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Abstract— Optical Frequency Combs Generators (OFCGs) 

have demonstrated to be extremely useful tools in a wide variety 

of applications. The current research trends look towards 

compact devices able to offer high phase correlation between 

optical lines, and in this sense, Mode-Locked Laser diodes 

(MLLDs), with repetition frequencies in the few GHz range; and 

especially microresonators, with repetition frequencies of 

hundreds of GHz, are the most promising devices fulfilling these 

requirements. Nevertheless, focusing in the few GHz frequency 

rate, MLLDs cannot provide continuous tunability and require 

special devices that are still far from offering reliability and 

repeatability for commercial use. In this work we demonstrate 

for the first time the generation of a flat OFCG based on a single 

commercial Vertical Cavity Surface Emitting Laser (VCSEL) 

under Gain-Switching regime with 20 optical lines (spaced by 

4.2GHz) in a 3-dB bandwidth, offering wide tunability range and 

very high phase correlation between optical modes. This OFCG 

does not need any external modulator and it is the most energy-

efficient OFCG reported to date. 

 
Index Terms—Optical Frequency Comb, VCSEL, Gain 

Switching, energy efficiency. 

 

I. INTRODUCTION 

PTICAL Frequency Comb Generators (OFCGs) are 

versatile and powerful tools for a range of applications 

including metrology [1], spectroscopy [2], optical 

communications [3], THz generation [4], optical arbitrary 

waveform generation [5] or microwave photonic filters [6]. 

The desirable characteristics of an OFCG vary from one 

application to another, but compactness and high correlation 

between optical modes are becoming common place for most 

of them in the last years [7], [8]. In order to expand the fields 

of application for such a powerful optical tool, compact 

systems are needed to replace the typical bench top schemes. 

In this sense, implementation of OFCGs in a single device is 

desirable. This can be achieved from a pulsed optical source 
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such as Mode-Locking Laser Diodes (MLLD) [7] or 

microresonators [8]. These devices can be divided according 

to their repetition frequency, being MLLDs in the order of 

several GHz, and microresonators in the order of few 

hundreds of GHz. Microresonators are recent and very 

promising devices able to generate extremely wide OFCGs, 

but their high repetition frequencies make them unsuitable for 

a significant number of applications[8]. On the other hand, 

MLLDs have been widely used during the last decades, but 

they still present important drawbacks, like the absence of 

continuous tunability of the repetition frequency and the need 

of specially designed structures that nowadays are still far 

from offering reliability and repeatability in the manufacturing 

processes for commercial purposes. 

In this sense, some recent works have recovered a well-

known technique for inducing pulsed operation in a 

semiconductor laser, Gain-Switching (GS), in order to 

implement multi-GHz OFCGs that are to overcome some of 

these drawbacks associated with MLLDs [4], [9]. Although 

they offer much less optical span than MLLDs, GS-based 

OFCGs offer wide tunability range, high correlation between 

optical modes, and low-cost; as they can be implemented 

using commercial semiconductor lasers. Nevertheless, if 

standard edge-emitting lasers are used, the amount of direct 

modulation power needed for an OFCG featuring 8-10 lines is 

about 0.5-1 W, which makes necessary the use of 

Radiofrequency (RF) power amplifiers [4], [10]. Moreover, 

the generated optical spectra are not flat, and additional stages 

based on nonlinear techniques and comprising several external 

components are usually needed to obtain flat-topped pulses, 

such as cascaded Intensity or Phase Electro-Optical 

Modulators (EOMs) [11–13] and Four Wave Mixing (FWM) 

[14]. 

For this reason, different types of semiconductor lasers 

have been used under GS regime in the search of compact, 

commercial devices based pulsed sources, and, Vertical 

Cavity Surface Emitting Lasers (VCSELs) are promising 

candidates [15–19]. VCSELs need very few current to operate 

(under 10 mA), and their integration capabilities as well as the 

capacity for on-chip testing allow for low cost optical 

subsystems with an excellent energy efficiency. Moreover, 

they have demonstrated wide wavelength tuning capabilities 

(in excess of 100 nm) with direct control of the cavity length 

using membranes [20]. In this sense, VCSELs would lead to 

the possibility of low-cost, widely wavelength-tunable and 

high power efficiency OFCGs. 
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In this work we demonstrate the ability of a single 

commercial VCSEL to implement a multi-GHz OFCG with a 

significant number of optical lines and with excellent flatness 

(20 optical lines in a 3 dB bandwidth) directly in a one stage 

scheme, without the necessity of other external components. It 

is also highly energy-efficient, as the bias current 

requirements are below 10 mA and the needed RF modulation 

power is around 15 dBm, well below the standard 

requirements for edge emitting lasers based systems using 

either GS or external EOMs, where modulation powers more 

than one order of magnitude are required[4]. Through the use 

of GS, the repetition frequency is widely tunable and the 

phase correlation between optical lines is very high, with a 

photodetected beat signal linewidth in the Hz-range[4]. 

