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Abstract: Background: The voltage-dependent anion channel 1 (VDAC1), an outer mito-

chondria membrane protein, functions as a mitochondrial governor, controlling transport of 

metabolites in and out of the mitochondria and energy production, while also coordinating 

glycolysis and oxidative phosphorylation. VDAC1 plays a key role in mitochondria-mediated 

apoptosis by functioning in the release of apoptotic proteins located in the inter-membranal 

space and due to its association with pro- and anti-apoptotic proteins. Thus, VDAC1 is con-

sidered as a promising target for controlling apoptosis.  

Methods: We reviewed published data presenting accumulated evidence suggesting that 

VDAC1 oligomerization represents an important step in the intrinsic mitochondria-mediated 

apoptosis pathway.  

Results: The published data support the proposal that VDAC1 oligomerization leads to the 

formation of a large pore that allows the release of pro-apoptotic proteins to the cytosol, 

thereby, activation of apoptosis. Evidence for the relationship between VDAC1 expression 

levels and induction of apoptosis are presented. This includes the finding that almost all apop-

tosis stimuli induce VDAC1 over-expression shifting VDAC1 from a monomeric to an oli-

gomeric assembly, corresponding to the Cyto c release channel. Copounds or conditions   in-

ducing VDAC1 over-expression, VDAC1 oligomerization and apoptosis are presented. Like-

wise, VDAC1-interacting molecules, that inhibit both VDAC1 oligomerization and apoptosis 

are also presented. 

Conclusion: This review highlights the findings about VDAC1 oligomerization as a potential 

target for controlling apoptosis, specifically using drugs to induce apoptotic cell death in can-

cer and inhibit apoptosis in neurodegenerative diseases, as well as possible VDAC1-based 

therapeutic applications.  
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1. INTRODUCTION: OVERVIEW  

 Programmed cell death, or apoptosis, is the biologi-

cal process by which a cell rapidly proceeds towards 

death upon receiving specific stimuli. The function of 

the mitochondria in apoptosis involves transduction of 

an apoptotic signal release of apoptogenic proteins, 

such as cytochrome c (Cyto c), apoptosis-inducing fac- 
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tor (AIF), and SMAC/Diablo, from the mitochondria 

inter-membrane space (IMS) into the cytosol [1, 2]. 

These proteins participate in complex processes, in-

cluding the binding of Cyto c to apoptotic protease-

activating factor-1 (Apaf-1) or pro-caspase-9, resulting 

in its activation [3]. Activated caspase-9 activates 

caspases-3 and -7, leading to protein and DNA degra-

dation and cell death [2]. Several models were pro-

posed to explain how apoptotic initiators cross the 

outer mitochondrial membrane (OMM) and are re-

leased into the cytosol. These models include swelling 

of the mitochondrial matrix that leads to release 
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through the ruptured OMM, and formation of large 

channels that allow the passage of Cyto c and other 

proteins into the cytosol without affecting OMM integ-

rity [2]. In this respect, EM study of mitochondrial ul-

trastructure upon apoptosis induction showed no OMM 

rupture or mitochondrial swelling [4]. The voltage-

dependent anion channel 1 (VDAC1), found in the 

OMM, offers such a route. VDAC1 serves as a control-

ler of mitochondrial metabolism and apoptosis in nor-

mal and cancerous cells [5-8].  

2. VDAC1 ISOFORMS AND STRUCTURE  

 In mammals, three different isoforms of VDAC 

(VDAC1, VDAC2 and VDAC3) have been identified 

[9], with each proposed to serve different physiological 

roles [5, 6]. Mice lacking VDAC1 or VDAC2 showed 

reduced respiratory capacity [10] and VDAC3 knock-

out male were sterile, while the knockout of both 

VDAC1 and VDAC3 resulted in growth retardation 

[11] and deficits in learning behavior and synaptic plas-

ticity [12]. Partial embryonic lethality of VDAC1
−/−

 

mice (inbred C57BL/6 background) was proposed, as 

the knockout mice were born in less than expected 

numbers according to the Mendelian ratio. The impor-

tance of VDAC1 as a transporter of metabolites across 

the OMM was confirmed by studies using VDAC1
−/−

 

[13]. Here, we focus on the VDAC1 isoform. 

