which means less changes between an example to explain and its counterfactual. Besides,
proximity is higher for 3 datasets (Adult, OULAD, Breast-cancer) and lower by respectively 9%,
1% and 0.8% on the remaining datasets (HELOC, Student, Titanic). Thus, we can argue that this
drop of prediction gain does not benefit to closer counterfactuals w.r.t. examples to explained. In
terms of model accuracies, training the prediction model alone leads to comparable results, which

11

VCNet: A self-explaining model for realistic counterfactual generation V. Guyomard et al.

Figure 5: Counterfactuals obtained with VCNet for the MNIST dataset. The top line corresponds
to the examples to explain, the bottom to the corresponding counterfactuals.

indicates that the join-training approach is not at the cost of a lower accuracy.

5.4 Qualitative results on MNIST dataset

We evaluated VCNet on the MNIST dataset4 with metrics suggested in Section 5.2. This exper-
iment illustrates that VCNet is adaptable to several types of data including image datasets. As
CounterNet was not applied to image data in the original paper, we do not offer a comparison with
this model here. This avoids a poor adaptation of CounterNet and an unfair comparison.

VCNet gives a mean validity of 0.99, a mean prediction gain of 0.98 and an accuracy of 0.98. The
counterfactual quality metrics on MNIST show that VCNet is a good model to generate realistic
and valid counterfactuals and, at the same time, to make accurate predictions. These results
suggest that VCNet has also good capabilities to generate counterfactuals for images, and not only
for tabular data. Figure 5 presents some examples to explain (in the first line) and corresponding
counterfactuals generated with VCNet (second line). Each example to explain and its counterfactual
is complemented by the predicted class, for instance E-7 means an example predicted class 7 and
C-3 means a counterfactual predicted class 3. We first notice that each counterfactual “looks like”
an example that matches the predicted class. Moreover, we observe that the orientation of the
digits is often preserved, for example E-1 is converted in C-7 by keeping the orientation of E-1.
C-6 is interesting as it shows that VCNet is able to provide a realistic counterfactual even if the
class of the example to explain is not trivial.

6 Conclusion

In this article, we propose VCNet, a new architecture for self-explainable classification based on
counterfactuals examples. Our architecture generates at the same time the decision and a counter-
factual that can be used by the analyst to understand the algorithm decision. The first advantage
of VCNet is to generate explanations and decisions in a simple feed forward pass of the examples.
Contrary to post-hoc counterfactuals explanation, VCNet does not require expensive optimization
to generate counterfactuals.

The main contribution of this article is the use of a cVAE as a counterfactual generator in our
model. The choice of a cVAE yields realistic counterfactuals and it is simple to train jointly with
the prediction model.

We extensively evaluated the quality of the counterfactuals and compared them to CounterNet.
We conclude that VCNet generates valid and realistic counterfactuals. The VCNet counterfactuals

4http://yann.lecun.com/exdb/mnist/

12

http://yann.lecun.com/exdb/mnist/

V. Guyomard et al. VCNet: A self-explaining model for realistic counterfactual generation

are realistic in the sense that they are close to existing examples of the same predicted class (VCNet
has better proximity scores than CounterNet) and also the result of a higher confidence in the class
change (VCNet has better prediction gains than CounterNet).

Finally, VCNet is simple to train because the training procedure is not based on counterfactuals
directly, but on the disentanglement of the class and the content of examples by the cVAE. It
allows proposing a simple optimisation procedure which makes our approach easier to put in
practice. This is illustrated by its successful application to a dataset of images. In addition, it is
also assessed in terms of model accuracy. Our experiments show that our join-training approach
keeps its competitive prediction performance against CounterNet. A future work is to compare
VCNet performances against state-of-the-art post-hoc counterfactuals methods and also to include
actionability constraints.

References

[1] David Alvarez Melis and Tommi Jaakkola. Towards robust interpretability with self-explaining
neural networks. In Proceedings of the Conference on Advances in Neural Information Pro-
cessing Systems (NIPS), pages 7786–7795, 2018.

[2] Brian Barr, Matthew R Harrington, Samuel Sharpe, and C Bayan Bruss. Counterfactual
explanations via latent space projection and interpolation. preprint arXiv:2112.00890, 2021.

[3] Catherine Blake. UCI repository of machine learning databases. http://www.ics.uci.edu/
mlearn/MLRepository.html, 1998.

[4] Paulo Cortez and Alice Maria Gonçalves Silva. Using data mining to predict secondary school
student performance. In Proceedings of Annual Future Business Technology Conference, pages
5–12, 2008.

[5] Raphael Mazzine Barbosa de Oliveira and David Martens. A framework and benchmarking
study for counterfactual generating methods on tabular data. Applied Sciences, 11(16):7274,
2021.

