
VCR: App-Agnostic Recovery of Photographic Evidence
from Android Device Memory Images

Brendan Saltaformaggio, Rohit Bhatia, Zhongshu Gu, Xiangyu Zhang, Dongyan Xu
Department of Computer Science and CERIAS

Purdue University, West Lafayette, IN 47907
{bsaltafo, bhatia13, gu16, xyzhang, dxu}@cs.purdue.edu

ABSTRACT

The ubiquity of modern smartphones means that nearly ev-
eryone has easy access to a camera at all times. In the
event of a crime, the photographic evidence that these cam-
eras leave in a smartphone’s memory becomes vital pieces of
digital evidence, and forensic investigators are tasked with
recovering and analyzing this evidence. Unfortunately, few
existing forensics tools are capable of systematically recov-
ering and inspecting such in-memory photographic evidence
produced by smartphone cameras. In this paper, we present
VCR, a memory forensics technique which aims to fill this
void by enabling the recovery of all photographic evidence
produced by an Android device’s cameras. By leveraging
key aspects of the Android framework, VCR extends existing
memory forensics techniques to improve vendor-customized
Android memory image analysis. Based on this, VCR tar-
gets application-generic artifacts in an input memory image
which allow photographic evidence to be collected no matter
which application produced it. Further, VCR builds upon the
Android framework’s existing image decoding logic to both
automatically recover and render any located evidence. Our
evaluation with commercially available smartphones shows
that VCR is highly effective at recovering all forms of photo-
graphic evidence produced by a variety of applications across
several different Android platforms.

Categories and Subject Descriptors

D.4.6 [Operating Systems]: Security and Protection

General Terms

Security

Keywords

Memory Forensics; Android; Digital Forensics

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from Permissions@acm.org.

CCS’15, October 12–16, 2015, Denver, Colorado, USA.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

c© 2015 ACM. ISBN 978-1-4503-3832-5/15/10 ...$15.00.

DOI: http://dx.doi.org/10.1145/2810103.2813720.

1. INTRODUCTION
Photographs and videos have served as essential evidence

in criminal investigations and legal proceedings. Further,
law enforcement agents rely on photographic evidence as
clues during on-going investigations. Today, smartphones
provide easy access to a camera at all times, and not sur-
prisingly, photographic evidence from smartphone cameras
has become commonplace in real-world cases.

During an investigation, digital forensics investigators ex-
tract such evidence from a device. Historically, investigators
focused on evidence recovery from non-volatile storage such
as disk-drives, removable storage, etc. Investigators make
forensic copies (images) of storage devices from a crime scene
and perform analysis on the images back at the forensics lab.
This analysis recovers a bulk of saved files (such as pictures
and videos) that the investigator examines for evidence.

More recently, investigators have realized that non-volatile
storage alone only reveals a subset of the evidence held in a
system. The contextual evidence held in a system’s volatile
storage (i.e., memory) can prove essential to an investiga-
tion [4, 9]. Memory forensics research has made it possible
to uncover much of an operating system kernel’s data from
a context free memory image [8, 15, 21, 34]. Other work has
focused on recovering data structure instances from appli-
cations using known in-memory value-patterns [15,26,30] or
with the assistance of program analysis [22,28,29]. Unfortu-
nately, the rapid pervasion of Android devices has rendered
many tools inapplicable to smartphone investigations.

Like other digital evidence, photographic evidence which
persists on non-volatile storage also lacks context or simply
portrays an incomplete picture of a crime — again requir-
ing memory forensics to fill the gaps. To this end, we have
developed VCR1, a memory forensics technique which in-
tegrates recovery and rendering capabilities for all forms of
in-memory evidence produced by an Android device’s cam-
eras. VCR is based on the observation that all accesses to a
device’s camera are directed through one intermediate ser-
vice. By designing VCR’s evidence recovery function to tar-
get this intermediate service, VCR can automatically recover
all forms of photographic evidence regardless of the app that
requests it. This trend of centralizing critical services into
intermediary processes (which we term intermediate service
architecture) is widely used in the Android framework, and
this paper examines the digital forensics and security impli-
cations of such design with regard to the camera framework.

1VCR stands for “Visual Content Recovery” and is a refer-
ence to the ancient videocassette recorder device.

146

VCR’s evidence recovery faces challenges, however, be-
cause the Android framework (known as the Android Open
Source Project or AOSP) is often customized by smartphone
vendors. To overcome this, VCR involves novel structure
definition inference techniques which apply to the Android
vendor customization domain — called Vendor-Generic Sig-
natures. To the best of our knowledge, VCR is among the
first to handle vendor-customized data structures inline as
part of targeted evidence recovery.

Additionally, VCR-recovered evidence must be reviewed,
cataloged as evidence, and presented to any (not techni-
cally trained) lawyer or official. Thus, VCR must trans-
form the unintelligible in-memory photographic data into
human-understandable images. Using an instrumentation
based feedback mechanism within existing image processing
routines, VCR can automatically render all recovered evi-
dence as it would have appeared on the original device.

We have performed extensive experimentation with VCR
using a wide range of real-world commodity apps running on
different versions of the Android framework and two new,
commercially available smartphones. Our results show that
VCR can automatically and generically recover and render
photographic evidence from the phones’ memory images —
a capability previously not available to investigators — with
high accuracy and efficiency.

2. MOTIVATION
Smartphone cameras are employed in a variety of apps

which we use everyday: taking photographs, video chatting,
and even sending images of checks to our banks.

Criminals too have found many uses for smartphone cam-
eras. To motivate the need for VCR, we quote Riley vs.
California [1], a United States Supreme Court case involv-
ing smartphone photographic evidence:

At the police station about two hours after
the arrest, a detective specializing in gangs fur-
ther examined the contents of the phone. The
detective testified that he “went through”Riley’s
phone “looking for evidence, because ... gang
members will often video themselves with guns
or take pictures of themselves with the guns.”
... Although there was “a lot of stuff” on the
phone, particular files that “caught [the detec-
tive’s] eye” included videos of young men spar-
ring while someone yelled encouragement using
the moniker “Blood.” ... The police also found
photographs of Riley standing in front of a car
they suspected had been involved in a shooting
a few weeks earlier. [1]

In the above quote, the detective explains how essential
smartphone photographic evidence is to ongoing investiga-
tions. Further, our collaborators in digital forensics practice
describe many other crimes in which such evidence can prove
invaluable. In Section 4, we will consider smartphone pho-
tographic evidence in a (mock) case based on an invited talk
at Usenix Security 2014 on battling against human traffick-
ing [23].

Let us strengthen our adversary model by considering a
more tech-savvy criminal than Riley — someone who deletes
the image files from the device’s storage or even removes the
storage (e.g., external SD-card) and destroys it. Current

digital forensics techniques would not recover any photo-
graphic evidence in such a case. Luckily, regardless of how
tech-savvy the criminal may be, photographic evidence from
the camera’s most recent use remains in the system’s mem-
ory. VCR gives investigators access to these last remaining
pieces of photographic evidence.

A smartphone camera produces three distinct pieces of
evidence: photographs, videos, and preview frames. Pho-
tographs are left in a device’s memory when a user explicitly
captures an image. When a smartphone records a video, in-
dividual frames are captured and sent to the requesting app
— again leaving frames behind in memory.

Preview frames, however, are of particular forensic inter-
est for a number of reasons. Preview frames are a smart-
phone’s analog to a standard camera’s view finder. When
an app uses the camera, the app will, by default, display
the camera’s current view on the screen, allowing the user
to accurately position the device for capturing the intended
picture. Importantly, whether the user captures a photo or
not the app will display the preview. This leads to the
forensically important feature that: Any app which only
opens the camera, immediately leaves photographic
evidence in memory. Further, preview frames (and video
frames) are captured continuously and buffered until the app
retrieves them. Thus many frames will be present in a mem-
ory image representing a time-lapse of what the camera was
viewing.