 The structure of VDAC1 at atomic resolution was 

resolved and showed that VDAC1 is composed of 19 

transmembrane β-strands connected by flexible loops 

to form a β-barrel, along with a 25-residue-long N-

terminal region that lies inside the pore [14-16]. The N-

terminal region is proposed to move in the open space 

[17] but can translocate out of the internal pore and 

become exposed to the cytosol, where it can interact 

with anti-VDAC1 antibodies, as well as with proteins 

associated with apoptosis, such as members of the Bcl2 

family (i.e., Bax, Bcl2, and Bcl-xL) [18-22] and 

hexokinase (HK) [18, 23]. The involvement of N-

terminal domain mobility in channel gating, interaction 

with anti-apoptotic proteins and VDAC1 dimer forma-

tion has been proposed [22]. 

 VDAC1 was demonstrated to form oligomers, spe-

cifically dimers, trimers, tetramers, hexamers, and 

higher-order moieties [24-33]. Studies using chemical 

crosslinking and VDAC1 purified from rat liver [24], 

brain mitochondria [31] or recombinant human protein 

[32] showed that both when purified in solution or em-

bedded in the membrane, the protein can assemble into 

dimers, trimers, tetramers and higher oligomeric states 

in a dynamic process. VDAC1 oligomerization has 

been shown following its reconstitution into mem-

branes and by applied FRET technology [24]. For other 

VDAC isoforms, structural analysis of zebrafish 

VDAC2 revealed a crystallographic dimer, whereas in 

lipid micelles, a higher population of dimeric and 

higher order oligomers species was observed [34]. No 

direct demonstration of VDAC3 oligomerization has 

been reported.  

The contact sites between VDAC1 molecules in di-

mers and higher oligomers were identified using sev-

eral approaches, such as structural- and computational-

based analysis and site-directed mutagenesis, together 

with cysteine replacement and chemical cross-linking 

[35]. The contact site in dimeric VDAC1 involves β-

strands 1, 2, and 19. Moreover, the results suggested 

that upon apoptosis induction, VDAC1 undergoes con-

formational changes leading to its oligomerization into 

higher ordered states, with contact sites also involving 

β-strands 8 and 16 [35]. The proposed function of 

VDAC1 oligomerization, in addition to mediating the 

release of apoptotic proteins, is a contributing to the 

stabilization of the protein [32]. These oligomers serve 

as a docking site for interacting proteins, such as HK 

[24] and creatine kinase [36-38], and finally, in mediat-

ing Cyto c release and the binding of apoptosis-

regulating proteins [18, 24, 25] (see below).  

3. VDAC1, A MULTI-FUNCTIONAL CHANNEL 

CONTROLLING CELL METABOLISM 

Located at the OMM, VDAC1 is a dynamic regula-

tor of global mitochondrial function in both health and 

disease. VDAC1 controls cellular energy production 

and metabolism and functions in apoptosis [6, 8, 39]. 

VDAC1 mediates the fluxes of nucleotides, metabolites 

(e.g. pyruvate, malate, succinate, and NADH/NAD), 

ions, including Ca
2+

, hemes and cholesterol across the 

OMM [6, 39, 40]. VDAC1 is also considered as a hub 

protein, interacting with over 150 proteins that regulate 

the integration of mitochondrial activities with other 

cellular functions [41]. Thus, VDAC1 functions as a 

junction point to allow cross-talk between a variety of 

cell survival and death signals, proceeding via VDAC1 

interactions with ligands and proteins. In the 1920’s 

Otto Warburg demonstrated increased lactic acid pro-

duction resulting from high glycolysis in tumors, as 

compared to non-proliferating cells, and presented can-

cer as a metabolic disease. However, over the years, 

this view of cancer was later replaced by the somatic 

mutation theory [42]. Today, cancer is once again be-

ing seen as a metabolic disease, primarily associated 

with impaired mitochondrial function and metabolism 
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[43, 44]. VDAC1 is highly expressed in different tu-

mors [8, 45], contributing to their metabolism via its 

activity in the transport of metabolites in and out of the 

mitochondria and by supporting glycolysis via channel-

ling mitochondrially produced ATP directly to 

VDAC1-bound HK [5]. This results in mitochondria 

regulating glycolysis and the TCA cycle, so as to to 

fulfil tumor requirements for metabolites or metabolic 

precursors. 

