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ABSTRACT

Taxonomic classification of archaeal and bacterial viruses is challenging, yet also
fundamental for developing a predictive understanding ofmicrobial ecosystems. Recent
identification of hundreds of thousands of new viral genomes and genome fragments,
whose hosts remain unknown, requires a paradigm shift away from traditional
classification approaches and towards the use of genomes for taxonomy. Here we
revisited the use of genomes and their protein content as a means for developing a viral
taxonomy for bacterial and archaeal viruses. A network-based analytic was evaluated
and benchmarked against authority-accepted taxonomic assignments and found to
be largely concordant. Exceptions were manually examined and found to represent
areas of viral genome ‘sequence space’ that are under-sampled or prone to excessive
genetic exchange. While both cases are poorly resolved by genome-based taxonomic
approaches, the former will improve as viral sequence space is better sampled and
the latter are uncommon. Finally, given the largely robust taxonomic capabilities of
this approach, we sought to enable researchers to easily and systematically classify
new viruses. Thus, we established a tool, vConTACT, as an app at iVirus, where it
operates as a fast, highly scalable, user-friendly appwithin the free andpowerful CyVerse
cyberinfrastructure.

Subjects Bioinformatics, Genomics, Taxonomy, Virology

Keywords Virus, Bacteriophage, Archaeal viruses, Taxonomy

INTRODUCTION

Classification of viruses that infect Archaea and Bacteria remains challenging in virology.

Official viral taxonomy is handled by the International Committee for the Taxonomy

of Viruses (ICTV) and organizes viruses into order, family, subfamily, genus and

species. Historically, this organization derives from numerous viral features, such as

morphology, genome composition, segmentation, replication strategies and amino- and

nucleic-acid similarities—all of which is thought to roughly organize viruses according

How to cite this article Bolduc et al. (2017), vConTACT: an iVirus tool to classify double-stranded DNA viruses that infect Archaea and
Bacteria. PeerJ 5:e3243; DOI 10.7717/peerj.3243

https://peerj.com
mailto:mbsulli@gmail.com
mailto:mbsulli@email.arizona.edu
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.3243
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.7717/peerj.3243


to their evolutionary histories (Simmonds, 2015). As of 2015, the latest report issued, the

ICTV has classified 7 orders, 111 families, 27 subfamilies, 609 genera and 3704 species

(http://ictvonline.org/virusTaxInfo.asp).

Problematically, however, current ICTV classification procedures cannot keep pace

with viral discovery and may need revision where viruses are not brought into culture.

For example, of the 4,400 viral isolate genomes deposited into National Center for

Biotechnology information (NCBI) viral RefSeq, only 43% had been ICTV-classified by

2015. This is because the lengthy ‘proposal’ processes lags deposition of new viral genomes,

in some cases for years (Fauquet & Fargette, 2005). Concurrently, new computational

approaches are providing access to viral genomes and large genome fragments at

unprecedented rates. One approach mines microbial genomic datasets to provide virus

sequences where the host is known—already adding 12,498 new prophages from publicly

available bacterial and archaeal microbial genomes (Roux et al., 2015a) and 89 (69 and 20,

respectively) new virus sequences from single cell amplified genome sequencing projects

(Roux et al., 2014; Labonté et al., 2015). A second approach assembles viral genomes and

large genome fragments from metagenomics datasets. The largest of such studies added

264,413 new putative (partial) viral genomes from fmicrobial and viral metagenomes across

a broad range of ecosystems (Paez-Espino et al., 2017). Other studies include human stool

samples (Norman et al., 2015; Manrique et al., 2016). Such new virus genomes and large

genome fragments will keep coming for the foreseeable future and represent an incredible

resource for viral ecology. While this opportunity is now clearly recognized in a recent

Consensus Statement from the ICTV (Simmonds et al., 2017), it also represents a daunting

challenge for taxonomy.

Currently such rapidly expanding genomic databases of the virosphere remain

challenging to integrate into a systematic framework for three reasons. First, viruses lack a

universal marker gene, which prevents the taxonomic starting place that is so valuable for

microbes (Woese, Kandler & Wheelis, 1990). Second, though genomes and large genome

fragments are now much more readily available, researchers are reticent to use genomes as

a basis for taxonomy as a paradigm has emerged whereby viruses are rampantly mosaic and

therefore must exist as part of a genomic continuum such that any clustering in ‘sequence

space’ is an artifact of sampling. This is most well-studied in the many genomes of

mycobacteriophages (Pope et al., 2015), but is contrasted by observations in cyanophages

where efforts have been made to more deeply sample variability in a single site with

findings suggesting clear population structure for naturally-occurring cyanophages (Deng

et al., 2014) and that cyanophage populations appear to fit a population genetics-based

species definition (Marston & Amrich, 2009; Gregory et al., 2016). It is possible that gene

flow differs between DNA virus groups, depending upon their lifestyle. For example, lytic

viruses spend very little time in a host cell (only long enough to lytically reproduce), whereas

temperate viruses can spend generations replicating with its host cell as a prophage and

during this time the prophage may be exposed to genomic sequence from super-infecting

viruses and other mobile elements. The former lifestyle restricts these viruses to virus-host

gene exchanges, except during co-infection, whereas the latter lifestyle would presumably

enable more frequent virus-virus gene exchanges. As such, the lytic cyanophages might
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maintain more discrete ‘population’ boundaries, while the more commonly temperate

mycophages might exist as a continuum in sequence space due to higher rates of gene flow

(Gregory et al., 2016; Keen et al., 2017). Thus, it remains unclear whether viral genomes can

serve as the sole basis for taxonomy, or whether exploration of available data could help

identify areas of viral genome sequence space that are amenable to taxonomic ‘rules’ and

others that are not.

Despite these challenges, numerous reference-independent, automated, genome-based

classification schemes for bacterial and archaeal viruses have been proposed. For these

viruses, an early effort recognized that more genes are shared within related virus groups

than between them (Lawrence, Hatfull & Hendrix, 2002), which led virologists to use

translated genomes as the basis of whole genome phylogenomic tree classifications—

e.g., the Phage Proteomic Tree (Edwards & Rohwer, 2002). Simulations showed thismethod

to be very accurate for assigning fragmented reads to the correct genomes (Edwards &

Rohwer, 2005) but it suffers from the availability of phage genomes. A second approach that

has emerged for relatively well-studied virus groups, is to use pairwise distances between

aligned sequences to identify discontinuities that can indicate classification thresholds.