Building from the scenario in Riley vs. California, imagine
that Riley had carefully removed all photograph files from
the smartphone’s non-volatile storage or (more likely) was
using an app which does not save photograph files such as a
Skype video-call. In this case, the smartphone’s non-volatile
storage will not contain any evidence of the car suspected
in the earlier shooting [1]. However, investigators could now
use VCR to analyze the smartphone’s memory image and
recover the last images, videos, and preview frames left in
the memory, which are likely the evidence the criminal is
trying to hide.

Figure 1 shows some preview frames which VCR recov-
ered from a smartphone’s memory image. Notice that mul-
tiple frames are recovered and show the action of the per-
petrator’s car driving away (i.e., temporal evidence for in-
vestigators). Also note that these are preview frames and
the smartphone user was not actively recording video at that
time. Simply having the camera-using app open left photo-
graphic evidence in this memory image. It’s easy to see how
such evidence links the smartphone’s owner to the car in the
images (and hence to the shooting).

Our study reveals that this photographic evidence always
persists in the smartphone’s memory— without being erased
or overwritten — until a new app uses the camera (filling
the previous image buffers with new evidence). Thus, VCR
will always have some evidence to recover. Note that these
buffers are not app-specific, only containing frames from the
most recent app which used the camera. More importantly,
the buffers storing other media data (e.g., audio) are allo-
cated from separate memory pools than the camera’s buffers
and thus cannot interfere with photographic evidence. Fur-
ther, VCR is not specific to suspects’ smartphones, investi-
gators can apply VCR to memory images from a witness or
victim’s Android device as well, for instance to collect proof
of the user’s whereabouts.

147

Figure 1: Time-lapse effect in recovered preview frames without explicitly taking a photo. VCR recovers and
renders these images as they would have appeared on the app’s camera preview screen — the smartphone
analog to a standard camera’s view finder.

Camera HAL

mediaserver

Camera

Diverse Android Apps

Intermediate

Service Architecture

Hardware Devices

Figure 2: Intermediate service architecture. The
mediaserver acts as a mediator between the apps
and the camera device. Also, some apps utilize the
camera by requesting the default camera app to per-
form actual image captures (such as the Facebook
app shown here).

2.1 Centralized Photographic Evidence
For many core services, Android has adopted an interme-

diate service architecture. Specifically, accesses to periph-
eral devices and system services are mediated by an inter-
mediate process. For the camera(s) this process is called
the mediaserver. Figure 2 presents a high level view of the
intermediate service architecture, specifically for the medi-
aserver’s components: Apps, the mediaserver process, and
camera hardware abstraction layer (HAL). This high-level
intermediate service design makes app development easier
and abstract regarding the hardware back-end.

Intermediate services present a standard interface to the
apps. Each service is designed to generically handle any
vendor/hardware specific implementation beneath it. Most
importantly, the AOSP defines generic data structures for
the vendor’s code to use in order to conform with the stan-
dard interface presented to the apps.

The key observation behind VCR’s design is that any
app which uses the camera must transitively use the generic
data structures to retrieve photographic data from the medi-
aserver. This creates a unique opportunity for VCR2. By lo-
cating and recovering these generic “middleware”data struc-
tures, VCR is able to reconstruct and render evidence with-
out any app-specific knowledge. More importantly, VCR can
remain mostly generic to any hardware-specific implemen-
tations because the camera HAL must also use the generic
data structures to return photographic data to the apps.
This is beneficial to VCR, which can now be designed in a

2However, as we point out later, this also centralizes privacy-
critical components and may benefit attackers as well.

more robust, generic way than tools that must recover data
from individual (highly diverse) Android apps.

In fact, the mediaserver also delegates audio requests (ac-
cesses to speakers and microphones) and most media stream-
ing. We note that photographic evidence is only part of the
mediaserver’s potential forensic value. VCR can be extended
to extract other evidence formats from the mediaserver’s
memory.

2.2 Assumptions and Setup
VCR assumes that an investigator has already captured a

memory image from an Android device. Previous research
has designed both hardware [10] and software [33] acquisi-
tion tools to obtain a forensic image of a device’s memory.
VCR operates on memory images captured by any standard
memory acquisition tool.

Similar to previous memory forensics projects [21, 26, 29,
34], VCR assumes the kernel’s paging structures are intact
in the memory image. This is required because VCR oper-
ates only on the mediaserver process’ memory session. Tools
(e.g., [34]) exist to rebuild a process’ memory space from a
whole-system memory image.

3. SYSTEM DESIGN
VCR consists of two phases: 1) identify and recover photo-

graphic data from an input memory image, and 2) transform
the unintelligible recovered data into photographic evidence
which investigators can review and present.

3.1 Recovering Evidentiary Data
Since photographic image buffers are encoded and indis-

tinguishable from random data, brute-force scanning for the
buffers would return countless false results. VCR adopts a
more robust algorithm: for each type of evidence (preview
frames, photographs, and video frames), VCR locates and
recovers a distinct group of interconnected data structures,
one of which contains the image data. For simplicity, we re-
fer to such groups of interconnected data structures as “data
structure networks.”

Ideally, VCR would only need to verify the points-to in-
variants between the targeted data structures (i.e., each
pointer field within each structure points to another struc-
ture in the network). In this way, each recovered data struc-
ture attests to the validity of the network, thus the located
network is not a false positive. However, for key reasons de-
scribed below, points-to invariants alone are insufficient in
this scenario.

148

class CameraClient {

 …
0xC: int mCameraId;

 ...

0x14: const String16 mClientPackageName;

0x18: pid_t mClientPid;

 ...

0x64: ANativeWindow* mPreviewWindow;

 …
}

class CameraClient {

 …
0xC: int mCameraId;

 ...

0x14: const String16 mClientPackageName;

0x18: pid_t mClientPid;

 …

0x5C: ANativeWindow* mPreviewWindow;

}

Vendor Customized Fields

AOSP Data Structure

Vendor Customized Data Structure

Vendor Customized Fields

Figure 3: AOSP vs. Vendor Customized Structure.

The structures which VCR recovers form a closed network
which is unfortunately too small to derive a viable points-to
invariant signature. Instead, VCR must also employ value-
invariant signatures for each data structure. However, due
to vendor customizations, the structures’ field positions and
value-invariants cannot be fully known a priori.

Nearly every Android device uses a customized (possibly
close-source) version of the AOSP. Device vendors make a
proprietary copy of the AOSP repository and customize the
low level framework (kernel, drivers) and high level utilities
(GUI, standard apps). For data structures, vendors may
add fields to store custom data, move existing fields to dif-
ferent offsets within the structure, or change the values that
existing fields can be assigned (such as adding a new enumer-
ation value). Specific to VCR, vendors modify the camera’s
allocation pools and internal operation (specific drivers, im-
age processing, etc.). These modifications lead to different
definitions of the data structures that VCR must recover.

Luckily, although vendors may customize the data struc-
tures, they must still conform to a “gold standard” in order
to interact with unmodified portions of the AOSP. We use
the term “gold standard” to refer to the many components
of the AOSP that are not customizable (e.g., middleware li-
braries, core functionality, etc.), and thus vendor customiza-
tions must not remove structures and data fields at the
source code level which other components rely on.

As an example, Figure 3 shows the CameraClient class
from the AOSP versus the LG vendor customized version.
The vendor customizations change the offset of the mPre-
viewWindow field, but in order to interact with unmodified
AOSP components all the“gold standard”fields (which VCR
relies on) must remain in the structure. In our evaluation
we observed vastly different implementations of several data
structures which VCR must recover.