4. MITOCHONDRIA-MEDIATED APOPTOSIS 

AND VDAC1 

4.1. VDAC1 Involvement in Apoptosis 

Several significant observations [6-8] connect 

VDAC1 to apoptosis, leading to the proposal of 

VDAC1 being an essential player in the release of pro-

teins associated with cell death, such as Cyto c and 

AIF, to the cytosol via its interaction with pro- and 

anti-apoptotic proteins. Firstly, the release of Cyto c 

from isolated mitochondria induced by As2O3 [46] or 

by O2
· 

in
 
permeabilized cells [47], was shown to be 

prevented by anti-VDAC1 antibodies, while
 

micro-

injection of anti-VDAC antibodies prevented Bax-

VDAC interactions and effectively prevented ethanol-

induced hepatocyte apoptosis [48]. Secondly, Cyto c 

release and cell death were inhibited by HK, with both 

events being obtained in cells expressing native but not 

with E72Q- or E202Q-mutated VDAC1 [49]. In addi-

tion, the interaction of ruthenium red (RuR) with native 

but not mutated VDAC1 prevented Cyto c release and 

cell death [50]. siRNA-mediated down-regulation of 

VDAC1 likewise strongly attenuates cisplatin-induced 

release of Cyto c and AIF, cleavage of caspase 3 and 

the extent of cell death [51]. si-RNA against VDAC1 

also reduced endostatin-induced cell death [52]. On the 

other hand, over-expression of VDAC1 in the absence 

of any apoptotic stimuli leads to apoptosis, regardless 

of cell type, in a manner that could be inhibited by anti-

apoptotic proteins [49, 53-56]. VDAC1 was also shown 

to mediate Cyto c release from VDAC1-containing 

proteoliposomes that was prevented by Bcl-xL [24, 47, 

57]. In addition, mitochondria isolated from yeast ex-

pressing VDAC but not lacking VDAC1 showed Bax-

induced Δψ loss and Cyto c release [57, 58]. VDAC1, 

furthermore, was shown to directly interact with Bcl2 

and Bcl-xL, and their co-expression with native but not 

mutated VDAC1 prevented apoptosis [21]. HK-II bind-

ing to VDAC1 inhibited Bax-induced Cyto c release 

and apoptosis, whereas HK-I and HK-II interact with 

VDAC1, and, when over-expressed, prevented 

staurosporine (STS)-induced cell death in native but 

not mutated VDAC1-expressing cells [23, 31, 53]. At 

the same time, VDAC1 channel conductance inhibitors, 

such as DIDS, RuR, DPC and VBIT-4, inhibited apop-

tosis as triggered by various inducers [53, 59-61].  

 

Fig. (1). VDAC1 oligomerization, structures, interacting sites, and modulation  

A schematic presentation of apoptotic signal-induced VDAC1 oligomerization associated with the formation of a Cyto c-

conducting channel. Under physiological conditions, VDAC1 exists in equilibrium between the monomeric and dimeric states 

and is mainly involved in metabolite and ion exchange activities. Upon induction of apoptosis, VDAC1 monomers or dimers 

form a large oligomer with an internal pore. VDAC1 oligomerization is accompanied by translocation of the amphipathic N-

terminal domain (N-Ter) of the protein from the channel pore to the inside of the newly formed pore, situated according to its 

amphipathic nature, coating the hydrophobic oligomer pore to form an hydrophilic surface capable of allowing Cyto c and 

other apoptotgenic proteins to traverse the pore and be released to the cytosol, where they activate apoptosis. Furthermore, the 

N-Ter region interacts with the closest unstable hydrophobic region of VDAC1 (β-strands 1, 2, 19) and confers stability to the 

oligomer.  
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 In addition, cyathin-R, a cyathane-type diterpenoid 

from the medicinal fungus Cyathus africanus, was 

found to induce apoptosis in Bax/Bak-depleted cells 

but not when VDAC1 was depleted [62]. Moreover, 

cyathin-R effectively decreased tumor growth and 

stimulated cell death in Bax/Bak-deficient cells, as well 

as when implanted in a xenograft mouse model [62]. 