However, such approaches suffer from several issues: (i) they are not generalizable to the

coming deluge of environmental viral genome sequences as they require a priori expert

knowledge to impose similarity thresholds at each level, (ii) ICTV subcommittees have

established varied sequence similarity thresholds across viral groups (Simmonds, 2015),

which would require a sliding threshold, and (iii) the methods can only classify sequences

that are similar to database references (Zanotto et al., 1996), which for the oceans at least

represents <1% of the predicted viral genomes thought to exist (Brum et al., 2015).

Complementarily, two network-based approaches have been utilized to organize virus

genome sequence space in a manner that enables classification without a priori knowledge.

The first, a gene sharing network (Lima-Mendez et al., 2008), predicts viral genes in all

the genomes, translates them into proteins, organizes these proteins into Markov cluster

(MCL)-based protein families (protein clusters, ‘‘PCs’’), evaluates the number of shared

protein clusters pairwise throughout the dataset to establish a protein profile, and then

represents this information as a weighted graph, with nodes representing viral genomes and

edges the similarity score of their shared protein content. Given the 306 bacterial viruses

(phages) known at the time, this method was precise as it correctly placed 92% and 95%

of these phages into their correct ICTV genus or family, respectively (Lima-Mendez et al.,

2008). A similar approach was used to assign a newly described phage to the phiKZ group

(Jang et al., 2013). Since these genome networks use only one type of node, the graph is

defined asmonopartite (Corel et al., 2016). The second, a bipartite genome network consists

of two distinct sets of nodes (i.e., protein families and genomes) with only links joining the

nodes in different sets (Corel et al., 2016). Recently, all dsDNA viruses along with mobile

genetic elements were analyzed with a bipartite approach, which revealed a module-based

structure to the dsDNA virosphere (Iranzo, Krupovic & Koonin, 2016), while Iranzo et al.

(2016) successfully extended the same network analytics to the archaeal viruses and related

plasmids. Although both mono-/bipartite networks can be used as tools for investigating

gene sharing across genomes, a bipartite graph directly displays the interactions between
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Table 1 Terminology used.

Terminology Definition

Nodes Also known as vertices, these are points within a network. In this work,
they are viral genomes.

Edges Also known as arcs, these lines connect nodes in the network. In
this work, edges have a property called weight, which represents the
strength (as measured by significance score) between two genomes.

Betweenness centrality (BC) Measure of how influential a node is within a network, measured by
the number of shortest paths that pass through the node from all other
nodes.

Connected component A subgraph in which any two nodes are connected to each other
directly (to each other) or indirectly (through other nodes).

Largest connected component
(LCC)

The connected component with the greatest number of nodes.

Viral cluster (VC) A group of viral sequences sharing a sufficiently significant number of
genes to not occur by chance between the genomes (as determined by
the hypergeometric formula).

Protein cluster (PC) A group of highly similar and related proteins, defined in this work
using MCL on BLAST E-values between proteins.

Module Profile A table-like representation of the presence/absence data between
groups of protein clusters (modules) and groups of genomes (viral
clusters).

Precision (P) Also known as the positive predictive value, is a measure of how many
true positives are identified.

Recall (R) Also known as sensitivity, is a measure of how many of the total
positives are identified.

‘gene families’ and ‘genomes’, which are not depicted in a monopartite one (Corel et al.,

2016). Thus, a bipartite approach can be more accurate in evaluating the gene sharing

between and across genomes (Iranzo, Krupovic & Koonin, 2016; Iranzo et al., 2016). These

two mono-/bipartite networks nonetheless imply that even very distantly related viruses

can be organized into discrete populations by genomes alone and that there may be hope

for automated, genome-based viral taxonomy, at least for dsDNA viruses.

Here we re-evaluated monopartite gene sharing networks and their efficacy for

recapitulating ICTV-based classifications using an expanded dataset of 2,010 bacterial

and archaeal virus genomes (available as of RefSeq v75), while also deeply exploring

where network-based methods have lower resolution and/or yield discontinuities with

currently established taxonomies. Further, we make these approaches accessible to

researchers by developing a tool, vConTACT (Viral CONTigs Automatic Clustering

and Taxonomy), and deploy it as part of the iVirus ecosystem of apps that leverages the

CyVerse cyberinfrastructure (Bolduc et al., 2016).

MATERIALS AND METHODS

Terminology

Network topological parameters, their definitions and abbreviations are available in

Table 1.
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Reference datasets

To test this methodology, we downloaded the entire NCBI viral reference dataset

(‘‘ViralRefSeq’’, version 75, containing 5539 viruses) and removed eukaryotic viruses

by filtering against tables downloaded on NCBI’s ViralRefSeq viral genome page

(http://www.ncbi.nlm.nih.gov/genomes/GenomesGroup.cgi?taxid=10239). The resulting

file (‘‘Bacterial and Archaeal viruses’’; BAV) contained 2,010 total viruses; 1,905 dsDNA, 88

ssDNA, 5 dsRNA and 12 ssRNA. All viruses contained taxonomic affiliation information,

though not all viruses had affiliations associated with each level of the taxonomy (e.g.,

not all viruses have a ‘‘sub-family’’ designation). To improve taxonomic assignments, the

ICTV taxonomy was also retrieved (https://talk.ictvonline.org/files/master-species-lists/)

and the ICTV affiliations were used to supplement the NCBI data.

Building protein cluster profiles

To generate sequence profiles with information about the presence or absence of a sequence

within one or more protein clusters (described previously as protein families (Lima-Mendez

et al., 2008), proteins from each sequence were first extracted from the ViralRefSeq proteins

file. BLASTP (Altschul et al., 1997) was used to compare all proteins (198,102) from the

sequences in an all-versus-all pairwise comparison (default parameters, except e-value 1E-5,

bitscore 50). Protein clusters were subsequently identified using the Markov clustering

algorithm (MCL) with an inflation value of 2, resulting in 23,022 protein clusters (‘‘PCs’’).

Finally, we generated protein cluster profiles for each genome such that the presence of a

gene within a protein cluster of a viral genome was given a value of ‘‘1’’ and the absence

‘‘0’’. This resulted in a large 2,010 × 23,022 matrix.