[6] Michael Downs, Jonathan L Chu, Yaniv Yacoby, Finale Doshi-Velez, and Weiwei Pan. Cruds:
Counterfactual recourse using disentangled subspaces. In ICML Workshop on Human Inter-
pretability in Machine Learning (WHI), pages 1–23, 2020.

[7] Daniel C. Elton. Self-explaining AI as an alternative to interpretable AI. In Proceedings of
the International Conference on Artificial General Intelligence (AGI), pages 95–106, 2020.

[8] FICO. Explainable machine learning challenge. https://community.fico.com/s/
explainable-machine-learning-challenge, 2018.

[9] Hangzhi Guo, Thanh Nguyen, and Amulya Yadav. CounterNet: End-to-end training of coun-
terfactual aware predictions. In ICML Workshop on Algorithmic Recourse, 2021.

[10] Vineet John, Lili Mou, Hareesh Bahuleyan, and Olga Vechtomova. Disentangled representa-
tion learning for non-parallel text style transfer. In Proceedings of the Annual Meeting of the
Association for Computational Linguistics (ACL), pages 424–434, 2019.

[11] Kaggle. Titanic – machine learning from disaster. https://www.kaggle.com/c/titanic/
overview, 2018.

13

http://www.ics.uci.edu/mlearn/MLRepository.html
http://www.ics.uci.edu/mlearn/MLRepository.html
https://community.fico.com/s/explainable-machine-learning-challenge
https://community.fico.com/s/explainable-machine-learning-challenge
https://www.kaggle.com/c/titanic/overview
https://www.kaggle.com/c/titanic/overview

VCNet: A self-explaining model for realistic counterfactual generation V. Guyomard et al.

[12] Diederik P. Kingma and Max Welling. Auto-encoding variational Bayes. In Proceedings of the
International Conference on Learning Representations (ICLR), 2014.

[13] Durk P Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and Max Welling. Semi-
supervised learning with deep generative models. In Proceedings of International Conference
on neural information processing systems (NIPS), pages 3581–3589, 2014.

[14] R Kohavi and B Becker. UCI machine learning repository: Adult data set, 1996.

[15] Jakub Kuzilek, Martin Hlosta, and Zdenek Zdrahal. Open university learning analytics
dataset. Scientific data, 4:170171, 2017.

[16] Thibault Laugel, Marie-Jeanne Lesot, Christophe Marsala, Xavier Renard, and Marcin De-
tyniecki. The dangers of post-hoc interpretability: Unjustified counterfactual explanations.
In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), pages
2801–2807, 2019.

[17] Christoph Molnar. Interpretable Machine Learning. C. Molnar, 2nd edition, 2022.

[18] Ramaravind K. Mothilal, Amit Sharma, and Chenhao Tan. Explaining machine learning
classifiers through diverse counterfactual explanations. In Proceedings of the Conference on
Fairness, Accountability, and Transparency (FAT), pages 607–617, 2020.

[19] Sharmila Reddy Nangi, Niyati Chhaya, Sopan Khosla, Nikhil Kaushik, and Harshit Nyati.
Counterfactuals to control latent disentangled text representations for style transfer. In Pro-
ceedings of the Annual Meeting of the Association for Computational Linguistics (ACL), pages
40–48, 2021.

[20] Daniel Nemirovsky, Nicolas Thiebaut, Ye Xu, and Abhishek Gupta. CounteRGAN: Generating
realistic counterfactuals with residual generative adversarial nets. preprint arXiv:2009.05199,
2020.

[21] Martin Pawelczyk, Klaus Broelemann, and Gjergji Kasneci. Learning model-agnostic coun-
terfactual explanations for tabular data. In Proceedings of The Web Conference (WWW’20),
pages 3126–3132, 2020.

[22] Cynthia Rudin. Stop explaining black box machine learning models for high stakes decisions
and use interpretable models instead. Nature Machine Intelligence, 1:206–215, 2019.

[23] Chris Russell. Efficient search for diverse coherent explanations. In Proceedings of the Con-
ference on Fairness, Accountability, and Transparency (FAT), New York, NY, USA, 2019.
Association for Computing Machinery.

[24] Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured output representation
using deep conditional generative models. In Proceedings of the Conference on Advances in
Neural Information Processing Systems (NIPS), pages 3483–3491, 2015.

[25] Berk Ustun, Alexander Spangher, and Yang Liu. Actionable recourse in linear classification.
In Proceedings of the Conference on Fairness, Accountability, and Transparency (FAT), pages
10–19, 2019.

[26] Arnaud Van Looveren and Janis Klaise. Interpretable counterfactual explanations guided by
prototypes. In Proceedings of the European Conference on Machine Learning and Knowledge
Discovery in Databases (ECML/PKDD), pages 650–665, 2021.