Hence, these findings revealed the pro-apoptotic func-

tion of oligomeric VDAC1 independent of Bax/Bak. 

This is of importance as Bax and Bak are believed to 

serve as central regulators of mitochondria-mediated 

apoptosis [63]. It is proposed that Bax homo-oligomers 

or hetero-oligomers containing Bak yield pore-like 

structures that mediate Cyto c release and thus, apopto-

sis [64-66]. Indeed, Bax/Bak down-regulation or inac-

tivation represents a common mechanism for the de-

velopment of resistance to apoptosis in tumor cells [67-

69]. Therefore, Cyathin-R represents a potential lead 

for an effective anti-cancer drug inducing cell death in 

cancerous cells presenting inactivated Bax/Bak. 

Finally, in cancer cells under hypoxic conditions, a 

fraction of VDAC1 is truncated at the C-terminus 

(VDAC1-ΔC), and this was shown to confer resistance 

to cell death [70]. Likewise, it has been shown that 

VDAC1 over-expression-induced cell death occurs 

only when the protein is inserted into the mitochondria 

and proposed that VDAC1 trafficking modulates cell 

death and that this is regulated by the interaction with 

HK [71]. 

4.2. VDAC1-Mediated Apoptosis – Proposed 

Mechanism of Action 

It is important to characterize the VDAC1 assembly 

forming the Cyto c-conducting channel. When one 

considers that the inner diameter of the VDAC1 pore is 

2.5-3.0 nm, or according to recent studies, 1.5 nm, it 

would seem that such a pore would only be large 

enough to permit passage of small molecules and nu-

cleotides but that it would be too small to allow pas-

sage of proteins released from the IMS like Cyto c 

(12kDa) and AIF (67kDa). We have, therefore, pro-

posed that VDAC1 undergoes oligomerization, creating 

a large pore formed by the assembled VDAC1 subunits 

representing a channel that permits Cyto c to cross the 

OMM [6, 7, 24, 25, 72]. The formation of a large chan-

nel for transporting completely folded proteins across 

membranes was demonstrated for several systems, such 

as for Bax/Bak-mediating Cyto c release [73-76], as 

well as for proteins crossing bacterial and thylakoid 

membranes [77]. 

Substantial support exists for dynamic VDAC1 oli-

gomerization into dimers, trimers, tetramers, and 

higher oligomeric states [6, 7, 24, 25, 72]. Moreover, 
all apoptosis inducers tested promote VDAC1 oli-
gomerization, regardless of their mode of action, 
suggesting that VDAC1 oligomerization is their 

common mechanism [72]. Additionally, inhibiting 

apoptosis prevented VDAC1 oligomerization [60, 72]. 

Finally, apoptosis, as induced by UV irradiation, 
H2O2, etoposide, cisplatin or selenite, was found to 
up-regulate VDAC1 expression levels, an event 
that was accompanied by VDAC1 oligomeriza-
tion, Cyto c release and apoptosis [25, 78]. Thus, a 

new concept of apoptosis induction was formulated: 

Apoptosis inducers  increased intracellular [Ca
2+

]  

Enhanced VDAC1 expression levels  VDAC1 oli-

gomerization  Cyto c release  Apoptosis (see  

Fig. 3). 

This proposed sequence of events is based on the 

time course showing that increased intracellular Ca
2+

 

proceeds Cyto c release and apoptosis [78]. The use of 

caspase inhibitors showed inhibition of apoptosis but 

not VDAC1 oligomerization or Cyto c release [25] and 

finally, heterologous over-expression of VDAC 
induces cell death [54-56, 79].  

