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Abstract

Despite the growing number of immune repertoire sequencing studies, the field still lacks

software for analysis and comprehension of this high-dimensional data. Here we report

VDJtools, a complementary software suite that solves a wide range of T cell receptor (TCR)

repertoires post-analysis tasks, provides a detailed tabular output and publication-ready

graphics, and is built on top of a flexible API. Using TCR datasets for a large cohort of unre-

lated healthy donors, twins, and multiple sclerosis patients we demonstrate that VDJtools

greatly facilitates the analysis and leads to sound biological conclusions. VDJtools software

and documentation are available at https://github.com/mikessh/vdjtools.

Author Summary

High-throughput profiling of T- and B-cell antigen receptor repertoires promises great

advances in our understanding of the mechanisms underlying adaptive immune system

function, treatment of autoimmune and infectious diseases, and development of novel

approaches in cancer immunotherapy. A number of recently developed software tools aim

at processing immune repertoire data by mapping Variable (V), Diversity (D) and Joining

(J) antigen receptor segments to sequencing reads and assembling T- and B-cell clono-

types. Nevertheless, there still exists a major gap in common methods of data post-analysis

in the field: there is no standardized data format so far, and most of data comparative anal-

ysis is carried out using a variety of in-house scripts. Here we present VDJtools, a software

framework that can analyze output of most commonly used TCR repertoire processing

tools and allows applying a diverse set of post-analysis strategies. The main aims of our

framework are: To ensure consistency of post-analysis methods and reproducibility of

obtained results; to save the time of bioinformaticians analyzing TCR repertoire data by

providing comprehensive tabular output and open-source API; and to provide a simple
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enough command line tool so that immunologists and biologists with little computational

background could use it to generate publication-ready results.

This is a PLOS Computational Biology Software paper

Introduction

The advent of high throughput sequencing (HTS) has opened a new venue for the studies of

genomics of adaptive immunity that involve deep profiling of T-cell receptor (TCR) and B-cell

receptor (BCR) gene repertoires encoding a myriad of antigen specificities.

Huge volumes of complex data produced by the immune repertoire profiling have led to the

development of a diverse set of software tools, which often complement each other. We [1–3]

and others [4–7] have recently contributed several tools that handle large amounts of raw HTS

data to process it into a human-readable list of clonotypes characterized by Variable (V),

Diversity (D), Joining (J) segments and V-(D)-J junction sequences of receptor genes. While

such processed data carry nearly exhaustive information on the sampled immune repertoire,

this information yet needs to be convolved, scaled and compared across various samples to

result in sound biological conclusions.

Post-analysis of immune repertoire data is a challenging task owing to extreme diversity of

TCR and BCR sequences. For example, in technically similar microbiome profiling by 16S

rRNA sequencing one deals with thousands of operational taxonomic units that represent vari-

ous species [8], while typical TCR repertoire samples may contain hundreds of thousands

[9,10] of clonotypes. Moreover, the species phylogeny and annotation is well developed in the

field of microbiology [11], while immune repertoires remain poorly annotated. To illustrate

this, a simple query with “16S rRNA” currently yields more than 8 million records in GenBank,

while there are only 37 thousand records annotated as “T-cell receptor”. However, unsuper-

vised methods of studying repertoires, for example based on sample overlap, could turn out

very promising, as there exists a relatively limited diversity of overlapping clonotypes [12–15].

In the light of recent advances in storage and processing of immunological big data [16],

community-driven initiatives for immune repertoire data sharing and analysis are likely to

emerge, for example VDJserver portal [17] which is currently under development. There are

several commonly used ways to survey immune repertoire information obtained from HTS,

such as tracking individual clonotypes [18,19], comparing immune receptor segment usage

[20,21] and comparing repertoire diversity [10]. Still those are overwhelmingly performed

using in-house scripts or even manually. This is becoming a major obstacle, as comparison and

annotation of samples based on data generated in other studies is critical for comprehensive

analysis of immune repertoire sequencing data. In contrast, similar fields, such as metage-

nomics, have a plethora of such instruments [22].