After the vendor-customized source code is compiled, VCR
loses access to the mapping between source code definitions
and binary data structure layouts. Essentially we know that
the fields exist, but cannot know where they are when lo-
cating data structures in a new memory image. To over-
come this, VCR is prepackaged with Vendor-Generic Sig-
natures (Section 3.2) for the customizable data structures.
VCR then dynamically derives Vendor-Specific Signatures
(Section 3.3) during data structure location and recovery.

Beyond vendor customization, VCR’s generic signatures
are also robust to changes between AOSP versions. When
Google updates features in the AOSP, this also leads to
changes in data structure layouts. In fact, several fields were
added to the CameraClient class between AOSP versions 4.4
and 5.0. VCR’s signatures however do not need to be up-
dated because they can adapt to the input memory image.
Further, it is easy to add additional signatures in the event
that Google fully redesigns some data structure network.

CameraClient = {

 …
}

mCameraId(v,o) = p1(v,o)
0.2

 * p2(v,o)
0.4

 * p3(v,o)
0.4

mPreviewWindow(v,o) = p1(v,o)
0.1

 * p2(v,o)
0.9

1, if size(v)=4

0, otherwise

0.85, if v=0 or 1

0.15, otherwise

0.95, if o<=16

0.05, otherwise

1, if size(v)=4

0, otherwise
ANativeWindow(*v)

Figure 4: Illustration of a partial CameraClient sig-
nature (an unordered set of field constraints).

3.2 Vendor-Generic Signature Derivation
VCR operates on only an input memory snapshot and

assumes no source code availability. Thus VCR must adapt
signatures for any necessary data structures dynamically. To
this end, VCR comes packaged with a set of Vendor-Generic
Signatures. Vendor-Generic Signatures are data structure
signatures which contain invariants on the structure’s fields
but do not have set locations (offsets in the structure) for
those fields. Specifically, we preprocessed the AOSP “gold
standard”version of each data structureDi which VCRmust
recover. For each field fj within the “gold standard” Di, a
field constraint (described below) is built.

Field Constraints We define 4 primitive constraints to
describe each field: 1) A Type/Size constraint defines the
field’s type definition (e.g., floating point, pointer, etc.) and
in-memory byte size. Since VCR operates on binary data
these constraints are essentially sanity-checks on the discov-
ered memory locations. 2) Value Range constraints are value
invariants specific to field fj . 3) Field Offset constraints de-
fine where fj is likely to be in Di. For some fields (e.g.,
inherited from a superclass) we know the byte offset in Di

for certain, but for most fields we cannot know where the
vendor’s modifications moved them. 4) For pointer fields,
Pointer Target constraints define a set of other primitive
constraints on the pointer’s target. Specifically, our confi-
dence in fj being a pointer to a data structure depends on
the validity of the target data structure.

Therefore, based on the AOSP definition of fj in Di, we
automatically build a probability match function pi(v, o) for
each primitive constraint. pi(v, o) defines the probability
that a value v at byte offset o in a discovered data struc-
ture matches that constraint. We can then define a field
constraint for fj as:

fj(v, o) = p1(v, o)
w1 × p2(v, o)

w2 × ...× pn(v, o)
wn (1)

where pi is the ith primitive constraint for field fj , and wi

is a corresponding weight to adjust for stronger constraints
(the sum of all weights must be 1).

Therefore, the signature of the structure Di is an un-
ordered set of field constraints. The set is unordered because
VCR cannot know the offsets of those fields in a vendor
customized data structure a priori. During memory image
scanning, VCR will order the field constraints to adapt to
the vendor customizations (described in the next section).

Figure 4 shows part of a CameraClient signature. Notice
that each field constraint includes a number of primitive
constraints — for instance, the mCameraId field has con-
straints on its type and size (a 32-bit integer), value range
(between 0 and 1 with high probability), and offset (with
high probability in the top 16 bytes of the data structure).

Not all data structures which VCR recovers are vendor
customizable. For these we rely on existing points-to and
value invariant signature generation techniques to build a
“hard signature.” When a signature contains a pointer to

149

one of these structures, we set that pointer field’s Pointer
Target constraint value to 1.0 (i.e., pointing to a valid hard
signature provides full confidence in that pointer field).

Field Dependence We notice that not all fields in a data
structure are independent. For simplicity, we only consider
dependence based on two (or more) fields’ location in a data
structure: (1) Non-pointer fields of the same type tend to be
clustered (e.g., floating point width and height fields) and
(2) Fields accessed consecutively in a C++ class’s member
function are likely to be defined next to one another.

For these two cases, a scaling factor (α) is applied to in-
crease the match probability of the dependent fields when a
signature matching maps them consecutively. Simply put, if
VCR locates these fields next to each other in a potential sig-
nature match then we can be more confident in that match
— compared to matching those fields in separate locations.
Fields dependent by (1) above are given α = 0.2 scaling
factor (i.e., matching such fields consecutively increases the
probability of the entire signature matching by a factor of
0.2). Conversely, we assume stronger correlation for fields
dependent by (2) and thus set α = 0.8.

Based on the signatures generated before, we update each
field constraint of any dependent fields to account for the
scaling factor. Here we use the function dep(ca, cb) to denote
that the field constraints ca and cb are dependent. Consider
two matches for those field constraints ai and aj where each
an is the nth field in a potentially matching data structure
instance. We define Pmatch(ca, ai) as follows (where c → a

denotes “c matches to a”):

P (ca → ai|∀cb : dep(ca, cb) ∧ cb → aj) = Pmatch(ca, ai)

where Pmatch(ca, ai) =

{

(ca(ai))
α if i = j − 1 or j + 1

ca(ai) otherwise

(2)
Essentially, Equation 2 applies the scaling factor to ca if

ca and cb are dependent and cb has previously mapped to a
neighbor of ai. Otherwise, the formula simplifies to the field
constraint probability defined in Equation 1.

3.3 Memory Image Scanning
To use VCR to recover photographic evidence, investiga-

tors need only input a context-free memory image. VCR
then employs a two-pass scanning algorithm. In the first
pass, VCR marks all memory locations which match hard
signatures (i.e., not vendor customizable and do not re-
quire probabilistic inference) — we refer to these as “hard
matched” data structures. During the second pass, VCR
uses probabilistic inference with our previously generated
Vendor-Generic Signatures to construct Vendor-Specific Sig-
natures to identify and recover true data structure instances.

Starting from the hard-matched data structures, VCR
backward propagates confidence to all potential matches to
Vendor-Generic Signatures. To calculate a match for a sig-
nature S, VCR first converts a candidate memory region
(the region we want to map to S) into a set A of tuples:

A = {(v0, o0), (v1, o1), . . . (vn, on)} (3)

where vi is the i
th value at offset oi in the candidate memory

region A. To match Vendor-Generic Signature fields, VCR
may combine adjacent tuples to satisfy the field’s type/size
constraint. If no such match can be made, then the type/size
constraint will yield a 0 probability. Later, we will use ai to
denote (vi, oi).

CameraClient = {

 …
 mCameraId(v,o)

 ...

 mPreviewWindow(v,o)

 ...

}

Vendor-Generic Signature

CameraClient {

 …
 0xc: mCameraId = 1;

 ...

 0x5c: mPreviewWindow

 = 0xa28c7e34;

 ...

}

Vendor-Specific Signature

mCameraId(v,o) = 0.918

mPreviewWindow(v,o) = (ANativeWindow(*v))
0.9

 = 0.856

Candidate

Signature Match

(v = 1, o = 0xc)

(v = 0xa28c7e34, o = 0x5c)

Figure 5: Matching a candidate CameraClient in-
stance via field constraint computation.