4.2.1. Evidence for Oligomerized VDAC1 Mediating 

Cyto c Release  

The existence of VDAC1 not only as monomers but 

also as oligomers has been demonstrated in several 

studies [7, 18, 24, 25, 72, 80]. As apoptosis induction 

shifts the equilibrium towards oligomeric VDAC1, we 

proposed that oligomeric VDAC1 contains a large pore 

formed at the center of the oligomer that allows Cyto c 

to cross the OMM [7, 18, 24, 25, 72, 80]. This proposal 

is based on the findings that apoptosis induction in cul-

tured cells led to enhanced VDAC1 oligomerization, as 

revealed by chemical cross-linking or as monitored in 

living cells by Bioluminescence Resonance Energy 

Transfer (BRET) assays [25]. Apoptosis inducers, such 

as H2O2, curcumin, STS, As2O3, cisplatin, selenite, 

etoposide, TNF-α, and UV light, all induce mitochon-

dria–mediated apoptosis and VDAC1 oligomerization, 

regardless of the cell type studied [25]. VDAC1 oli-

gomerization was not, however, inhibited by caspase 

inhibitors, suggesting that such oligomerization occurs 

upstream of caspase activation, pointing to VDAC1 

oligomerization as occurring an early stage of the apop-

totic process [25].  

Recently it was proposed that VDAC1 oligomeriza-

tion is regulated by the lipid composition of the OMM 
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[81]. VDAC1 reconstituted into giant unilamellar vesi-

cles, together with fluorescence cross-correlation 

spectroscopy, were used to follow VDAC1 oligomeri-

zation. It was found that phosphatidylglycerol (PG) 

significantly enhanced VDAC1 oligomerization, 

whereas cardiolipin (CL) disrupted the formation of 

VDAC1 supramolecular assemblies. It was also indi-

cated that during apoptosis, PG levels in the mitochon-

dria are increased, whereas CL levels are decreased. It 

was suggested that the specific lipid composition of the 

OMM could regulate the oligomeric state of VDAC1 

[81]. Finally, p53 encourages VDAC1 oligomerization 

when added to isolated mitochondria. p53 also induced 

VDAC1-containing complexes (60 to 300 kDa) to as-

semble into even high molecular weight complexes that 

could no longer enter SDS-PAGE gels [82, 83]. 

Levels of VDAC1 oligomerization and apoptosis 

are highly correlated [6, 25]. Recently [60], we demon-

strated that several known anion transport inhibitors, 

including 4,4 diisothiocyanostilbene-2,2-disulfonic 

acid (DIDS), 4-acetamido-4′-isothiocyanato-stilbene-

2,2′-disulfonic acid (SITS), 4,4' diisothiocyanatodihy-

drostilbene-2,2'-disulfonic acid (H2DIDS), 4,4’-

dinitrostilbene-2,2’-disulfonic acid (DNDS), and 

diphenylamine-2-carboxylate (DPC) (Fig. 2), all inter-

act with VDAC1, and inhibit release of pro-apoptotic 

proteins from the mitochondria, leading to apoptosis 

and VDAC1 oligomerization. Although these reagents 

are not VDAC1-specific, they directly interact with 

purified VDAC1, as revealed using microscale thermo-

phoresis or VDAC1 reconstituted into a planar lipid 

bilayer, to show how the single channel conductance of 

the protein is reduced [60]. Cyathin-R was found to 

induce VDAC1 oligomerization and apoptosis in 

Bax/Bak-deficient cells, with no apoptosis being in-

duced by Cyathin-R in cells lacking VDAC1, suggest-

ing that this compound acts as a VDAC1-dependent 

apoptosis inducer [62]. Cyathin-R directly interacted 

with purified VDAC1 and reduced its channel conduc-

tance. However, as VDAC1 levels increased several-

fold upon cell treatment with cyathin-R, as compared 

with other mitochondrial proteins, such as cyclophilin 

D, we proposed that as for other apoptosis inducers, the 

increase in VDAC1 levels shifts the equilibrium to-

wards oligomerization. Furthermore, both cyathin-R-

induced VDAC1 oligomerization and apoptosis were 

inhibited by VDAC1-interacting molecules, such as 

DIDS, SITS, DNDS, and DPC [62].  

 Finally, the newly developed compounds AKOS-

022 and VBIT-4 were found to directly interact with 

VDAC1 and inhibit VDAC1 oligomerization, along 

with inhibiting apoptosis as induced by various stimuli 

and in a variety of cancer cell lines [61]. The com-

pounds also eliminated dissipation of the mitochondrial 

membrane potential and thus cell energy and metabo-

lism, decreasing ROS production, as well as preventing 

disruption of intracellular Ca
2+

 levels, all apoptosis-

associated mitochondria events.  