The VDJtools software package presented here aims at filling this gap by incorporating a

comprehensive set of routines for analysis of TCR repertoire sequencing data (Fig 1). The vari-

ety of implemented algorithms range from basic statistics calculation and clonotype table filter-

ing to advanced routines such as repertoire clustering and computationally intensive routines

such as clonotype table joining.

Post-analysis of T-Cell Repertoires
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Fig 1. Overview of VDJtools software package. VDJtools analysis routines can be grouped into 6 modules and are applicable to results produced by
commonly used immune repertoire sequencing processing software. Basic statistics and segment usage module include general statistics (clonotype and
read count, number and frequency of non-coding clonotypes, convergent recombination of CDR3 amino acid sequences, insert size statistics, etc),
spectratyping (distribution of clonotype frequency by CDR3 length), Variable and Joining segment usage profiles and their pairing frequency in re-arranged
receptor junction sequences. Repertoire overlap module includes routines for computing sets of overlapping clonotypes and their characteristics, and scatter
plots of clonotype frequencies. Diversity analysis includes routines for visualizing clonotype frequency distribution, computing repertoire diversity estimates
and rarefaction plots. The fourth set of routines can be used to create clonotype abundance profiles and track clonotypes in time course of vaccination,
myeloablation and blood cell transplant. Sample clustering is implemented based on computed repertoire similarity measures and could be used to
distinguish various biological conditions, cell subsets and tissues. Auxiliary routines provide means for clonotype table filtering (e.g. by segment usage or
non-coding CDR3 sequence) as well as annotation with custom or pre-built pathogen-specific clonotype database. VDJtools can be incorporated in Java
programming language-based pipelines as demonstrated by VDJviz clonotype browser.

doi:10.1371/journal.pcbi.1004503.g001
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VDJtools can calculate basic immune repertoire statistics that were commonly used in pre-

HTS era repertoire analysis. Those include in silico spectratype (the distribution of lengths of

CDR3 nucleotide sequences) that was first introduced with corresponding molecular biology

assay [23], and various Variable/Joining segment usage statistics that root in flow cytometry

analysis of T- and B-cell populations.

The framework provides means for analyzing the diversity of immune repertoires, such as

normalized unique clonotype counts (with an option to account for convergent recombina-

tion), clonotype frequency distribution, as well as rarefaction curves and lower bound estimates

of total repertoire diversity widely applied in ecology field [24]. The concept of repertoire diver-

sity is of great importance, as it reflects the ability of our immune system to effectively with-

stand a multitude of encountered pathogens [25]. By applying computational methods one

could estimate how the diversity is influenced by various processes, such as aging [10], vaccina-

tion, and infection [26]. Diversity measures could also be used to compare the structure of T-

and B-cell repertoires in samples derived from a variety of tissues and subjects [27].

Advanced set of VDJtools methods includes cluster analysis of repertoire samples and clo-

notype tracking which have a wide range of applications. Machine learning methods such as

hierarchical clusterization and multi-dimensional scaling can aid in learning T-cell antigen

specificities and disease biomarker patterns from high-dimensional TCR data [28]. Clonotype

tracking is useful in studying immune repertoire dynamics associated with vaccination [29],

autologous hematopoietic stem cell transplantation (HSCT) [19,30,31], checkpoint inhibitors

[32], etc., as well as in detection of minimal residual disease in lymphoid malignancies [33–37].

An overview of 20 recently published immune repertoire studies (S1 Table) demonstrates

that VDJtools can perform most of emerging post-analysis tasks therefore greatly facilitating

the analysis process and removing the need to develop multiple custom scripts. Currently there

are few software tools capable to perform post-analysis of immune repertoire data [7,38,39], all

of which provide less functionality when compared to VDJtools (S2 Table). Moreover, in con-

trast to VDJtools which can handle output generated by various pre-processing software, these

tools only support datasets in their internal formats.