VCR then creates a permutation of the vendor-generic sig-
nature by computing the best fit mapping S → A, using the
following greedy algorithm: For each randomly chosen field
constraint ci, VCR matches a binary tuple aj (from the re-
maining unmatched tuples in A) which maximizes ci’s match
probability (i.e., Pmatch(ci, aj)). This repeats for each ci un-
til all field constraints have been matched. Yielding the final
match probability equation for a signature S to a candidate
structure A:
S(A) = Pmatch(c0, a0)× Pmatch(c1, a1)× . . . Pmatch(cn, an)

(4)
where the subscripts indicate order of matching (not or-

der in the signature). Computing Equation 4 for a single
S → A mapping yields VCR’s confidence in that particular
permutation of S for that candidate A.

Figure 5 shows an example of matching the CameraClient
signature’s field constraints to a candidate memory loca-
tion. Computing each field constraint for the best matching
ai yields one permutation of the CameraClient signature’s
fields for that candidate memory location.

Computing the match probability of Pointer Target con-
straints requires knowing the probability of the pointer tar-
get’s match. Because matching is done via backward prop-
agation, VCR only computes a signature’s match proba-
bility once all of its Pointer Target constraints have been
computed. Recall that if the target is a hard-match then
this confidence is 1.0. Thus, VCR requires recoverable data
structure networks to have hard-signatures at the leaves
(which can be ensured automatically during signature gen-
eration).

VCR repeats the above greedy algorithm and Equation 4
computation independently for all candidate memory re-
gions for a single signature. Note that the first greedy
matching may not result in the correct mapping of ci to ai

(resulting in different S → A mappings for different can-
didate memory locations). We observe that: for a final
mapping of ci constraints to be correct, it must be con-
stant across all discovered instances of that data structure.
Thus only a single mapping of S → A can be correct for all
candidate memory locations (i.e., A sets) for that signature.

VCR iteratively repeats the above process for all candi-
date memory locations (choosing the S → A mapping which
maximizes the probability of a match), until an optimal
mapping is found across all candidates for a single signa-
ture. This final signature which VCR selects is referred to as
a Vendor-Specific Signature (i.e., the Vendor-Generic Signa-
ture with set field locations). VCR will recover all candidate
data structures which match the Vendor-Specific Signatures
to a certain threshold. In our evaluation, we use a threshold
of 0.75 since most candidates polarize with invalid candi-
dates near 0.3 and valid matches near 0.8.

150

0

50

100

150

200

250

0 50 100 150 200 250

N
o

is
e

Pixel Reads

RGBA (incorrect)

YUV (correct)

Threshold

(a) YUV Buffer

0

50

100

150

200

250

0 50 100 150 200 250

N
o

is
e

Pixel Reads

YUV (incorrect)

RGBA (correct)

Threshold

(b) RGBA Buffer

Figure 6: Reading (a) YUV and (b) RGBA buffers
with different decoding algorithms. Correct decod-
ing algorithms will minimize the area under the
noise curve. In fact, we can hardly see the YUV
curve in (a) because its noise is always close to 0.

3.4 Rendering Evidence
Once VCR has recovered the structures containing pho-

tographic evidence, the data must be reconstructed into
human-understandable images. This is essential as the raw
contents of these photographic buffers would be unintelligi-
ble to forensic investigators.

Photographic data may be in any format that the app re-
quests (e.g., NV21, ARGB, etc.). We observe, however, that
apps (i.e., image buffer consumers) must have access to de-
coding logic for any format supported by the AOSP. Based
on this, VCR automatically reuses the existing AOSP image
decoding logic, but which decoding algorithm to use cannot
be known a priori. VCR must determine (specifically avoid-
ing burdening human users) which decoding is appropriate
for each recovered image.

Image buffers, specifically photographs, are highly peri-
odic. That is, the data values follow regular periods across
the image’s strides, height, and width. Based on this, im-
age processing techniques often compute the spacial locality
of the image’s pixel values when performing image analy-
sis [14]. VCR builds on this idea to validate image decoding
by enforcing a periodic constraint on the image data as it is
read by the decoding algorithm.

VCR instruments each decoding algorithm to verify that
the values read from the input buffer follow a periodic data
constraint (i.e., the spacial locality between each pixel value
should be small and form a smooth curve). VCR attempts
to decode each recovered image buffer with each available
algorithm. During image decoding, VCR computes the Eu-
clidean distance between the pixel values read from the input
buffer [14] which we refer to as the decoding “noise.”

Ideally, decoding an image buffer with the correct decod-
ing algorithm should produce very little noise (i.e., the pixel
values closely follow the periodic data constraint). In prac-
tice, images may contain local, sharp changes of color or
brightness (which is particularly obvious when encoded in
YUV format), so VCR computes a moving average of the
noise values as a noise threshold. The algorithm which pro-
duces the smallest noise threshold is marked and the output
of that decoding is presented to investigators as evidence.

For empirical comparison, Figure 6 shows graphs of two
image buffers being decoded by the correct and incorrect
algorithms. For simplicity, we only compare two algorithms,
but VCR considers all 19 decoding algorithms used by the
AOSP camera framework.

Figure 6(a) plots the noise values for a buffer encoded in
YUV format being decoded using the RGBA algorithm (red
curve) and YUV algorithm (blue curve). We can see that
decoding the YUV buffer with an RGBA decoder produces

a large amount of noise, whereas decoding with the YUV
(i.e., correct) algorithm produces so little noise that the blue
curve is hardly visible. We also plot the noise threshold from
the YUV decoding, but this too is always near 0.

In Figure 6(b), we plot an RGBA buffer being decoded as
YUV (red curve) and RGBA (blue curve). In this case, we
see that the correct decoding (RGBA) contains some noise
but the incorrect decoding (YUV) induces 3 to 4 times more
noise. Further, the RGBA noise threshold (plotted in black)
is again always near 0.

Finally, all recovered buffers of a single type (i.e., preview
frames, photographs, or video frames) must use the same en-
coding — because an app only specifies this encoding once.
Thus as a final sanity check, VCR ensures that the chosen
decoding algorithm minimizes the decoding noise across all
image buffers. Because of the large noise disparity between
correct and incorrect algorithms, in our evaluation VCR was
able to identify the correct decoding algorithm in all of our
test cases.

4. EVALUATION
Our evaluation tested a variety of different Android de-

vices as “devices under investigation.” We performed evalu-
ations with two new commercially available Android smart-
phones: an LG G3 and a Samsung Galaxy S4. Both smart-
phones run two different, highly vendor-customized versions
of the AOSP. Further, we set up unmodified Android em-
ulators running AOSP versions 4.3, 4.4.2, and 5.0. These
are the most recent major versions of Android and repre-
sent nearly half of all the Android market-share [16]. In
total, this allows us to stage “crimes” involving 5 vastly dif-
ferent Android devices to evaluate VCR’s effectiveness and
generality.

We first installed each app on our test devices and inter-
acted with its camera features (i.e., taking photos, videos,
and simply watching the preview screen). We then closed
the app and used gdb to capture a memory snapshot from
the mediaserver process. To attain ground truth, we man-
ually instrumented the mediaserver to log allocations and
deallocations of data structures containing photographic ev-
idence. This log was later processed to measure false posi-
tives (FP) and false negatives (FN).