Moreover, this OFCG has the potential for wide wavelength 

tunability exceeding 100 nm [20].  

 
Fig. 1.  A VCSEL is modulated in GS regime with a CW RF synthesizer. The 

optical output is directly an Optical Frequency Comb. Inset: Experimental 

setup. 

 

II. EXPERIMENTAL RESULTS 

In Fig. 1 we show the experimental setup employed. The 

OFCG encompasses only a commercial VCSEL (VERTILAS 

VL-1550-8G-P2-H4) modulated with a Continuous-Wave 

(CW) RF synthesizer and stabilized in current and temperature 

with a laser diode controller. The repetition frequency is 4.2 

GHz, which corresponds to the resonant frequency of the 

passive matching network circuit implemented to modulate 

the VCSEL. The experimental characterization of the resulting 

OFCG is based on three steps. First, the number of optical 

lines generated and their flatness are measured as a function of 

the two control parameters of GS regime (bias current and 

modulation power). Second, the phase correlation between 

optical modes is evaluated. Third, the temporal pulse width is 

analyzed, as well as its quality in terms of Time-Bandwidth 

Product (TBP). 

Fig. 2 shows the measured operational maps of the VCSEL 

under GS operation as a function of the bias current and the 

modulation power. In this figure the number of optical modes 

within a 3 dB (top) and 30 dB (bottom) bandwidths are 

shown. A record number of 20 lines for 3 dB bandwidth with 

only 9 mA bias current and 15 dBm RF input is achieved. 

This optical spectrum is shown in Fig. 3, where it can be 

noticed a minor asymmetry which is in well agreement with 

the expected behavior under this modulation regime [21]. It 

must be noted that the effective OSA resolution is about 2.12 

GHz at 1550 nm, which is a value close to the repetition 

frequency employed. Because of this, the measured values of 

extinction ratio and flatness are not conclusive, and the actual 

values could be better and worse, respectively. The key 

advantages of this OFCG is that no external EOMs [11] or 

further components are needed to obtain such a flat spectrum 

[11–14]; and that the amount of power needed is more than 

one order of magnitude lower than typical OFCG 

implementations [12], [22]. Furthermore, and unlike MLLDs, 

the frequency spacing between lines can be easily changed 

using the external CW RF synthesizer in a continuous way 

and with high frequency resolution, as it is also the case when 

EOMs are used. 

 
Fig. 2.  Number of optical lines of the VCSEL-based OFCG: a) bandwidth of 

3 dB; b) bandwidth of 30 dB. Overlay represent double-period region. 

 

At this point, it is worth comparing our results with the 

most energy-efficient OFCG reported up to date [23]. 

Although a direct comparison is not completely fair as slightly 

different repetition frequencies are employed (4.2 GHz vs. 

6.25 GHz), they are close enough to generalize our results to 

that repetition frequency (6.25 GHz) with the use of a 
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matching network circuit adapted to this frequency together 

with our VCSEL (the 3-dB bandwidth of our VCSEL is 

around 8 GHz as per manufacturer specifications [24]). First, 

we only use a laser and a CW synthesizer, while Mishra et al. 

add to this component count also a Dual-Driven Mach-Zender 

modulator (DD-MZM, with bias requirements), a phase 

shifter, an RF amplifier and a frequency doubler. Second, both 

OFCGs generate 9 comb lines in a 1-dB bandwidth 

approximately. Our OFCG needs just 15 dBm of modulation 

power, while the one reported by Mishra et al. needs a 

simultaneous modulation of about 19 dBm (at 6.25 GHz) and 

15 dBm (at 12.5 GHz), i.e. a total modulation power of 20.6 

dBm. On the other hand, our extinction ratio seems to be 

worse. Third, our VCSEL consumes just 9 mA. In the 

compared OFCG it is not specified the laser employed, but if a 

regular edge-emitting laser is used, the energy consumption 

would be around one order of magnitude higher. As a 

drawback of our approach, it must be said that direct multiple 

comb feeding from a same laser is not possible because of the 

direct generation approach. 