Generating the similarity network

The similarity network is a graph where the nodes (i.e., reference sequences) are linked by

edges when the similarity between their pc-profiles is considered sufficiently significant to

not occur randomly. In other words, the network represents the overall similarity between

sequences based on the number of shared protein clusters. To calculate the similarity

between the profiles of two sequences (sequence A and sequence B), the hypergeometric

formula was used to estimate the probability that at least c protein clusters would be in

common:

P (X ≥ c) =

min(a,b)
∑

i=c

C i
aC

b−i
n−a

Cb
n

. (1)

Simply stated, the hypergeometric formula is used to calculate the probability that genomes

A and B would have c protein clusters in common by chance, which thus represents the

statistical significance of an observed number of shared protein clusters between two

genomes. The probability can be converted to an expectation value (E ; for false positives)

bymultiplying the probability (P) by the total number of comparisons (T ). The expectation

value can then be converted into a significance score:

S(A,B) = −log(E) = −log (P×T ). (2)
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Genome pairs with significance scores greater than 1 (i.e., E-value <0.1) are considered

sufficiently similar (see permutation test, below) and were joined by an edge in the

similarity network with a weight equal to their significance score. We refer to sequences

within the network as nodes, the relationships connecting them, edges and the strength of

that relationship, edge weight.

After generating the similarity network, groups of similar sequences (referred to as viral

clusters, ‘‘VCs’’) were clustered by applying MCL with an inflation of 2.

Measuring the proportion of shared genes between genomes

Given that genome sizes between pairs can differ greatly, this can lead to large differences

in the proportion of the shared genes (Ågren et al., 2012). To counter this, we characterized

the proportion of shared PCs between two genomes using the geometric index (G) as a

symmetric index:

GAB =
|N (A)∩N (B)|

|N (A)|×|N (B)|
(3)

where N (A) and N (B) indicate the numbers of protein clusters (PCs) in the genomes of

A and B, respectively. This can provide a measure of the genome relatedness based on the

percentage of conserved PCs between two genomes.

Permutation test

The stringency of the significant score was evaluated through randomization of the original

matrix where rows present viral genomes and columns PCs or singletons that are not shared

with any other protein sequences (Leplae et al., 2004). Briefly, with an in-house R script,

1,000 matrices were generated by randomly rearranging PCs and/or singletons within pairs

of genomes having a significant score≤1 (a negative control) and the scores associated with

these random rearrangements were calculated. None of the genome pairs in this negative

control produced significant scores >1, indicating values above this significance threshold

did not occur by chance (Lima-Mendez et al., 2008).

Affiliating sequence clusters with taxonomic groups

To assign (in the case of unknown sequences) or compare nodes (genomes) within clusters

to their reference counterparts, we first defined membership of a node c to a cluster k

B(c,k) according to two methods, conservative and permissive. The conservative method

(4) directly takes the result from the MCL clustering to assign a node to a cluster:

B(c,k) =

{

1 if Contig c ∈Cluster k,

0 otherwise
(4)

while the permissive method takes the sum of all edge weights w linking the node to nodes

of the cluster, with the node becoming a member of its maximal membership cluster (5):

B′(c,k) =

∑

i∈kwc,i
∑

p∈{Clusters}

∑

j∈pwg ,j
. (5)

The precision P (k,t ) of the taxonomic class t with respect to a cluster k was defined as the

proportion (in membership) of reference contigs of class t in the membership of reference
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contigs in the cluster k.

P (k,t ) =

∑

∀i∈{sequence of class t}B(i,k)
∑

∀j∈{reference sequence}B
(

j,k
) . (6)

A cluster and all its node members are then affiliated with its maximal precision class. For

the conservative method, the cluster is affiliated with the taxonomic class associated with

the majority of its members. In cases where clusters do not contain at least half reference

sequences, the entire cluster will be unaffiliated.

Measuring the connectivity of genomes to clusters

The connection strength of a node g to cluster c was calculated as the average edge weight

linking it to nodes of cluster c :

Wg ,c =
1

k

k
∑

i=1

wg ,i (7)

where k and w are the number and total weight of edges of the node g in the cluster c,

respectively. We refer to the average edge weight for node g to the cluster it belongs to as its

in-VC average weight, and to other clusters within the network as out-VC average weight.

Identifying sub-clusters

To further subdivide heterogeneous clusters (those comprising ≥2 taxa), cluster-wise

module profiles (i.e., a module profile only including viruses previously identified as

belonging to the same viral cluster) were hierarchically clustered using UPGMA with

pairwise Euclidean distances implemented in Scipy.

Statistical calculations

All calculations, statistics, network statistical analyses were performed using in-house

python scripts, with the Numpy, Scipy, Biopython and Pandas python-packages.

vConTACT is implemented in python with the same dependencies. The tool is available

at https://bitbucket.org/MAVERICLab/vcontact. Scripts used in the generational and

calculations of data are available at https://bitbucket.org/MAVERICLab/vcontact-SI.

Network visualization and analysis

The network was visualized with Cytoscape (version 3.1.1; http://cytoscape.org/), using an

edge-weighted spring embedded model, which places the genomes or fragments sharing

more PCs closer to each other. Topological properties were estimated using a combination

of python and the Network Analyzer 2.7 Cytoscape plug-in (Assenov et al., 2008).

RESULTS AND DISCUSSION

vConTACT analytical workflow and terminology

The vConTACT analyses are based on previously established gene sharing networkmethods

(Lima-Mendez et al., 2008). Briefly, PCs are established across all genomes in the dataset;

with vConTACT doing this by default using MCL clustering from all-versus-all BLASTP

comparisons (though user-specified clusters can also be used). PC profiles of genomes
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Figure 1 Overview of the vContact processing pipeline.

or genome fragments (herein ‘genome’) are then calculated, where the presence and

absence of PCs (from the entire PC dataset) along a genome are established and then

compared pairwise between genomes (Fig. 1). The pairwise genome comparisons are

then mathematically adjusted (using the hypergeometric similarity formula) to establish

a probability that any genome pair would share n PCs, given the total number of all

PCs. This probability is log-transformed (in similar fashion to BLAST E-values) into a
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significance score and applied as a weight to an edge between the two paired genomes in a

similarity network. High significance scores represent a low probability that two genomes

would share n PCs by chance, which can be interpreted as evidence of gene-sharing and

presumably evolutionary relatedness between the paired genomes. After evaluating all

pairings in the dataset, significance scores ≥1 are retained, and a network of the remaining

genome pairs is constructed. MCL is subsequently applied to identify structure in the gene

sharing network, but now the clusters represent groups or related genomes and are termed

viral clusters (‘‘VCs’’). MCL is also applied against the network of PCs, whose members can

be similar to members of other PCs. This effectively organizes the PCs into a higher-order

structure known as a protein module. The relationship information identified from the

genomes (organized into VCs) and PCs (organized into protein modules) are used to

create a module profile, which can then be mined for taxonomic identification, functional

profiling, etc.