We used VCR to analyze the previously captured mem-
ory images and recorded the output photographic evidence.
Despite the variety of different and customized AOSP ver-
sions tested, all evaluation was conducted using VCR with
the same set of Vendor-Generic Signatures (generated from
Google’s AOSP 4.4.2 repository) which VCR automatically
adapted to each input memory image. In a real-world law
enforcement scenario, in-the-field investigators obtain im-
ages of a device’s volatile RAM and non-volatile storage, and
the collected memory images are later analyzed using VCR
by forensic lab staff. Also note that VCR is a lightweight,
efficient tool and could even be operated at the scene of a
crime from an investigator’s laptop. In all of our tests, VCR
produced fully-rendered results from an input memory im-
age in under 5 minutes (except for two specially noted cases
at the end of this section).

4.1 App-Agnostic Evidence Recovery
This section presents the results of applying VCR to mem-

ory images containing photographic evidence generated by
the following seven apps on our two smartphone devices.

151

Device App Evidence Live Instances w/ Image Data Recovered FP FN

LG G3

Instagram
Preview 32 11 11 0 0
Photo 1 1 1 0 0
Video 20 20 20 0 0

Facebook
Preview 32 11 11 0 0
Photo 1 1 1 0 0
Video 20 20 20 0 0

Chase Banking
Preview 32 2 2 0 0
Photo 1 1 1 0 0

Skype Preview 32 9 9 0 0
Video 9 9 9 0 0

LG Default Camera
Preview 32 10 10 0 0
Photo 1 1 1 0 0
Video 20 20 20 0 0

Google Camera
Preview 32 11 11 0 0
Photo 1 1 1 0 0
Video 20 20 20 0 0

Samsung
Galaxy
S4

Instagram
Preview 32 7 7 0 0
Photo 1 1 1 0 0
Video 16 8 8 0 0

Facebook
Preview 32 7 7 0 0
Photo 1 1 1 0 0
Video 16 8 8 0 0

Chase Banking Preview 32 8 8 0 0
Photo 1 1 1 0 0

Skype
Preview 32 7 7 0 0
Video 9 8 8 0 0

S4 Default Camera
Preview 32 7 7 0 0
Photo 1 1 1 0 0
Video 16 8 8 0 0

Google Camera
Preview 32 7 7 0 0
Photo 1 1 1 0 0
Video 16 8 8 0 0

Table 1: Results from recovering photographic evidence from apps on commodity Android smartphones.

Five of the apps have features for taking individual pho-
tographs, videos, and displaying preview frames: the two
smartphones’ pre-installed camera apps, Google’s Google
Camera app, the Facebook app, and Instagram app. Each of
these apps accesses and uses the camera device in different
and forensically interesting ways. We also investigated evi-
dence from the Skype app, which employs only video capture
and preview functionalities. We also analyzed the Chase
Bank app’s check image and upload feature. In the next
sections we will highlight some of these apps as case studies.

Table 1 shows a summary of our evaluation results. Col-
umn 1 shows the device on which the evaluation was per-
formed. Columns 2 and 3 show the app’s name and which
types of photographic evidence it can generate, respectively.
The number of “live” frames (i.e., frames which were allo-
cated and not yet freed) in the memory image is shown in
Column 4. Column 5 shows the subset of those image frames
which the camera HAL had filled when the memory image
was captured3. Column 6 shows the number of images (i.e.,
photograph, video frames, or preview frames) which VCR
recovered and rendered. Columns 7 and 8 show false posi-
tives (image frames which VCR wrongly reported) and false
negatives (image frames which VCR missed).

From Table 1, we can make a number of key observations.
First, VCR is highly effective at recovering and rendering
photographic evidence left behind by a variety of Android
apps. This confirms that VCR’s Vendor-Generic Signatures
ensure that the recovery mechanism is highly accurate. Ta-

3The information in Columns 4, 5, and 6 was obtained via
manual instrumentation only for the purpose of evaluation.
VCR does not have access to such runtime information and
operates on only the input static memory image.

ble 1 shows that these constraints are indeed strong enough
to effectively prune all invalid data and attest to the accu-
racy of any recovered evidence — resulting in VCR produc-
ing no false positive or false negative results. In total, VCR
recovered 245 pieces of photographic evidence in these test
cases.

Table 1 shows that of the 32 total test cases, all 12 cases
left behind several preview frames. These results range from
a high of 11 preview frames in the LG G3’s Google Camera,
Facebook, and Instagram cases to only 2 frames in the LG
G3’s Chase Bank test case. Interestingly, the average “pre-
view frames recovered per app” appears to be phone depen-
dent: 7.17 for the Samsung Galaxy S4 and 9 for the LG G3
(or even 10.4 if we ignore the outlier: the Chase Bank app).
This implies some connection between phone hardware or
vendor customizations versus the amount of potential ev-
idence. Since both phones have relatively equally power-
ful hardware, we reason that the latter is more influential.
Again, these preview frames are generated by the apps au-
tomatically when the user only opens the app’s photographic
features.

Also shown in Table 1 is that video frames are far more
prevalent than any other form of photographic evidence.
This is intuitive given that video frames are often sampled
at higher rates than preview frames. Our evaluation shows
that on average each app left 12.9 video frames. Again,
the LG G3 provides more evidence with an average of 17.8
video frames per app versus the Samsung at 8 video frames
on average. Intuitively, Skype leaves fewer frames than the
other apps in our tests (9 frames on the LG G3 and 8 on
the Samsung Galaxy S4) likely because of the high through-
put design of Skype’s video-call feature. Also note that the

152

recovered video frames are the result of explicitly recording
video with the tested apps, unlike the preview frames which
are generated without any explicit user command to record.

Finally, Table 1 shows that only one photograph per ap-
plication is available in the memory images. Manual in-
vestigation revealed that the Android framework prefers to
reuse buffers as quickly as possible, so despite taking sev-
eral photos during our testing only a single photograph is
left buffered — always accompanied by a number of preview
frames.

4.1.1 Case Study 1: Camera Apps

Camera apps are standard Android apps which only pro-
vide a front-end user interface to the camera back-end (the
mediaserver and camera HAL). A newly purchased Android
device will come with a pre-installed camera app, but the
user may install a new camera app and select one to use as
the default. To illustrate the generality of VCR, we evalu-
ate both pre-installed camera apps from our test phones as
well as the third-party Google Camera app. The results of
the LG G3 Default Camera and Google Camera tests are
shown in Rows 5 and 6 of Table 1, and the Samsung Galaxy
S4 Default Camera and Google Camera tests are shown in
Rows 11 and 12.

Table 1 shows that in each of the camera app tests VCR
is able to accurately recover and render all photographic ev-
idence. For the LG G3 Default Camera case, we see that
VCR recovered 10 preview frames, 1 photo, and 20 video
frames, and similarly for the Google Camera test VCR re-
covered 11 preview frames, 1 photo, and 20 video frames.
Again we observe fewer recoverable frames in the Samsung
cases: 7 preview frames, 1 photo, and 8 video frames for
both the Default Camera and Google Camera evaluations.

The default camera app is important because other apps
may rely on it for photographic operations. When choosing
test cases, we intentionally included the Facebook app as an
example of this (shown in Rows 2 and 8 of Table 1). The
Facebook app allows users to capture and post videos and
photos on-the-fly (i.e., without leaving the Facebook app).
To implement this, the Facebook app requests the default
camera app to take a photo or video and then return the
resulting image. Thus when the Facebook app user requests
to capture a photo or video, the default camera app opens,
manages the image capture, and makes the resulting image
available to the Facebook app.

The fact that the Facebook app (and others like it) em-
ploy the default camera to handle photography, leads to a
forensically interesting observation: photographic evidence
from such apps will likely use similar formatting and sizing
parameters to conform with the default camera pass-through
interface. In the Facebook app case studies from Table 1,
we see that VCR is able to render 11 preview and 20 video
frames plus 1 photograph for the LG G3 test and 7 preview
and 8 video frames plus 1 photograph for the Samsung S4
case.