Also in Fig. 2, a dashed area is shown where Double Period 

(DP) behavior of the VCSEL is identified (lines at fMOD/2 and 

its harmonics). This effect has already been reported several 

times for edge emitting lasers under direct modulation [25], 

and it is reported here for completeness. It is worth noticing 

that the optimum bias current points for GS operation (i.e. 

maximum number of optical lines) are outside the DP region, 

thus the optimum points for OFCG operation will not include 

DP behavior in any case. 

 
Fig. 3.  Flat optical comb generation with 9 lines in a 1-dB bandwidth, 20 

lines in a 3-dB bandwidth and 32 lines in a 30-dB bandwidth. 

 

As a second step of this characterization, the coherence 

between the different optical lines generated is evaluated. Fig. 

4a shows the electrical spectra recovered after direct detection 

of the OFCG optical output under both optimum GS (i.e. 

optimum OFCG operation, IBIAS =9 mA and PRF =15 dBm) 

and DP (IBIAS =5 mA and PRF =15 dBm) regimes. It is clear 

from these spectra how DP regime significantly degrades the 

noise floor of the beat signal, especially below 10 GHz. A 

more detailed analysis of these beat signals at the fundamental 

frequency is shown in Fig. 4b, where the Single Side Band 

(SSB) noise of the previously analyzed cases (optimum point 

for GS-OFCG operation and DP regime) and that of the RF 

modulation signal are depicted. It can be seen how for the 

optimum OFCG operation point (i.e. GS regime), the SSB 

noise is similar to that of the reference signal below 1 MHz, 

and only the noise floor is increased by 15 dB. As expected, 

when the reference is compared with the signal under DP 

regime, the SSB noise is highly degraded, both at lower and 

higher frequency offsets. This result confirms the high phase 

correlation between the different lines for OFCG operation 

under GS regime, especially at lower offset frequencies. 

 
Fig. 4.  a) Electrical Spectrum of the photodetected OFCG: red trace (GS 

regime); grey trace (DP regime). b) Single Side Band phase noise 

measurements: black trace (modulation reference signal); red trace 

(photodetected OFCG in GS regime); grey trace (photodetected OFCG in DP 

regime); black region (DANL, Displayed Averaged Noise Level). 

 

 
Fig. 5.  Autocorrelation function of the output optical pulse of the OFCG: 

optimum OFCG operation-GS regime (red solid trace); optimum OFCG 

operation-GS regime with 1100 m of DCF (green dashed trace); and OFCG 

under DP regime (grey solid trace). All traces show an optimum fit to a 

Lorentzian function. 

 

The final characterization step involves the measurement of 

the quality of the optical output in terms of temporal pulse 

width. For this reason, Fig. 5 shows the autocorrelation 

function of the output optical pulse of the OFCG in the two 

analyzed cases (optimum OFCG operation and DP regime). 

The temporal pulse widths are around 44 and 55 ps for GS 
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and DP regimes, respectively, giving TBP values around 3.5 

for both cases as the optical bandwidth is different. This result 

confirms that the pulse presents a chirped behavior that has to 

be compensated if further comb expansion stages are required 

[11], [22]. Fig. 5 shows the autocorrelation function for GS 

regime after 1100 m of Dispersion Compensation Fiber 

(DFC). The new time-bandwidth product of 0.67 (temporal 

pulse of 8 ps) is enough for further expansion by the use of 

both Highly Nonlinear Fibers (HNLF) and EOMs to achieve 

much higher optical bandwidths exceeding 1 THz [11], [22]. 

In this sense, this OFCG can be used as a very efficient optical 

seed. 

III. CONCLUSIONS 

In conclusion, we have reported on the achievement of the 

most compact, power-efficient multi-GHz OFCG to date 

based on a commercial VCSEL under GS operation, without 

the need of any other external component. Up to 20 optical 

lines in a 3-dB bandwidth are directly generated with a 

frequency spacing of 4.2 GHz, showing a high phase 

correlation between them (photodetected beat signal with a 

phase noise similar to the modulation signal, especially in the 

low frequency offset). Since there is no fundamental 

difference with membrane-based tunable VCSELS as those 

reported in [20], this work opens the path to very low-cost, 

compact, low power consumption and tunable (both 

wavelength and repetition frequency) optical frequency comb 

sources of direct application in gas spectroscopy, metrology, 

communications and THz generation. 
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