The use of these apoptosis inhibitors supports the 

tight coupling between oligomerization of VDAC1 and 

induction of apoptosis. Inhibiting apoptosis at an early 

stage, via preventing VDAC1 oligomerization, may be 

an effective approach to prevent or reduce apoptosis in 

neurodegenerative disorders [84, 85] and various car-

diovascular diseases, where enhanced apoptosis also 

occurs [86-88].  

4.2.2. VDAC1 Expression Levels and Apoptosis In-

duction  

Numerous studies [78, 89] involving silencing or 

over-expression of VDAC1 provide evidence suggest-

ing that the expression level of VDAC1 controls mito-

chondria-mediated cell death. Over-expression of 

VDAC1 induces apoptosis in all tested cell type [49, 

53-56]. It was further shown that the over-expression 

of VDAC1 is linked with VDAC1 oligomerization, 

changing the equilibrium to the oligomeric state, form-

ing the channel for release of pro-apoptotic proteins, 

leading to apoptosis [18, 30, 78]. Moreover, it was 

demonstrated that VDAC1 over-expression inducing 

cell death is inhibited by apoptosis inhibitors, such as 

RuR [53, 90], DIDS or DPC [60], or upon over-

expression of HK, Bcl2 or Bcl-xL [31, 49, 53, 56], 

molecules that directly interact with VDAC1. 

 Several studies [8, 72, 78] demonstrated that fol-

lowing apoptosis induction by pro-apoptotic drugs or 

conditions, VDAC1 expression levels were highly in-

creased. Apoptosis induction by H2O2, etoposide, cis-

platin, selenite and UV irradiation [8, 72, 78] all led to 

enhanced VDAC1 expression levels, which was ac-

companied by VDAC1 oligomerization, Cyto c release 

and apoptosis. Reactive oxygen species (ROS) were 

also found to induce up-regulation of VDAC1 expres-

sion levels in a manner that could be prevented by add-

ing a ROS scavenger [91].  

Elevation of both intracellular calcium ([Ca
2+

]i) and 

VDAC1 expression levels were induced by apoptosis 

inducers. Direct elevation of [Ca
2+

]i by the 

Ca
2+

ionphores A23187 and ionomycin and by thapsi-

gargin, inhibiting the SERCA Ca
2+

 pump, (Fig. 2) also 

led to VDAC1 over-expression, VDAC1 oligomeriza-

tion and apoptosis [72, 78]. On the other hand, decreas-
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ing [Ca
2+

]i using BAPTA-AM, a cell-permeable Ca
2+

-

chelating reagent, inhibited VDAC1 over-expression, 

VDAC1 oligomerization and apoptosis. Thus, the in-

crease in cellular Ca
2+

 levels induced by apoptosis 

stimuli was found to be a pre-requisite for induction of 

VDAC1 over-expression and apoptosis [72, 78].  

Together, these findings suggest that apoptosis, as 

induced by chemotherapy drugs and treatments, in-

creases VDAC1 expression levels and that this may 

reflect the common mode of action of these agents 

(Fig. 3). 

4.2.3. A VDAC1 Expression Levels and Drug Sensi-

tivity Link: Pro-Apoptotic-Agents Up-Regulate 

VDAC1 Expression Levels  

Various studies have demonstrated the relationship 

between VDAC1 expression levels and the sensitivity 

of cells to chemotherapy drugs. For instance, increased 

VDAC1 expression levels were observed in three dif-

ferent acute lymphoblastic leukemia (ALL) cell lines 

following prednisolone treatment [92]. Upon treatment 

with cisplatin, up-regulation of VDAC1 expression 

levels was observed in a cisplatin-sensitive cervix 

squamous cell carcinoma cell line (A431), while in a 

cisplatin-resistant cell line (A431/Pt), it resulted in 

down-regulation of VDAC1 levels [93].  