Benchmarking network-based taxonomy

To benchmark the ability of network-based taxonomy to capture ‘known’ viral

relationships, we evaluated how vConTACT ‘‘re-classified’’ viral sequences at various

taxonomic levels using 2,010 bacterial and archaeal viral genomes from VirRefSeq (v75).

Of these reference genomes, ICTV-classifications were only available for a subset; 654

viruses from 2 orders, 738 viruses from 19 families, 152 viruses from 11 subfamilies,

and 562 viruses from 158 genera. The network was then decomposed into VCs (described

above) and a permutation test was used to establish significance score thresholds to prevent

random relationships from entering the network. This analysis used the initial network’s

edge information to construct a matrix between genome pairs, and then permuted the

edges 1,000 times. No edges were found to be significant during these tests, suggesting that

relationships seen within the network did not arise by chance and could be confidently

used to establish taxonomic groupings (see ‘Materials and Methods’, Table S1).

The resulting network, consisting of 1,964 viruses (nodes) and 65,393 relationships

(edges, Fig. 2A), was then used as a basis for comparison to the ICTV-based classifications.

Forty-six singleton viruses that do not have close relatives (2.2% of the total virus

population) were excluded. A total of 211 VCs were identified, spread among 46

components (unconnected subnetworks), which more than doubles the 17 connected

components identified previously (Lima-Mendez et al., 2008). Of the 46 components, 38

included 1,891 phages representing 194 VCs (left, Fig. 2A), and 8 components included

73 archaeal viruses representing 17 VCs (right, Fig. 2A). Most (87%) of the 1,891 phages

belonged to the orderCaudovirales, and comprised the largest connected component (LCC)

in the analysis (top left, Fig. 2A). At the VC level, the network clustering performed well

with average (across each taxonomic level) recall/precision percentages of 100%/100%,

90%/86%, and 80%/80% at the order, family and genus levels, respectively (Fig. 2B). Of

the 211 VCs resolved by the network, 76.4% contained a single ICTV-accepted genus,

suggesting a large concordance between the network VCs and accepted taxonomy, whereas
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Figure 2 Protein-sharing network for 1,964 archaeal and bacterial virus genomes benchmarked
against ICTV-accepted viral taxonomy. (A) Each node represents a viral genome from RefSeq, with its
shape representing the viral family (as indicated in the legend) and each distinct color the node’s viral
cluster (VC). Edges between nodes indicate a statistically significant relationship between the protein
profiles of their viral genomes, with edge colors (darker = more significant) corresponding to their
weighted similarity scores (threshold of ≥1). VCs within the network are discriminated using the MCL
algorithm (‘Materials and Methods’) and denoted as separate colors. The position of 26 heterogeneous
VCs that contain 2 or more genera is indicated. (B) Precision and recall of network-based assignments as
compared to ICTV assignments for each taxonomic level (genus, family, order, and type). (C) Percentage
(Y -axis) of VCs that contain the number (X-axis) of each ICTV taxonomic level (genus, family, and
order).

15.1% and 8.5% of the VCs contained two and 3 or more genera, respectively (Figs. 2A

and 2C). Thus, roughly 3 out of 4 of the VCs cleanly correspond to ICTV genera.

Mechanistically, these discrepancies between network clustering and the ICTV

classification could derive from either (i) under-sampling such that VCs with fewer

members may not represent the naturally-occurring diversity of that viral group, or (ii)

genetic exchanges between viral genomes that blur taxonomic boundaries between VCs.
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To discriminate between these possibilities, we investigated further these ‘‘ICTV-

discordant’’ areas of the network containing 2 or more ICTV genera (referred to as

heterogeneous VCs), focusing on three of themorewell-populated (manymember genomes)

heterogeneous VCs, and the archaeal virus heterogeneous VCs, which are among the least

well-sampled taxa. Of the well-sampled VCs, VCs containing the 2nd, 3rd, and 4th most

members (i.e., genomes), included the following: (i) VC1 contains the 8 genera belonging to

the Tevenvirinae subfamily (T4virus, Cc31virus, Js98virus, Rb49virus, Rb69virus, S16virus,

Sp18virus, and Schizot4virus) and a genus of the Eucamyvirinae (Cp8virus), as well as

the Tg1virus and Secunda5virus that are not assigned to a particular subfamily, (ii)

VC2 contains three genera (Biseptimavirus, Phietavirus, and Triavirus) belonging to the

Siphoviridae family, and (iii) VC3 contains four genera (Kayvirus, Silviavirus, Twortvirus,

and P100virus) belonging to the Spounavirinae of theMyoviridae and the six Bacillus virus

genera (Agatevirus, B4virus, Bc431virus, Bastillevirus, Nit1virus, and Wphvirus) belonging

to the Myoviridae. Finally, among the 73 archaeal viruses, only the Fuselloviridae were

accurately classified at the genus level, while most (63%) archaeal viruses were incorrectly

classified at the genus level.