Design and Implementation

The study was approved by ethics committee of the Russian Children's Hospital from January

20, 2011.

The core API of the software is implemented in Java/Groovy languages and automatically

resolves all dependencies during compilation using Maven. The API includes generalized enti-

ties, such as Clonotype, Sample and SampleCollection classes, and allows storing sample meta-

data usingMetadataTable class. The API also contains a comprehensive set of routines for

computing sample-specific and cross-sample statistics, which are optimized for parallel com-

putation. VDJtools API can be easily integrated in any software written in Java or related pro-

gramming languages (e.g. Groovy, Scala and Clojure). VDJtools is an open-source software,

the source code can be accessed at GitHub [40].

Comprehensive software documentation is hosted at ReadTheDocs [41] and contains basic

usage guidelines (including the description of common pitfalls), a summary of implemented

algorithms, as well as examples that cover some typical VDJtools usage cases. The documenta-

tion also contains step-by-step instructions for reproducing the analysis described in present

paper.

VDJtools has a command line interface that allows executing analysis routines that produce

tabular and publication-ready graphical output. Tabular output can be used for post-hoc analy-

sis in R or explored in spreadsheet software such as Excel. Plotting parameters are optimized to
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provide the most intuitive and comprehensive graphical representation for most usage cases

while users can specify their own sample groups and factors to be visualized.

VDJtools accepts tabular output of commonly used pre-processing software: MIGEC [2],

MiTCR [1], ImmunoSEQ [38], IMGT/HighV-QUEST [4], and MiXCR [3]. VDJtools also sup-

ports IgBlast [5] software format. Of note, using IgBlast requires a considerable amount of

parsing and post processing, as it only reports Variable segment alignment and doesn’t provide

the CDR3 sequence. Moreover, vanilla IgBlast doesn’t accept FASTQ format input, does not

provide clonotype assembling (grouping of sequencing reads with identical Variable segment,

Joining segment and CDR3 sequence) and is not optimized for parallel computations. We have

implemented all those features in our wrapper for IgBlast software, MIGMAP, that could be

downloaded from [42]. VDJtools converts all input datasets to its own internal format, which

is a tab-delimited table containing abundance, CDR3 sequence, V, D and J segment names and

markup of CDR3 sequence germline regions.

An immune repertoire browser VDJviz which serves as a lightweight GUI for VDJtools was

built using Play framework and VDJtools API and could be accessed at [43].

Raw data for multiple sclerosis patients is deposited at SRA (PRJNA280417). Pre-processed

clonotype tables can be found in a separate GitHub repository [44], which also contains shell

scripts that can be used to reproduce the analysis.

Results

To demonstrate the efficiency of VDJtools, we have analyzed TCR beta repertoires for the

peripheral blood samples of 13 young (6–15 years old) individuals diagnosed with multiple

sclerosis (MS1-13), and 6–25 years old control group (C1-11) described in Ref. [10]. The multi-

ple sclerosis dataset was prepared and sequenced using the same protocol as the control one.

We have also included a sample from the MS8 patient after hematopoietic stem cell transplant

(MS8HSCT). The list of samples is provided in S3 Table.

To remove quantitative biases and reduce possible impact from PCR and sequencing arti-

facts, we have utilized unique molecular identifiers [10,45,46]. Analysis of raw molecular bar-

coded data was performed using our MIGEC software. Molecular identifier groups represented

by a single read were discarded, and the remaining groups were subjected to cDNA consensus

assembly and CDR3 extraction as previously described [2]. Hereafter we will use the term T-

cell receptor beta chain cDNA molecules (TRBM) for describing clonotype count units. Note

that in these experiments we obtained ~0.5 mln cDNA molecules per ~1–10 mln starting T-

cells, so we can assume that each TRBM roughly represents a single T cell.