It is important to note that among all of our test cases only
the Facebook app is an example of requesting photography
through the default camera. Although default camera pass-
through is common, we intentionally focused the majority
of our evaluation on test cases which implement their own
photography features. This directly shows VCR’s generality
with regards to the evidentiary apps’ implementation.

4.1.2 Case Study 2: Skype

In this case study, we highlight the Skype app because
image frames collected by Skype are never present on non-
volatile stores — Skype immediately encodes, packages, and
transmits the image frames over the internet. Thus the only
visual artifacts of a Skype video-call will be the frames left
in the device’s memory. Such frames provide vital evidence
in a digital investigation — as we will show with a scenario
based on the Usenix Security 2014 invited talk “Battling
Human Trafficking with Big Data.” [23]

Imagine, for the sake of example, that a human-trafficking
suspect is using Skype video calls from a smartphone to
show victims to potential clients. While the criminal may be
careful not to show his or her identity, the video frames of the
Skype call clearly link the smartphone user to the victims
of the crime. Further, this criminal may try deleting (or
obfuscating) Skype’s call history, but even after the criminal
has ended the Skype calls and finished trying to hide the
evidence, the last snippets of video are still recoverable in
the device’s memory. Later, when law enforcement agents
arrest the suspect, investigators will not find any evidence
on the smartphone’s non-volatile storage. Applying VCR to
the smartphone’s memory will reveal the last video frames
of the Skype call showing one or more victims of this crime,
and providing vital evidence to investigators which would
otherwise be inaccessible.

For this case study, we set up a simplified crime reen-
actment by having one of the authors walk slowly through
a Skype video call’s field of view. We then used VCR to
recover the remaining video frames frozen in the device’s
memory image. The LG G3 device was used in this trial,
and the results of analyzing the device’s memory image are
shown in Row 4 of Table 1.

Figure 7 shows some of the recovered video frames and
gives a clear example of the importance of VCR-recovered
photographic evidence to an investigation. The 6 frames
shown in Figure 7 are a subset of the 9 video frames in total
which VCR recovered. These frames reveal a person walking
through the Skype call’s field of view, and we can easily see
how this provides substantial evidence to investigators about
the human-trafficking victims in our crime scenario above.

In addition to recovering the video frames shown in Figure
7, VCR also recovered 9 preview frames still buffered in the
memory image (as shown in Table 1). Visual inspection of all
18 images recovered for this test case revealed that 4 of the
9 preview frames were identical (to the investigator’s eye)
to 4 of the recovered video frames. Thus yielding 14 total
unique images to be used as evidence. This case study shows
the importance of VCR recovered photographic evidence to
aiding a digital investigation.

4.2 Analysis Across Android Frameworks
Given that many versions of the AOSP are being widely

used today [16], VCR must be effective for a majority of
devices that investigators may face. In this section, we eval-
uate VCR’s effectiveness against memory images taken from
the three most recent, widely used versions of the AOSP.

To perform this evaluation, we set up unmodified Android
emulators running AOSP versions 4.3, 4.4.2, and 5.0. As be-
fore, we used VCR to analyze memory images after interact-
ing with each of the tested applications. For this evaluation,
we selected three of the apps to use in each of the three

153

Figure 7: Sample video frames recovered from the Skype case study. This is an example of how multiple
recovered frames can capture evidence of time and direction for the suspect shown here.

Device App Evidence Live Instances w/ Image Data Recovered FP FN

Android 4.3

Facebook
Preview 32 3 3 0 0
Photo 1 1 1 0 0
Video 31 31 31 0 0

Skype
Preview 32 3 3 0 0
Video 1 1 1 0 0

Default Camera
Preview 32 5 5 0 0
Photo 1 1 1 0 0
Video 202 202 202 0 0

Android 4.4.2

Facebook
Preview 32 3 3 0 0
Photo 1 1 1 0 0
Video 16 16 16 0 0

Skype
Preview 32 3 3 0 0
Video 1 1 1 0 0

Default Camera
Preview 32 3 3 0 0
Photo 1 1 1 0 0
Video 24 24 24 0 0

Android 5.0

Facebook
Preview 32 3 3 0 0
Photo 1 1 1 0 0
Video 19 19 19 0 0

Skype
Preview 32 3 3 0 0
Video 1 1 1 0 0

Default Camera
Preview 32 3 3 0 0
Photo 1 1 1 0 0
Video 297 297 297 0 0

Table 2: Results from recovering photographic evidence from current and future Android versions.

emulators: Facebook, Skype, and each emulator’s default
camera app.

Table 2 presents the results which VCR rendered from the
different emulators’ memory images. Column 1 shows the
version of Android that the emulator is running. Columns
2 and 3 show the app and types of photographic evidence
evaluated respectively. Like in Section 4.1, the number of
“live” image frames in each memory image is show in Column
4, and Column 5 shows the subset of these which contained
image data. Column 6 shows the number of images which
VCR recovered and rendered. Finally, Columns 7 and 8
report the false positives and false negatives.

Table 2 shows that VCR is highly effective at recovering
and rendering photographic evidence produced on the most
widely used Android versions. We observe that the emu-
lated camera device used in the Android emulator does not
produce frames at a high rate similar to our test smartphone
devices. This leads to (as shown in Table 2) fewer frames
being available in the memory images. On average, the tests
in Table 2 produce only 5.8 frames (with the exception of
the outliers: the 4.3 and 5.0 emulators’ default cameras).

Additionally, the preview frame buffer is rarely filled above
3 frames. This results in VCR recovering only those 3 pre-

view frames for all three apps on all three emulators, except
for the Android 4.3 Default Camera test in which VCR re-
covered all 5 preview frames. Again, VCR is able to recover
and render all instances of photographic data in the evalu-
ated memory images without any false positive or false neg-
ative results — as Table 2 shows, 627 pieces of photographic
evidence in total for these test cases.

Notably, Table 2 contains two exceptional cases. The de-
fault cameras for Android 3.4 and Android 5.0 report very
large numbers of video frames. We performed manual in-
spection of the results and found that all output images were
valid (i.e., from distinct buffers filled individually by the
camera HAL). Further investigation revealed that there ex-
isted a bottleneck when saving those video frames to the em-
ulator’s storage. Admittedly, this is likely an emulator con-
figuration error, but the resulting backup of frames further
demonstrates the effectiveness of VCR’s recovery and ren-
dering — though run-times for these two cases were nearly
30 minutes.

4.3 Recovering Temporal Evidence
As shown in Table 1, numerous preview frames and/or

video frames can be recovered for a single app — represent-

154

ing a time-lapse of what the camera was viewing. Here,
we analyze how a set of preview or video frames can give
investigators temporal evidence of the incident under inves-
tigation.

To measure the time captured by a set of recovered frames,
we reran the two camera app test cases on the two smart-
phones. Time lapses were measured using the camera apps
to record video of a stopwatch for a period of 1 minute,
and the phones were rebooted between each test. Note that
the “stopwatch” used here was actually a stopwatch app on
the first author’s smartphone. While this measurement may
seem “low-tech,” our results in Table 3 show that the time-
lapse captured by the recovered sets of frames is long enough
to make an empirical measurement very accurate.