Gene content analyses suggest ICTV classifications should be
revised for well-sampled taxa

A total of 23.6% of the VCs contained genomes from ≥2 ICTV-recognized genera,

which suggests ‘lumping’ by the network analyses (via MCL) or ‘splitting’ during ICTV

classification. To assess this, we computed the fraction of PCs that were shared both within

an ICTV genus and between the multiple ICTV genera found in each heterogeneous VC

and represented them as the percentage of intragenus similarity and intergenera similarity,

respectively. Of the 25 VCs, intragenus similarities of all but one (VC9) shared more than

40% of their PCs (Fig. 3A, Table S2), which is consistent with the threshold commonly

used to define a new dsDNA viral genus (Lavigne et al., 2009). In contrast, the intergenera

similarities varied widely—some VCs (VCs 1–3, 9–11, 17, 20, 25, 33, 58, 91, 95) shared

20–40% of their PCs (subfamily level), whereas others sharedmore than∼40% (VCs 12, 14,

24, 26, 37, 44, and 51) or less than ∼20% (VCs 39, 55, 63, 74, and 77) of their PCs. Where

intergenera similarities are high (>40% of the PCs are shared), there may be a case to be

made for merging the currently recognized ICTV genera. Consistent with this, all 6 of these

highly (>40%) similar VCs (12, 14, 24, 26, 37 and 51) are suggested to be in need of revision,

as these include G7cvirus, N4virus, T1virus, Hp34virus, and Phikmvvirus (Wittmann et al.,

2015; Eriksson et al., 2015; Niu et al., 2014; Krupovic et al., 2016). Additionally, we found

that in VC44, the phage CAjan, belonging to the Seuratvirus, shared 41.6–42.7% of its genes

with three phages (JenP1 and 2 and JenK1 of theNongavirus (Table S2)).Where intergenera

similarities are lower (<20%, or 20–40% of the PCs are shared), the appropriate taxonomic

assignment may require deeper sampling of viral genome sequence space and/or further

network analytic development.

To further assess these cases, we next examined four VCs (1–3, 14) that contained

more than 4 ICTV-recognized genera using hierarchical clustering of PC presence-absence

data for each genome (Fig. 3B). In parallel, we computed the actual connectivity of the
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Figure 3 Heterogeneous VCs. Evaluation of VCs which contained taxon representatives from more than
one ICTV genus. (A) Box plots show the percent inter- and intra-genus proteome similarities in the het-
erogeneous VCs. Dotted lines indicate the cut-off values of 20% and 40% proteome similarities to de-
fine the subfamily and genus, respectively, which have been ratified by the ICTV Bacterial and Archaeal
Viruses Subcommittee. (B) Module profiles showing the presence and absence of PCs across genomes.
Presence (dark box) denotes a gene that is present within a protein cluster. Genes from related genomes
often cluster into the same PC, with alignments of highly related genomes showing large groups of PCs.
Genomes are further partitioned using hierarchical clustering (see ‘Materials and Methods’).
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genomes within these heterogeneous VCs according to the average weight of edges that (i)

are between genomes of the same VC (in-VC avg. weight) and (ii) between the genomes of

other VCs (out-VC avg. weight) (Table S3; ‘Materials and Methods’). For example, within

VC1, 8 genera of the Tevenvirinae (S16virus, Cc31virus, T4virus, Rb69virus, Sp18virus,

Js98virus, Rb49virus and Schizot4virus) and their relatives (Tg1virus and Secunda5virus)

share, on average, 61% and 38% of their total PCs, respectively, and 39% between all

10 genera (Table S2). Outside VC1, they share ∼11.2% of genes with other viral groups

(Table S2). We found that the 10 genera within VC1 are more tightly interconnected than

those of the 210 VCs overall, with average in-cluster values of 223.7 and 131.9 and average

out-cluster values of 13.1 and 9.0, respectively (Table S3). These observations indicate that

higher cross-similarities of 10 genera can be attributed to a large fraction of their shared

genes, whereas only a small fraction of gene shared by other groups can hold them together.

Upon closer inspection, some of this ‘lumping’ appeared to be due to poorly sampled

regions of sequence space. For example, VC1 also contained the Cp8virus of the subfamily

Eucampyvirinae, which is odd to be placed alongside the Tevenvirinae, given that the other

ICTV-recognized genus (Cp220virus) of the Eucampyvrinae is grouped into a separate

cluster (VC 87). Since both genera (Cp8virus and Cp220virus) are distantly related to the

Tevenvirinae (Javed et al., 2014), displaying only ∼11% shared genes to other Tevenvirinae

(an averageweight of 18.5) and∼6% (11.8), respectively (Tables S2 and S3), these groupings

might be driven by the fact that only 2 reference genomes (i.e., Campylobacter phages CPX

and NCTC12673) are available in our ViralRefSeq dataset for Cp220virus. To test this,

we artificially doubled the number of the genomes for this group by adding their replicas

(phages CPX_copy1 and NCTC12673_copy1, Table S4) to the network. For all edges

between the replicas and original genomes and outside them, vConTACT recalculated the

weights. This led the Cp220virus genomes to clearly separate from VC1 and instead be

correctly placed alongside VC 87 (Table S4). Consistently, among the heterogeneous VCs

39, 55, 63, 74, and 77 showing <∼20% intergenera similarities (Figs. 3A and S1), increasing

the genome numbers of poorly-sampled ICTV genera led to clustering of members of those

genera into their correct VCs (Table S4). Together these findings suggest that additional

sampling in poorly sampled areas of viral sequence space will be required tomost accurately

establish genome-based taxonomy—issues that parallel those presented by long branch

attraction for phylogenies (Bergsten, 2005).

Similar structure emerged from hierarchical clustering of PC presence/absence data

from the 3 other well-represented heterogeneous VCs. In VC2, the three known subgroups

of the Phietavirus (Gutiérrez et al., 2014) were resolved, sharing 44.9% of their PCs, and

separate from two other subgroups—the Biseptimavirus and Triavirus, which shared 22.3%

of their PCs (Fig. 3B, Table S2). A detailed analysis of VC2 revealed that phages phinm4

and 88, and phiETA2, 53, and 80alpha, belonging to subgroups 1 and 2 of the Phietavirus,

respectively, and phage 77 from the Biseptimavirus share 35.6% to 43.8% of total PCs (Table

S2), which straddles the genus boundary (Lavigne et al., 2009). Along with these six phages,

other members of the Phietavirus and Biseptimavirus share ∼25% of their PCs (Table S2).