14

V. Guyomard et al. VCNet: A self-explaining model for realistic counterfactual generation

Table 2: Datasets details
Dataset Size Continuous Categorical
Adult 32,561 2 6
Student 649 2 14
Titanic 891 2 24
HELOC 10,459 21 2
OULAD 32,593 23 8
Breast Cancer 569 30 0

[27] Sandra Wachter, Brent Daniel Mittelstadt, and Chris Russell. Counterfactual explanations
without opening the black box: Automated decisions and the GDPR. Harvard Journal of Law
and Technology, 31(2):841–887, 2018.

A Dataset Details

A.1 Tabular Data

We used 6 binary-classification datasets for the comparison of VCNet with CounterNet. Table 2
describe the size of each dataset as well as the number of categorical and continuous variables.

A.2 MNIST Dataset

MNIST is composed of 60000 examples in train and 10000 examples in test. We used all of the
test set for counterfactual generation.

B Implementation Details

B.1 VCNet Details

We choose a binary cross entropy loss as the reconstruction error for the cVAE part and a cross
entropy loss for the predictor part. We apply a grid search to tune hyperparameters that are
specific for each datasets, these values are report in Table 3. We used an Adam optimizer for every
dataset. Table 4 describe the model architecture for every dataset. It contains the dimensions
for each block of VCNet. For example, with the adult dataset, the shared encoding transforms
an example xi of size 29 into a vector hi of size 15. Then the encoder of the cVAE part takes
a concatenation of hi and the prediction vector p̂i to produce a vector of size 16. This vector is
transform by the encoder to a lower representation of size 8 and finally a vector of size 5.

B.2 Post-hoc VCNet For Tabular Data

For the post-hoc version of VCNet, the architecture is the same as detailed in Table 4. Nonetheless,
hyperparameters for training change. Table 5 and 6 gives training hyperparameters for the cVAE
model and prediction model respectively.

B.3 Additional Information on CounterNet Reproducibility

We used the CounterNet code that was available at this link https://github.com/bkghz-orange-blue/
CounterNet. For fair comparison, we have computed counterfactuals from available trained models
and used the same data processing for VCNet.

15

https://github.com/bkghz-orange-blue/CounterNet
https://github.com/bkghz-orange-blue/CounterNet

VCNet: A self-explaining model for realistic counterfactual generation V. Guyomard et al.

Table 3: Hyperparameters details for VCNet
Dataset λ1 λ2 λ3 Learning Rate Epochs Batch-size
Adult 1 1 0.001 0.001 250 128
Student 1 0.1 0.01 0.001 50 30
Titanic 1 1 0.001 0.001 100 30
HELOC 0.1 1 0.01 0.001 200 64
OULAD 1 1 0.01 0.001 40 128
Breast Cancer 1 0.1 0.001 0.001 100 30
MNIST 1 8 0.2 0.001 100 30

Table 4: Architecture details for VCNet
Dataset Shared Encoding Dims Encoding Dims Predictor Dims CF Generator Dims
Adult [29,15] [16,8,5] [6,8,15,29] [15,15,1]
Student [85,50] [51,20,10] [11,20,50,85] [50,50,1]
Titanic [57,20] [21,10,5] [6,10,20,57] [20,20,1]
HELOC [35,15] [16,8,5] [6,8,15,35] [15,15,1]
OULAD [127,200] [201,100,10] [11,100,200,127] [200,200,1]
Breast Cancer [30,15] [16,8,5] [6,8,15,30] [15,15,1]
MNIST [784,400,40] [50,400,20] [30,400,784] [40,10]

Table 5: Hyperparameters details for post-hoc VCNet on tabular data for the cVAE part
Dataset λ2 λ3 Learning Rate Epochs Batch-size
Adult 1 0.001 0.001 10 128
Student 1 0.01 0.001 50 30
Titanic 1 0.001 0.001 20 30
HELOC 0.1 0.01 0.001 100 64
OULAD 0.1 0.01 0.001 40 128
Breast Cancer 1 0.001 0.001 30 30

Table 6: Hyperparameters details for post-hoc VCNet on tabular data for the prediction part
Dataset Learning Rate Epochs Batch-size
Adult 0.001 50 128
Student 0.001 50 30
Titanic 0.001 80 30
HELOC 0.001 100 64
OULAD 0.001 150 128
Breast Cancer 0.001 10 30

16

	Introduction
	Related Work
	Backgrounds
	Variational Autoencoder (VAE)
	Conditional Variational Autoencoder (cVAE)

	A Join Training Model
	VCNet Architecture
	Loss Function and Training Procedure
	Counterfactual Generation

	Experiments and Results
	cVAE for counterfactual generation
	Comparison between VCNet and CounterNet
	Impact of join-training on counterfactual quality
	Qualitative results on MNIST dataset

	Conclusion
	Dataset Details
	Tabular Data
	MNIST Dataset

	Implementation Details
	VCNet Details
	Post-hoc VCNet For Tabular Data
	Additional Information on CounterNet Reproducibility