 Several pro-apoptotic-agents were found to in-

crease VDAC1 expression levels. For example, in hu-

man melanoma cells, arbutin ((hydroquinone-O-beta-

D-glucopyranoside), a tyrosinase inhibitor, was found 

to induce apoptosis via enhancing VDAC1 expression 

levels [94, 95]. Somatostatin, induced increases in 

VDAC1 and VDAC2 expression levels in the LNCaP 

prostate cancer cell line [96, 97].  

 Several studies demonstrated the relationship be-

tween VDAC1 expression levels and sensitivity to vari-

ous treatments [78]. Oblimersen sodium (G3139)-

mediated induction of Cyto c release was found to be 

correlated with VDAC1 expression levels [98]. The 

PC3 and DU145 prostate cancer cell lines expressing 

 

Fig. (2). Structural formulae of compounds discussed in this review. 
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low amounts of VDAC1 were relatively resistant to 

G3139-induced apoptosis, while LNCaP cells express-

ing high levels of VDAC1 underwent apoptosis in re-

sponse to G3139 treatment. G3139 directly interacts 

with VDAC, reducing channel conductance of the bi-

layer-reconstituted protein by stabilizing the low con-

ducting state of the channel [98]. 

Similarly, silencing VDAC1 expression by specific 

siRNA inhibited cisplatin-induced apoptosis and Bax 

activation in non-small lung cancer cells (NSCLC) 

[51]. The anti-cancer activity of furanonaphthoqui-

nones (FNQs) was increased when VDAC1 expression 

levels were increased but decreased upon reducing 

VDAC1 expression levels using specific siRNA. In 

addition, cisplatin, mechlorethamine, and its derivative, 

melphalan, were found to induce apoptosis, as well as 

over-expression of VDAC1-sensitized cervical and co-

lon carcinoma cells [99]. 

 Thus, cellular sensitivity to apoptosis is related to 

VDAC1 expression levels. Moreover, we suggest here 

that the mode of action for apoptotic stimulus involves 

up-regulation of VDAC1 expression [78]. 

4.2.4. VDAC1 as a Target To Modulate Apoptosis  

Due to the central role of VDAC1 in cell life and 

death, and its over-expression in several diseases, in-

cluding cancer, Alzheimer’s disease (AD), cardiovas-

cular diseases (CVDs) and type 2 diabetes (T2D) [8, 

45, 100-104], VDAC1 can be considered as an innova-

tive target for controlling dysregulated cell metabolism 

and apoptosis associated with such diseases. Indeed, 

various approches, such as down-regulating VDAC1 

expression levels by siRNA or VDAC1-based peptides 

and small molecules, can be considered in this capacity 

[8]. Another approach involving modulating VDAC1 

oligomerization and thereby apoptosis using small 

molecules has recently been developed [60-62]. 

Screening for compounds that can stimulate or inhibit 

apoptosis was carried out using VDAC1-based BRET2 

technology developed by our group [25]. Accordingly, 

enhancing VDAC1 oligomerization and thereby apop-

tosis can be used for fighting cancer, while inhibtion of 

VDAC1 oligomerization was associated with apoptosis 

in neurodegenerative disease therapy (Fig. 4). We have 

recently developed new VDAC1-specific apoptosis 

inhibitors, AKOS-22 and VBIT-4, that inhibit apopto-

sis and the associated increase in ROS and [Ca
2+

]i via 

interacting with and inhibiting VDAC1 oligomeriza-

tion. The VDAC1 oligomerization-based strategy, tar-

geting specific event in mitochondria-mediated apopto-

sis, is highly selective to cells over-expressing 

VDAC1, as in cancer [8, 45] and AD [100, 101, 104]. 

Finally, in vivo study demonstrated that enhancing 

VDAC1 oligomerization by Cyathin-R resulted in tu-

mor growth inhibition [62].  

 

Fig. (3). Proposed model for apoptosis induction coupled to VDAC1 over-expression and oligomerization.  

The model proposes that apoptosis, as induced by various agents and conditions, is associated with enhanced VDAC1 expres-

sion levels involving increases in [Ca
2+

]i levels or transcription factors leading to activation of the VDAC1 promoter. The in-

crease in VDAC1 expression shifts the equilibrium towards the VDAC1 oligomeric state, with sequence of events as described 

in Fig. 1.  