The considerable fraction of shared PCs between the Phietavirus and Biseptimavirus argues

for their lumping into the same cluster. Notably, despite the evolutionary relationship of
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Staphylococcus phage 42e to the Triavirus (Gutiérrez et al., 2014), we found it is included

into VC2, and separated from VC38 that exclusively consists of four members (phages

3A, 47, Ipla35, and Phi12) of the Triavirus (Table S3). Comparison of their connectivities

reveals that, relative to the four Triavirus members within VC38 (avg. weight of 118.27;

avg. shared PCs of 72.3%), phage 42e show weaker connections to VC38 (77.63; 49.5%)

(Tables S2 and S3). This relationship is somewhat similar to thewhole-genome phylogenetic

tree of the Triavirus where four members of the Triavirus are more closely related to

each other than to phage 42e (Gutiérrez et al., 2014). Further, phage 42e shows stronger

connections to VC2 (33.59; 25.7%) than those of four Triavirus members (18.94; 17.9%)

(Tables S2 and S3). Thus, given the drawback of MCL that cannot efficiently handle

modules with overlaps (Nepusz, Yu & Paccanaro, 2012; Shih & Parthasarathy, 2012), phage

42e appears to be spuriously assigned to VC2 due to its highly-overlapped genes between

VCs 2 and 38.

In VC3, containing the Spounavirinae (Krupovic et al., 2016), each sub-cluster has a

corresponding ICTV genus with largely overlapping sets of genes while also showing

a clearly distinct set(s) of genes. Of these, the six Bacillus virus genera (Wphvirus,

Bastillevirus, B4virus, Bc431virus, Agatevirus, and Nit1virus) appear to be closely related

to the Spounavirinae, with ∼20% of total PCs in common (Fig. 3B, Table S2). Additional

comparisons of the connectivities of clusters revealed that 10 genera of VC3 form strong

connections to each other, but weak connections with the rest of network (in-and out-VC

avg. weights of 118.16 and 14.54, respectively; Table S3). Thus, despite the fraction of genes

specific to each genus (Fig. 3B), these high interconnectivities of 10 genera can join them

together, which is similar to VC1. Finally, VC14 produced a clear division of theTunavirinae

(Krupovic et al., 2016), in which the Escherichia virus Jk06 is placed in a separate branch due

to its less shared common genes (∼56%) to the other Rogue1virusmembers (∼82%); their

highly-overlapped genes between genera above the genus boundary (40%) are associated

with ‘‘taxonomic lumping’’ as described above (Niu et al., 2014; Krupovic et al., 2016).

Wenext evaluated three phage groupswhichwere poorly represented in the S277network

(Lima-Mendez et al., 2008) and also represent some of the most abundant, widespread,

and/or extensively studied phage groups (Grose & Casjens, 2014; Pope et al., 2015; Roux

et al., 2015b)—the mycobacteriophages, Tevenvirinae, Autographivirinae and the archaeal

viruses.

Mycobacterium phages

The largest viral group covering 16.1% of the total population of the LCC (mostly

Caudovirales, top left Fig. 1A) includes phages infectingMycobacteria. The 318 mycophage

genomes were assigned to 14 VCs (Fig. 4A), 13 of which were composed of reference

genomes belonging to a single ICTV-recognized genus for each VC. The 14th mycophage

VC, VC25, contained three ICTV-recognized genera—the Bignuzvirus, Charlievirus, and

Che9cvirus. Although the module-based approach discerned the structure in this VC,

which would group them into the known genera (Fig. S1), this ‘‘lumping’’ into a single

VC reflects (i) their undersampling (i.e., each genus has 1 to at most 3 viruses) and/or

(ii) highly-overlapped genes between genera. Indeed, of the 3 phages belonging to the

Bolduc et al. (2017), PeerJ, DOI 10.7717/peerj.3243 14/26

https://peerj.com
http://dx.doi.org/10.7717/peerj.3243#supp-3
http://dx.doi.org/10.7717/peerj.3243#supp-2
http://dx.doi.org/10.7717/peerj.3243#supp-3
http://dx.doi.org/10.7717/peerj.3243#supp-2
http://dx.doi.org/10.7717/peerj.3243#supp-3
http://dx.doi.org/10.7717/peerj.3243#supp-2
http://dx.doi.org/10.7717/peerj.3243#supp-3
http://dx.doi.org/10.7717/peerj.3243#supp-5
http://dx.doi.org/10.7717/peerj.3243


Figure 4 A detailed view of network regions containing three major viral groups and their relatives.
Viruses (nodes) are grouped by the MCL clustering. Each node in (A) and (B) is colored according to the
viral cluster (VC) to which the corresponding virus belongs, which is shown in the legendary box in (A)
and (B) respectively. Nodes are depicted as different shapes, presenting viruses belonging to the family of
a given ICTV class or uncharacterized and others (legendary box between A and B). The location of viral
groups is indicated for illustrative purposes.

Che9cvirus, phages Babsiella and Che9c shared 45% of their genes, but also shared 35%

and 36% of their genes with the Bignuzvirus and 28% and 32% with the Charlievirus,

respectively (Table S2), which results in higher connectivity between three genera than to

other viral groups (Table S3). These findings contrast those in the rest of the network, and

suggest that some phage groups (e.g., mycophages) may more frequently exchange genes

than others.

To quantify this, we next examined features of the network reflecting the rate of gene

sharing across viruses. Among 14 mycophage-related VCs, 12VCs (∼86%) appeared

to form a densely connected region with variable edge weights (Fig. 4A; Table S3). For

example, nine VCs including VCs 0 (L5virus), 7 (Che8virus), 16 (Cjw1virus), 21 (Tm4virus),

25 (Bignuzvirus, Charlievirus, and Che9cvirus), 52 (Omegavirus), 59 (Liefievirus), 112

(Corndogvirus), and 141 (taxonomically-unknown) were highly interconnected to each

other, with weights of 1.1 to 21.2 (Table S3). Of these, VCs 16, 21, and 52 additionally linked

to VC35 (Bronvirus). VC80 (Barnyardvirus) linked to VC81 (Pbi1virus). These web-like

connections of mycophage-related VCs (or genus) strongly suggests that their genomes

may be prone to frequent gene exchanges across taxonomic boundaries, supporting the

previous finding of genomic continuity of mycophage populations (Pope et al., 2015), and

consistent with the largely temperate phage lifestyle of the mycophages.