After recording for 30 seconds, we captured a memory
image from the device, and VCR was used to recover all
available preview and video frames from the memory im-
ages. The output image frames were grouped into three sets:
Preview frames, Video frames, and a Union set containing
all visually unique frames from both the preview and video
sets (which would be recoverable for any app which captures
video). We then manually measured the difference between
the earliest frame and the latest frame in each set. Figure
8 shows an example of some recovered stopwatch preview
frames.
Device App Evidence Frames Time-Lapse

LG G3

LG
Default
Camera

Preview 11 1.3s
Video 20 0.6s
Union 22 1.4s

Google
Camera

Preview 11 0.9s
Video 20 0.4s
Union 25 0.9s

Samsung
Galaxy
S4

S4
Default
Camera

Preview 7 0.5s
Video 8 0.3s
Union 10 0.5s

Google
Camera

Preview 7 0.4s
Video 8 0.3s
Union 11 0.5s

Table 3: Time-Lapse Evaluation.

Figure 8: Recovered preview frames used to mea-
sure temporal evidence. For this experiment, we
recorded another smartphone’s stopwatch app and
used VCR to recover the preview and video frames
— yielding empirical measurements of the temporal
evidence captured in VCR recovered evidence.

Table 3 presents the time measurements captured within
the sets of recovered preview and video frames. Columns 1
and 2 show the tested device and app. Column 3 names the
type of set being measured: Preview, Video, or the Union
set. Column 4 shows the number of frames in the set, and
the measured time difference is shown in Column 5.

From the times in Table 3 we can make several observa-
tions: First, the windows of time captured by the recovered
frames are large enough to provide substantial evidence to
an investigation — we already empirically saw this in the
evidence recovered for the “crimes” in Figures 1 and 7. To
best analyze the results show in Table 3, consider the first
row as meaning: The set of preview frames from the LG
G3’s Default Camera captures 1.3 seconds of time divided
over 11 images. From this, we see that a majority of the
results yield over a half second of time-lapse.

This may seem like a small amount of time, but consid-
ering how quickly many crimes can occur and how powerful
this evidence can be (such as an image of a car involved
in a shooting or a human-trafficking victim) this provides a
significant amount of evidence to investigators. Specifically,
the example sequences of images shown in Figures 1 and
7 both represent a time-lapse of less than 1 second. Table
3 shows that of the 12 measurements, the LG G3 provides
much longer time windows with the average being 0.92 sec-
onds per test. The Samsung provides an average of 0.42
seconds per test.

A second observation we make from Table 3 is that pre-
view frames capture longer time windows in fewer frames but
video frames provide many more images. Preview frame sets
on the LG G3 average more than double the time window
of video frame sets (i.e., 0.4 seconds versus 0.9 seconds and
0.6 seconds versus 1.3 seconds). However, the video frame
sets in the LG G3 test contain 20 frames compared to only
11 frames in the preview sets. The Samsung results show
a similar pattern but the differences between sets are much
closer (e.g., 8 frames over 0.3 seconds versus 7 frames over
0.5 seconds). As a consequence, we can observe that the
time delta between images is much shorter between video
frames than between preview frames.

Finally, Table 3 shows that when video and preview frames
are available then (not surprisingly) considering the union
of those sets yields the best results. In practice, nearly any
app which generates video frames will also generate preview
frames. Table 3 shows that the video frames will mostly be
enclosed by the larger time delta captured by the preview
frames. For example, consider the LG G3’s Google Camera
Union test: the investigator can now see 0.9 seconds of time
captured in 25 images — leading to roughly a 0.036 second
time delta between each image. Using such analysis, inves-
tigators can gain a wealth of evidence from only the frames
being recovered by VCR.

4.4 Privacy Concerns

Figure 9: Recovered check image left behind in a
memory image. This case study gives an example
of the potentially sensitive user information which
VCR (or worse, malware) can generically recover
from the mediaserver’s memory.

155

Finally, this section highlights a potential privacy concern
which VCR reveals. VCR exploits the centralized design of
the Android framework to access app-agnostic photographic
evidence. It should be noted however that the same proper-
ties which make the mediaserver beneficial for digital foren-
sics also make it a target for attack.

There has been extensive prior work on exploiting vulnera-
bilities in the Android framework to glean information about
a smartphone’s owner [12, 19]. Following that line of work,
we can envision a malware which aims to steal confidential
information and remain as stealthy as possible. Unfortu-
nately, the mediaserver is a great target for such malware
for a few reasons: 1) As we will show, the mediaserver han-
dles very sensitive data regarding the device’s owner, 2) As
we have shown, it is beneficial to utilize the mediaserver’s
centralized design to capture photographic evidence from
all apps generically, and 3) The mediaserver runs as a back-
ground service in a dedicated process (which makes for a
great hiding spot for malware).

To underscore the potential danger of malware gaining
access to a device’s intermediate service processes (like the
mediaserver), we have included the Chase Bank app in our
previous evaluations. The Chase Bank app, like many other
financial institutions’ apps, includes a check image and up-
load feature. When the device’s owner has a check to de-
posit, they simply take a picture of the check and upload
the image to Chase from within the app. The image is never
saved to non-volatile storage and handled securely once the
Chase app has received the image. Unfortunately, the image
is buffered in the mediaserver long before it is returned to
the Chase app and may remain buffered for long after.

To highlight this point, Figure 9 shows one of the check
images that VCR recovered during our previous evaluations.
Further, Table 1 shows that VCR was effective at recovering
and rendering all forms of photographic evidence from the
Chase Bank app test cases (12 images in total). The real
danger here is that by employing the same techniques as
VCR, malware can also have access to any image taken by
any app on the smartphone — in the same way that VCR op-
erates independent of which app generated the photograph.
Moreover, if malware has access to the image buffers in the
mediaserver at the right time, it may even alter the check
image before the Chase app receives it. In light of this, we
hope to emphasize the importance of Android’s intermedi-
ate service processes as a security critical component and
the need for security mechanisms to prevent malware from
tampering with these services.

5. RELATED WORK
Smartphone memory acquisition tools, such as LiME [3]

which captures memory via a kernel module and TrustDump
[32] which leverages ARM’s TrustZone, have only recently
become widely available.

Due to the relatively recent interest in Android memory
forensics, few works have focused specifically on the topic.
Originally, Thing et al. [35] investigated recovering Android
in-memory message-based communications. Sylve et al. [33],
followed by Saltaformaggio [27], ported existing Linux mem-
ory analysis tools to recover Android kernel data. Later,
Macht [24] recovered raw Dalvik-JVM control structures.
Dalvik Inspector [2] built on that to recover Java objects
from app memory dumps. Most recently, GUITAR [28] re-
covered app GUIs from Android memory images. Hilgers

et al. [17] proposed using memory analysis on cold-booted
Android phones. Apostolopoulos et al. [5] recovered login
credentials from memory images of certain apps. VCR fol-
lows the trend of these works as it provides a new Android
memory forensics capability (i.e., generically recovering pho-
tographic evidence), which these existing efforts can hardly
provide.

Originally, memory forensics works focused on in-memory
value-invariants [6,7,15,26,30,34], where data structures are
identified via brute-force scanning for constant or expected
values. DEC0DE [36] enhances such signatures to recover
formatted textual evidence from smartphones. VCR and
DEC0DE share complimentary goals: both recovering differ-
ent categories of smartphone evidence. Increasingly, mem-
ory forensics tools are employing pointer traversal to locate
data structures [8, 11, 25, 37]. In particular, SigGraph [21]
builds maps of structures in a memory image via brute force
scanning. VCR also employs value-invariants and pointer
traversal in its signatures, but focuses on both recovering
and rendering photographic evidence, which is a step be-
yond only locating data structure instances.

Later, DSCRETE [29] used binary analysis to identify
data structure rendering logic within the application which
defines that structure. However, no rendering logic exists
within the mediaserver (which only fetches photographic
data from the camera device). VCR is designed based on
our knowledge of the photographic evidence buffers, and op-
erates independently of any app’s implementation (avoiding
DSCRETE’s application-specific binary analysis step).