8    Current Medicinal Chemistry, 2017, Vol. 24, No. 00 Shoshan-Barmatz et al. 

Thus, modulating VDAC1 oligomerization, a com-

mon feature of mitochondria-mediated apoptosis, 

would be activated in cells over-expressing VDAC1, 

such as in cancer, and is expected to transpire even in 

tumors resistant to chemotherapy. 

CONCLUDING REMARKS 

The results summarized and discussed here and de-

picted in (Figs. 3,4) support the notion of VDAC1 in-

volvement in apoptosis. Cellular expression levels of 

VDAC1 are important elements in apoptosis induction 

and sensitivity to drugs and point to a role for VDAC1 

in apoptosis. These observations, along with the link 

between the efficacy of a drug and the expression level 

of VDAC1, all indicate that various anti-cancer drugs 

and treatments act via regulating VDAC1 expression 

levels and the subsequent VDAC1 oligomerization and 

Cyto c release that lead to apoptosis. The enhanced 

VDAC1 over-expression observed in response to vari-

ous apoptosis inducers offers support for a new mecha-

nism behind the mode of action of pro-apoptotic drugs, 

namely enhancement of VDAC1 expression, leading to 

VDAC1 oligomerization and apoptosis. Still, it should 

be noted that different cell death mechanisms might 

operate in a sequential or parallel manner, in the same 

cell or in different cells, depending on the apoptosis-

inducing signal. Further study of the novel mechanism 

proposed (Fig. 3) may thus provide a new therapeutic 

strategy for treating different diseases associated with 

inhibited apoptosis, such as cancer, or enhanced apop-

tosis, such as neurodegenerative diseases, pointing to 

VDAC1-based strategies as new therapeutic paradigms 

for several diseases.  

ABBREVIATIONS  

AIF = apoptosis-inducing factor 

arbutin = hydroquinone-O-beta-D-

glucopyranoside 

Bak = Bcl2 homologous antago-

nist/killer 

BAPTA-AM = 1,2-Bis(2-Aminophenoxy)ethane-

N,N,N,N-tetra acetic acid-tetra 

(actoxymethyl ester) 

Bax = Bcl2-associated X protein 

 

Fig. (4). Modulation of VDAC1 oligomerization as a strategy to control apoptosis in cancer and neurodegenerative dis-

ease.  

Controlling VDAC1 oligomerization, and hence apoptosis, offers a VDAC1-based innovative conceptual framework as new 

therapeutic paradigms for several diseases, with expected impact in the treatment of cancer and neurodegeneration in which 

VDAC1 is over-expressed, where in cancer there is resistance to apoptosis yet in neurodegenerative diseases, apoptotic cell 

death is activated. 
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Bcl2 = B-cell lymphoma 2 

Bcl-xL = B-cell lymphoma-extra-large 

BRET2 = bioluminescence resonance en-

ergy transfer 

CK = creatine kinase 

Cyto c = cytochrome c 

DIDS = 4,4-diisothiocyanostilbene-2,2-

disulfonic acid 

DMSO = dimethyl sulfoxide 

DNDS = 4,4-dinitrostilbene-2,2-disulfonic 

acid 

DPC = diphenylamine-2-carboxylate 

H2DIDS = 4,4'-

diisothiocyanatodihydrostilbene-

2,2'-disulfonic acid 

EGS = ethylene glycol bis [suc-

cinimidylsuccinate] 

FNQs = furanonaphthoquinones 

FRET = fluorescence resonance energy 

transfer 

G3139 = oblimersen sodium 

HK = hexokinase 

NSCLC = non-small lung cancer cells 

OMM = outer mitochondrial membrane 

PLB = planar lipid bilayer 

ROS = reactive oxygen species 

RuR = Ruthenium red 

SITS = 4-acetamido-4′-isothiocyanato-

stilbene-2,2′-disulfonic acid 

SMAC/Diablo = second mitochondria-derived ac-

tivator of caspases 

siRNA = small interfering RNA 

STS = staurosporine 

TNF-α = tumor necrosis factors alpha 

UV = ultraviolet 

VBIT = VDAC-based inhibitor therapy 

VDAC = voltage-dependent anion channel.  
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