Estimating repertoire diversity

We have started our analysis by comparing the repertoire diversity of MS and control samples.

To support the diversity measure choice and check for possible biases we have performed a

benchmark on previously published T cell immunity aging data [10] and additional ANOVA

analysis to identify factors that bias diversity estimates (S1 Text, S1 Fig, S4 Table). We have

used common diversity measures: the observed diversity (number of unique clonotypes), Chao

[47] and Efron [48] estimates for lower bound on total species diversity, Shannon [49] and

Simpson [50] indices, as well as extrapolated Chao estimate [51].

The benchmark, in which correlation with a physiological (age) and immune status (naïve

T-cell count) factors was compared for various diversity estimates, has shown that best correla-

tion can be achieved when samples are normalized to the same size (TRBM count). Corre-

spondingly, ANOVA analysis suggests a strong sampling-related bias. Accounting for this bias

is especially important in present case as the rarefaction curves are far from saturation
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PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004503 November 25, 2015 5 / 16



(Fig 2A). Notably, lower bound estimates of total repertoire diversity that are especially affected

by sampling bias were applied in some recent studies for the comparison of TCR repertoire

diversity under uneven sample sizes [9,52].

Using Chao1 estimate [47] for normalized datasets that has shown the best performance

together with Efron estimate (yet is far simpler to compute) in the aforementioned benchmark,

one can discover that MS samples have a significantly lower diversity than the controls

(Fig 2B). This suggests a substantial expansion of T-cell clones in peripheral blood of MS

patients, an observation previously supported only by local measurements such as Sanger

sequencing of individual T-cells and spectratyping assays [53]. As control population is slightly

older than MS group one can expect even more profound difference in case exact age matching

is achieved for the control group [10]. Still, there is no significant difference for the directly

observed sample diversity (S2 Fig), which is likely due to the fact that this estimate doesn’t

account for the clonotype frequency distribution in sample and thus is less sensitive.

Cluster analysis of repertoires

As there is currently no study describing an application of cluster analysis to a large set of

immune repertoire datasets coming from different individuals, we have performed a bench-

mark of various clustering strategies using a recently published twins TCR repertoires study

[54]. We have tested the ability to distinguish TCR repertoires of identical twins from those of

unrelated individuals for several commonly used similarity measures, correlation of overlap-

ping clonotype frequencies (R), geometric mean of total frequencies of overlapping clonotypes

(F), normalized number of overlapping clonotypes (D, [14]), Jaccard [55] and Morisita-Horn

indices [56]. Only the F similarity measure showed significant difference for both TCR alpha

Fig 2. Estimation of repertoire diversity usingmultinomial model. A. Rarefaction analysis of repertoire samples from healthy donors and multiple
sclerosis patients. The number of unique clonotypes in a sub-sample plotted against its size (number of T-cell receptor cDNAmolecules, TRBM). Solid and
dashed lines are diversity estimates computed by interpolating and extrapolating using a multinomial model respectively [29]. Note that generally rarefaction
curves for MS samples go below those of control donors. Post-HSCT sample (MS8-HSCT) displays the lowest diversity.B. Comparison of repertoire
diversity using normalized Chao1 estimate. Normalization is performed by down-sampling datasets to the size of smallest dataset and computing the
estimate for resulting datasets (mean estimate value from n = 3 re-samples is used). MS8-HSCT sample is discarded from calculations. *—P = 0.022, two-
tailed T-test; effect size estimated by Cohen’s d is 0.98.

doi:10.1371/journal.pcbi.1004503.g002

Post-analysis of T-Cell Repertoires

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004503 November 25, 2015 6 / 16



and beta chain datasets (S1 Text, S5 Table and S3 Fig). At the same time, it should be noted

that R and Dmeasures also proved to be useful in other experimental setups. For example, R

measure accurately separated TCR alpha repertoires for the T cell subsets and tissues, as well as

mutant and control mice Treg repertoires [57].