Of these mycophage VCs, many VC59 mycophages were broadly linked to nine VCs

that contain other mycophages and phages from diverse hosts (Fig. 4A). To characterize

this further, we analyzed the topological properties using the betweenness centrality (BC),

which can identify the node residing in the shortest path between two other nodes (Halary

et al., 2009). Specifically, in the shared-gene network, high-betweenness nodes (phages)

can act as bridges between phages that would remain disconnected, due to their mosaic
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content of genes (Lima-Mendez et al., 2008). Indeed, these eight VC 59 phages had 42-fold

higher average BC than those of other mycophages and their relatives (0.04 vs. 9.45E−04)

(Fig. S2).

However, this BC-based detection of mosaic viruses in monopartite network could be

limited by the lack of identification of the genes responsible for these genomes connections.

For example, based on the betweenness value, Lima-Mendez et al. (2008) identified a single

representative of T5-like phages (i.e., a phageT5) as amosaic virus bridgingT4-/lambda-like

phages. Recently, however, Iranzo, Krupovic & Koonin (2016) specified viral core genes and

subsequently found that the bridge location of a phage T5 between T4-/lambda-like phages

could arise from (i) the incomplete sampling of the T5virus and/or (ii) widespread viral

hallmark genes having no obvious ancestors. Thus, in a monopartite network, BC values

would have to be considered alongside the list of PCs associated with each edge to correctly

identify mosaic viruses.

The Tevenvirinae

As the second-largest group, containing 94 viruses in the heterogeneous VC1, which

were further connected to 74 distant relatives and taxonomically unclassified myo-

/siphoviruse(s), the Tevenvirinae appeared to be restricted to a densely interconnected

region (Fig. 4). A subsequent hierarchical clustering within VC1 grouped these 168 viral

genomes into 5 subgroups (Fig. S3). Interestingly, three phages infecting cyanobacteria

(P-SSM2, P-SSM4, and S-PM2) and T4-like phages that were initially found in a single

cluster (Lima-Mendez et al., 2008) are separated into two clusters: VC8 containing the Exo

T-evens and VC1 containing the T-evens/Pseudo/Schizo T-evens, respectively (Filee, 2006)

(upper in Fig. 4B; Fig. S3). This network grouping can thus correctly identify the specificity

of the Exo T-evens, including cyano- and pelagiphages, which the literature suggests to be

only distantly related to other T4 superfamily viruses (Comeau & Krisch, 2008; Roux et al.,

2015b).

The Autographivirinae

We further identified 8 VCs associated with the Autographivirinae. Of four genera defined

by the NCBI and/or ICTV, the T7virus, SP6virus, Kp34virus were found in VCs 4, 28, and

37, respectively, whereas the Phikmvvirus were spread across VCs 13 and 37 (Fig. 4B; also

Fig. S4). Notably, a previous phylogenetic study based on three conserved proteins (i.e.,

RNA polymerase, head-tail connector and the DNA maturase B) showed considerable

diversity of the phikmvvirus (Eriksson et al., 2015). We also observed distinct patterns of

PC sharing between the PhiKMV-related genome(s) and other viruses in each cluster

(Fig. S4), suggesting that the Phikmvvirus should likely be divided into two new subgroups.

In addition, among the recently emerged groups, nine Acinetobacter phages (Huang et

al., 2013), as well as phage vB_CsaP_GAP227 (Abbasifar et al., 2013) and its close relatives

were found in VCs 54 and 93, respectively (Fig. S4); all of them encode T7-specific RNA

polymerase (Lavigne et al., 2009), which suggest that they fall within the Autographivirnae

subfamily.
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Cyanophages

Many viruses are now thought to co-opt host genes to improve viral fitness; these

stolen ‘auxiliary metabolic genes’ (AMGs) are well known from cyanophage genomes

(photosynthesis genes; Sullivan et al., 2006; Millard et al., 2009; Labrie et al., 2013), but

also from ocean viral metagenomes where viruses are now shown to contain genes involved

in central carbon metabolism (Hurwitz, Hallam & Sullivan, 2013) and nitrogen and sulfur

cycling (Roux et al., 2016) in ways that likely drive niche differentiation (Hurwitz, Brum

& Sullivan, 2014). Thus, it is striking that VC22 in our network, which contains 19

cyanopodoviruses, had many linkages to taxonomically disparate Tevenvirinae, which

turned out to be driven by photosynthesis genes shared across these viral taxa (Fig. 4B).

Such ‘‘host’’ genes in viruses can bring taxonomically disparate viral groups closer together,

and the network can thus help identify such niche defining viral genes for viruses infecting

well studied hosts.

A recent phylogenomic analysis of 142 cyanomyoviruses found that these viruses can

be split into multiple lineages, but most of the viral lineages have evolved to maintain

their structures (Gregory et al., 2016). They additionally suggested that the contrasting

pattern of gene flow between cyanophages and mycophages could be due to their lifestyle,

i.e., lytic cyanomyoviruses and temperate mycophages, but this conclusion is based on a

currently-limited collection of sequenced viral genomes. We also observed that a total of 74

cyanophages exclusively belong to VCs 8 (cyanomyoviruses) and 22 (cyanopodoviruses)

with limited connections outside them (Fig. 4B; Table S2), which is different from reticulate

inter-cluster (or genus) relationships of mycophage populations (discussed above), and

suggests that among cyanophages the predominately lytic lifestyles restrict gene flow

between viruses to presumably less common co-infection events.

The archaeal viruses

Of the 72 archaeal viruses, 66 were associated with 18 VCs, while 6 viruses (Haloviruses

HHTV-1 and VNH-1, Hyperthermophilic Archaeal Virus 1 & 2, Pyrococcous abyssi virus

1, and His 1 virus) were not included in the network, due to lack of statistically significant

similarity to any other virus. Of the 25 heterogeneous VCs, archaeal viruses comprise 3 of

them (VCs 51, 74 and 77), likely owing to their gene products showing little similarity to

published viruses outside of other archaeal viruses (Prangishvili, Garrett & Koonin, 2006).

All 3 VCs show considerable sharing of PCs within each VC (61.3 %, 50.2% and 67.6%,

respectively). VCs 74 and 77, each consisting of 2 genera (Gammalipothrixvirus/Rudivirus

andBetalipothrixvirus/Deltalipothrixvirus) unify the entire Ligamenvirales order (2 families).