Other efforts aimed to derive data structure signatures
from applications via binary analysis [18,22,31] or unsuper-
vised learning [13]. Such tools are essential when the sub-
ject data structures are entirely unknown, but luckily, we
can rely on the “gold standard” AOSP definitions to build
VCR’s vendor-generic signatures. More closely related to
VCR, DIMSUM [20] uses probabilistic inference to locate
known data structures in un-mapped memory. However,
DIMSUM requires input data structure definitions to be cor-
rect. In contrast, we assume that the AOSP definitions are
not correct and employ probabilistic inference to derive sig-
natures for vendor customizations.

6. CONCLUSION
In this paper, we have presented VCR, a memory foren-

sics tool which recovers and renders photographic evidence
from memory images. VCR contributes novel memory foren-
sics techniques to recover key data structures in the face of
vendor customizations. Our evaluation shows that VCR is
highly effective at recovering and rendering photographic
evidence regardless of the app which generates it. Further,
our tests with different versions of the Android framework
show VCR to be robust across the most popular Android
versions in use today. Finally, we make several key observa-
tions about the importance of VCR rendered photographic
evidence and the temporal evidence which they provide to
investigations.

7. ACKNOWLEDGMENTS
We thank the anonymous reviewers for their insightful

comments and suggestions. We also thank Dr. Golden G.
Richard III for his valuable input on the legal and technical
aspects of memory forensics. This work was supported in
part by NSF under Award 1409668.

156

8. REFERENCES

[1] Riley v. California. 134 S. Ct. 2473, (2014).

[2] 504ENSICS Labs. Dalvik Inspector (DI) Alpha.
http://www.504ensics.com/tools/dalvik-

inspector-di-alpha, 2013.

[3] 504ENSICS Labs. LiME Linux Memory Extractor.
https://github.com/504ensicsLabs/LiME, 2013.

[4] F. Adelstein. Live forensics: diagnosing your system
without killing it first. Communications of the ACM,
49(2), 2006.

[5] D. Apostolopoulos, G. Marinakis, C. Ntantogian, and
C. Xenakis. Discovering authentication credentials in
volatile memory of android mobile devices. In
Collaborative, Trusted and Privacy-Aware
e/m-Services. 2013.

[6] C. Betz. Memparser forensics tool. http:
//www.dfrws.org/2005/challenge/memparser.shtml,
2005.

[7] C. Bugcheck. Grepexec: Grepping executive objects
from pool memory. In Proc. Digital Forensic Research
Workshop, 2006.

[8] M. Carbone, W. Cui, L. Lu, W. Lee, M. Peinado, and
X. Jiang. Mapping kernel objects to enable systematic
integrity checking. In Proc. CCS, 2009.

[9] B. D. Carrier. Risks of live digital forensic analysis.
Communications of the ACM, 49(2), 2006.

[10] B. D. Carrier and J. Grand. A hardware-based
memory acquisition procedure for digital
investigations. Digital Investigation, 1, 2004.

[11] A. Case, A. Cristina, L. Marziale, G. G. Richard, and
V. Roussev. FACE: Automated digital evidence
discovery and correlation. Digital Investigation, 5,
2008.

[12] Q. A. Chen, Z. Qian, and Z. M. Mao. Peeking into
your app without actually seeing it: UI state inference
and novel android attacks. In Proc. USENIX Security,
2014.

[13] A. Cozzie, F. Stratton, H. Xue, and S. T. King.
Digging for data structures. In Proc. Symposium on
Operating Systems Design and Implementation, 2008.

[14] P.-E. Danielsson. Euclidean distance mapping.
Computer Graphics and image processing, 14(3), 1980.

[15] B. Dolan-Gavitt, A. Srivastava, P. Traynor, and
J. Giffin. Robust signatures for kernel data structures.
In Proc. CCS, 2009.

[16] Google, Inc. Android dashboards - platform versions.
https://developer.android.com/about/

dashboards/index.html, 2015.

[17] C. Hilgers, H. Macht, T. Muller, and
M. Spreitzenbarth. Post-mortem memory analysis of
cold-booted android devices. In Proc. IT Security
Incident Management & IT Forensics (IMF), 2014.

[18] J. Lee, T. Avgerinos, and D. Brumley. TIE: Principled
reverse engineering of types in binary programs. In
Proc. NDSS, 2011.

[19] C.-C. Lin, H. Li, X. Zhou, and X. Wang. Screenmilker:
How to milk your android screen for secrets. In Proc.
NDSS, 2014.

[20] Z. Lin, J. Rhee, C. Wu, X. Zhang, and D. Xu.
DIMSUM: Discovering semantic data of interest from

un-mappable memory with confidence. In Proc. NDSS,
2012.

[21] Z. Lin, J. Rhee, X. Zhang, D. Xu, and X. Jiang.
SigGraph: Brute force scanning of kernel data
structure instances using graph-based signatures. In
Proc. NDSS, 2011.

[22] Z. Lin, X. Zhang, and D. Xu. Automatic reverse
engineering of data structures from binary execution.
In Proc. NDSS, 2010.

[23] R. R. Lopez. Battling Human Trafficking with Big
Data. Invited talk, USENIX Security Symposium,
2014.

[24] H. Macht. Live memory forensics on android with
volatility. Friedrich-Alexander University
Erlangen-Nuremberg, 2013.

[25] P. Movall, W. Nelson, and S. Wetzstein. Linux
physical memory analysis. In Proc. USENIX Annual
Technical Conference, FREENIX Track, 2005.

[26] N. L. Petroni Jr, A. Walters, T. Fraser, and W. A.
Arbaugh. FATKit: A framework for the extraction
and analysis of digital forensic data from volatile
system memory. Digital Investigation, 3, 2006.

[27] B. Saltaformaggio. Forensic carving of wireless
network information from the android linux kernel.
University of New Orleans, 2012.

[28] B. Saltaformaggio, R. Bhatia, Z. Gu, X. Zhang, and
D. Xu. GUITAR: Piecing together android app GUIs
from memory images. In Proc. CCS, 2015.

[29] B. Saltaformaggio, Z. Gu, X. Zhang, and D. Xu.
DSCRETE: Automatic rendering of forensic
information from memory images via application logic
reuse. In Proc. USENIX Security, 2014.

[30] A. Schuster. Searching for processes and threads in
microsoft windows memory dumps. Digital
Investigation, 3, 2006.

[31] A. Slowinska, T. Stancescu, and H. Bos. Howard: A
dynamic excavator for reverse engineering data
structures. In Proc. NDSS, 2011.

[32] H. Sun, K. Sun, Y. Wang, J. Jing, and S. Jajodia.
Trustdump: Reliable memory acquisition on
smartphones. In Proc. European Symposium on
Research in Computer Security. 2014.

[33] J. Sylve, A. Case, L. Marziale, and G. G. Richard.
Acquisition and analysis of volatile memory from
android devices. Digital Investigation, 8, 2012.

[34] The Volatility Framework. https:
//www.volatilesystems.com/default/volatility.

[35] V. L. Thing, K.-Y. Ng, and E.-C. Chang. Live
memory forensics of mobile phones. Digital
Investigation, 7, 2010.

[36] R. Walls, B. N. Levine, and E. G. Learned-Miller.
Forensic triage for mobile phones with DEC0DE. In
Proc. USENIX Security, 2011.

[37] J. Zeng, Y. Fu, K. A. Miller, Z. Lin, X. Zhang, and
D. Xu. Obfuscation resilient binary code reuse through
trace-oriented programming. In Proc. CCS, 2013.

157