We have next used cluster analysis to explore whether TCR beta repertoires of MS patients

can be distinguished from healthy controls. As some samples were prepared in parallel with

single-end sample barcoding, joined and then co-amplified after Illumina adapter ligation, we

first checked for the possibility of cross-sample contamination (S4 and S5 Figs). It turned out

that direct clustering of samples with Fmeasure resulted in a strong co-clustering of samples

prepared in the same batch. To correct for batch effect, we have selected “amino acid NOT

nucleotide” clonotype intersection matching rule, i.e. matching of CDR3 amino acid, but not

the nucleotide sequences.

Hierarchical clustering with F similarity measure and “amino acid NOT nucleotide” clono-

type matching rule showed some co-clustering for control but not MS datasets (Fig 3A). Fur-

ther exploration with multidimensional scaling (MDS) method showed that control repertoires

of healthy children are more similar to each other according to F similarity measure, while MS

repertoires are all different (Fig 3B and 3C). This result is quite similar to our observations of

age-related changes in TCR repertoires (our unpublished data). With aging, expansion of anti-

gen-specific clones moves away native repertoires that are initially more close to each other

due to the public clonotypes that are frequently produced in recombination [58]. This is in line

with observation of early clonal T-cell expansions in MS children (see “Estimating repertoire

diversity” section above). Since those expanding T-cell clones, including potentially autoreac-

tive ones, are predominantly private to an MS-affected person [59–61] this leads to the

decrease of the overlap between MS repertoires according to the clonotype size-weighted F

similarity measure.

T-cell receptor segment usage signatures

Keeping in mind that MS was shown to have a Type I-II TCR repertoire bias [62], i.e. the same

prominent Variable segment is used, yet only limited homology between CDR3 region is pres-

ent in disease specific T-cells, we have performed hierarchical clustering of Variable segment

usage profiles (Fig 3D, note that profiles are weighted by TRBM count). The resulting dendro-

gram distinguishes MS patients and healthy donors with 91% sensitivity and 77% specificity

(P = 0.013, Fisher’s exact test for cluster—group association).

A post-hoc testing was then performed to find out which Variable segments were more

abundant in MS donors than in healthy controls (S6 Table). We have determined that 5 Vari-

able segments had a statistically significant increase in frequency, including TRBV5-6

(1.6-fold, P = 2x10−5) and TRBV5-1 (1.5-fold, P = 5x10−4), which were previously reported to

have a genetic association with MS [61,63]. Of note, TRBV20-1 (1.3-fold, P = 2x10−3) which

has also emerged in our results was recently shown to have no genetic association with MS in a

Sicilian population carrying null allele [64]. This suggests that the observed TRBV20-1—MS

association could be either specific for Russian population or represent an indirect biomarker.

Tracking repertoire changes induced by hematopoietic stem cell
transplantation

Further we have compared TCR repertoires of blood samples taken from a single MS patient

(MS8) before and after HSCT (see Fig 4). We have first tracked the clonotypes present before

HSCT procedure to the post-transplantation repertoire (Fig 4A). The resulting plot clearly

shows that pre-transplantation clones greatly expand (from ~25% of TRBMs to 75%) and
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Fig 3. Overlap and clustering of TCR repertoires. A. Hierarchical clustering of healthy donor and multiple sclerosis (MS) patient samples using F pairwise
similarity metric (the geometric mean of the total frequency of overlapping clonotypes in first and second sample in pair). B.Multi-dimensional scaling (MDS)
plot. Samples were projected onto two-dimensional plane based on pairwise similarities (F metric). C. Permutation testing for closeness of samples coming
from the same group based on MDS plot. The plot shows observed (dashed red lines) and permuted (histograms) average within-group sample distance. In
contrast to control group, MS group displays highly dissimilar T-cell repertoires. N = 10,000 permutations of group labels were performed. D. Hierarchical
clustering of samples based on the Euclidean distance between Variable segment frequency vectors. Note that the clustering provides a nice separation
between sample groups (Control and MS, P = 0.013, Fisher’s exact test).

doi:10.1371/journal.pcbi.1004503.g003
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occupy most of homeostatic space in post-HSCT repertoire. The magnitude of this effect

resembles the one we previously observed in an ankylosing spondylitis patient HSCT case [19]

and in adult MS autologous HSCT study [31].