Though the genera are distinguished mainly by their virion morphology (Prangishvili &

Krupovič, 2012), it can be argued that some lipothrixviruses share as much similarity within

the Lipothrixviridae family as to the rudiviruses, exemplified by the 10 genes shared between

AFV-1 (a lipothrixvirus) and SIRV1 (a rudivirus) (Prangishvili & Krupovič, 2012) and that

they likely derive from a common ancestor (Goulet et al., 2009). In addition to the number

of PCs shared betweenAFV-1 and the rudivirus inVC74 (Fig. S1), themore ‘‘distal’’ position

between AFV-2 (Deltalipothrixvirus) and the other VC77 members (Betalipothrixvirus)

(Fig. S1), the order-level separation is easily seen in the overall network structure (Fig. 2).
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VC55 (Alphafusellovirus/Betafusellovirus) consists of all known Fuselloviridae members.

Like VCs 74 and 77, their genera are separated mainly through virion morphology, with

Alphafusellovirus lemon-shaped and Betafusellovirus pleomorphic, and also through their

attachment structures (Redder et al., 2009). The large number of ‘‘core’’ genes (13) shared

among all family members argues for frequent recombination events, with even distant

fuselloviruses potentially capable of recombination during repeated integration events into

the same host. Furthermore, some fuselloviruses exhibit regions >70% pairwise identity

on the nucleotide level, including ASV-1 (Betafusellovirus) and SSV-K1 (Alphafusellovirus)

(Redder et al., 2009). Despite shared non-core regions between the fuselloviridae, the high

similarity between the two genera is also revealed in the network through unification into a

single VC. The most recently identified member of the Fuselloviridae, SulfolobalesMexican

fusellovirus 1 (SMF1) has no official ICTV classification between family, though clustering

within the VC shows clear association to the Betafusellovirus.

vConTACT, an iVirus tool for network-based viral taxonomy

Given the strong and robust performance of these network classification methods

(Lima-Mendez et al., 2008) to largely capture known viral taxonomy from genomes

alone, we sought to democratize the analytical capability. To this end, we developed

a tool named ‘‘vConTACT’’ (overview of its logic in Fig. 1) and integrated it into

iVirus, a virus ecology-focused set of tools also known as ‘‘apps’’ and databases (Bolduc

et al., 2016). Such implementation at iVirus enables any user to run the application

simply by providing viral sequences (including novel and/or reference sequences)

alongside a CSV-formatted file containing gene and sequence information with all

compute, storage and data repository happening via the CyVerse cyberinfrastructure

(formerly the iPlant Collaborative (Goff et al., 2011). Guides to using vConTACT

can be found at dx.doi.org/10.17504/protocols.io.gwdbxa6 (preparing data) and

dx.doi.org/10.17504/protocols.io.gwcbxaw (running vConTACT). A pipeline detailing

its use alongside other vConTACT-enabled apps is shown in Fig. S5.

Limitations and future developments of vConTACT

Since vConTACT uses a genome similarity network, it displays the extent of shared genes

between genomes as edges, but not what the shared genes are Corel et al. (2016). This

lack of information on the identity of shared genes (i.e., host-related genes and ancestral

viral genes) in the graph makes the biological interpretation of network connections

difficult, and can lead to a misunderstanding of genome evolution (i.e., T5virus) when

using topology to detect the chimeric viruses. Additionally, the limiting resolution of MCL

in poorly-sampled regions of and/or highly- overlapped viral genomes cannot uncover

their hidden substructure (i.e., Cp8virus and mycophages, respectively). These particular

types of limitations had not been reported previously, likely because of the smaller dataset

available at the time.

However, we have shown that the combined use of multiple clustering approaches

(e.g., MCL and hierarchical clustering) is better able to detect multiscale modularity of the

heterogeneous VCs. It is thus possible that more sensitive algorithm(s) can separate the
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sub-sampled and/or highly-overlapped genomes from VCs to which they are spuriously

assigned and estimation of the statistical significance of VCs can not only distinguish them

from other VCs (Nepusz, Yu & Paccanaro, 2012), but provide a confidence score for their

assignment. Additionally, while a bipartite network is arguably more appropriate to detect

mosaic genomes (Corel et al., 2016), estimation of in-/out-VC (or genus) cohesiveness may

help to characterize the genomes with high overlaps. Thus, although the choices of module

detection algorithm and its evaluation are still truly arbitrary (Fortunato, 2010; Schaeffer,

2007), the application of other approaches should be considered in future work.

CONCLUSIONS

Network-based approaches have been widely used to explore mathematical, statistical,

biological, and structural properties of a set of entities (nodes) and the connections between

them (edges) in a variety of biological and social systems (Dagan, 2011; Barberán et al.,

2012). Such approaches are invaluable for developing a quantitative framework to evaluate

if and where taxonomically meaningful classifications can be made in viral sequence space

(Simmonds et al., 2017). We sought here to quantitatively evaluate when and where an

existing gene-sharing-based network classification method (Lima-Mendez et al., 2008)

would perform poorly, and found that only 1 in 4 publicly-available, dsDNA viral genomes

were problematic. Follow-up analyses suggested these genomes were problematic due to (i)

under-sampled viral sequence space, (ii) incomplete taxonomic assignments of the ICTV

genera, and (iii) exceptionally high frequencies of gene sharing between viruses. The∼23%

of problematic VCs suffer approximately equally from these issues with 6.5%, 7.5% and

8.4% of the total VCs containing the ICTV genera attributable to each issue, respectively.

Fortunately, only the latter group will remain problematic for the approaches presented

here as increased sampling of viral sequence space and improvements in network analytics

will bring resolution to the former two categories. Thus, three-quarters of publicly-available

viral genomes are readily classified via a gene sharing network-based viral taxonomy, and

another 14.0% will quickly become so with the remaining ∼8% identifiably problematic

by network properties and features.

To this end, we present vConTACT as a publicly-available tool for researchers to

effectively enable large-scale, automated virus classification. Given thousands of new virus

sequences now routinely discovered in each metagenomics study (e.g., Calusinska et al.,

2016; Roux et al., 2016; Paez-Espino et al., 2016), and the readiness of the viral community

to use genomes as a basis for viral taxonomy (Simmonds et al., 2017), these advances take a

critical first step towards that goal. Ultimately, only an automatable viral classifier will be

able to rapidly and accurately integrate these novel viruses into the meaningful taxonomy

so critical for building viruses into predictive ecosystem models across biomes ranging

from the oceans and soils to bioreactors and humans.
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