Another peculiar finding is that a strong shift in Variable segment usage is observed, while

no such change is present for J segment usage (Fig 4B). TRBV15 and TRBV7-8 ranking 10

and 5 replaced the top two Variable segments TRBV20-1 and TRBV29-1, while top two Join-

ing segments TRBJ2-7 and TRBJ2-1 remained the same. This could not be attributed to CD4/

CD8 balance alone, as there is strong differential Joining segment usage between those two

populations [65]. Interestingly, a significant HSCT-induced decrease was observed for

TRBV5-6, TRBV5-1, TRBV5-8, TRBV7-6 and TRBV20-1 (P = 0.008, two-tailed paired T-test

for log TRBM frequencies) segments that were enriched in MS patients compared to healthy

controls (see previous section). The total frequency of those segments dropped from 20% of

TRBMs to 14%.

Comparing bulk characteristics of CDR3 regions for MS patients and
healthy donors

Finally, we have compared CDR3 regions of MS patients to healthy donors using a set of basic

features: the length of Variable and Joining segment germline parts remaining within CDR3

region, and VJ junction (NDN) size. The length of CDR3 segment itself is a potent marker of

Fig 4. Analysis of autologous HSCT-driven changes in T-cell repertoire. A. Stacked clonotype frequency plot highlighting the details of overlap between
sample MS8 (before autologous HSCT) and MS8-HSCT (post HSCT). Top 100 clonotypes based on their average frequency in those samples are shown,
while other clonotypes that were observed in both samples are marked as “Not shown”. The frequency of remaining clonotypes is marked as “Not in overlap”.
B. Changes in Variable-Joining segment pairing in CDR3 junctions changes induced by HSCT. Chord diagram is used for visualization, ribbons connecting
segment pairs are scaled by corresponding V-J pair frequency. “TRB” prefix is stripped from segment names for simplicity.

doi:10.1371/journal.pcbi.1004503.g004
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antigen receptor reactivity. For example, longer CDR3 sequences may be more characteristic

for potentially cross- and self-reactive immune receptors [66], while CDR3 variants with low

number of randomly added “N” nucleotides are characteristic for public clonotypes, including

variants specific to common pathogens such as EBV and CMV [67]. As our analysis shows, MS

patients are characterized by longer VJ junction region (Fig 5A). To check whether it is due to

specific segment usage profile we have compared VJ junctions from all clonotypes of normal

Fig 5. CDR3 junction features.MS patient-derived repertoire is enriched for TCR sequences with long VJ insert, partially due to high abundance of specific
Variable segment regions. A. Length of Variable and Joining segment germline parts within CDR3 (V-germ and J-germ) and of VJ insert (VJ-junc) compared
between MS donors and healthy controls. B. Average length of VJ junctions among all and selected V-segments (TRBV5-6,5–1,5–8,7–6 and 20–1, shown to
be over-expressed in MS patients compared to controls, see main text) according to TCR sequences from repertoires of healthy donors.C. Comparison of VJ
insert lengths between control and MS donors for clonotypes with TRBV5-6,5–1,5–8,7–6 and 20–1 segments. P-values computed using two-tailed unpaired
T-test (A, C) and paired T-test (B).

doi:10.1371/journal.pcbi.1004503.g005
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donors to the ones coming from clonotypes that have one of Variable segments previously

shown to be over-expressed in MS patients (Fig 5B). We have found that aforementioned

TRBV5-6, TRBV5-1, TRBV5-8, TRBV7-6 and TRBV20-1 are intrinsically characterized by

longer VJ inserts. However, there is still a significant difference in VJ junction size between MS

patients and controls for this subset of TRBV segments (Fig 5C). These results may indicate

that clonal expansions in MS patients are characterized by more self-reactive T-cell clonotypes

than in healthy donors. Alternatively, this could be a more general hallmark of chronic inflam-

mation associated with MS.

Availability and Future Directions

A cross-platform binary version of software in a form of executable JAR file is available from

[68]. VDJtools software is free for scientific and non-profit use. The source code is available at

GitHub repositories [40] and [69].

One important aspect of VDJtools usage not mentioned in the results section is the bench-

mark of pre-processing software (S6 Fig) and library preparation protocols. For this purposes

we plan to constantly update VDJtools so it is able to handle the output of newly developed

pre-processing software.

In future we plan extending VDJtools software to address another highly important prob-

lem in the field, the analysis of antibody repertoire [70]. While being applicable to the analysis

of BCR clonotypes, VDJtools currently doesn’t account for somatic hypermutations and there-

fore yet cannot offer a comprehensive analysis for the antibody repertoires. This task requires

us to implement algorithms for computing statistics of hypermutation transition patterns and

reconstruction of B-cell clonal lineages and visualization of hypermutation graphs. We are also

looking forward for the feedback from the community to meet the demand for some exciting

novel features that will surely arise in this rapidly growing field.

Supporting Information

S1 Text. Description of dataset and benchmarks.

(PDF)

S1 Table. Overview of 20 recently published T-cell repertoire sequencing studies. Primary

analysis software and post-analysis methods that are supported by VDJtools are highlighted in

green. Note that none of these papers indicate using specialized software for analysis of clono-

type tables, therefore post-analysis in each case was performed either manually or using in-

house scripts developed from a scratch.

(DOCX)

S2 Table. Comparison of VDJtools with existing software tools. This table contains sum-

mary of features present in VDJtools and other immune repertoire post-analysis software

(ImmunoSEQ analyzer [38], Vidjill [7] and AbMining Toolbox [39]).

(DOCX)

S3 Table. Sample metadata.Metadata for MS and control samples. Donor age, gender and

condition are provided. Samples in the same batch were prepared together, multiplexed and

sequenced on the same HiSeq lane.

(DOCX)

S4 Table. ANOVA summary for various factors that affect the repertoire diversity esti-

mates. Interaction between factors is shown with “:” sign.

(DOCX)
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S5 Table. Repertoire similarity. The ability of repertoire similarity measures to distinguish

identical twins (n = 3 pairs) from unrelated individuals (n = 12) for TCR alpha and beta chain

samples. Statistical significance and effect size were assessed using two-tailed T-test P-values

and Cohen’s d.

(DOCX)

S6 Table. Variable segments that are highly used in MS patients. In order to determine the

possible Type I-II bias according to Ref. [62], i.e. sharing of common repertoire features under

the absence of common clonotypes, in TCR repertoires of MS patients we have performed mul-

tiple testing for TRBV frequency difference using one-tailed T-test. One-tailed T-test was cho-

sen to increase the power as we a priori search for an expansion in the T-cell compartment.

Appropriate correction for multiple testing was applied (Benjamini-Hockberg correction).

Variable segments that are significantly over-represented in MS samples comparing to control

are shown.

(DOCX)

S1 Fig. Repertoire diversity estimator performance. This plot shows Spearman correlation of

diversity estimate with age and naïve T-cell count. Unmodified samples (exact) and samples

normalized to the same size (resampled) from the “aging” study were used (n = 39). Note that

ChaoE is omitted from the “resampled” plot, as it equals observed diversity when samples are

of the same size.

(TIF)

S2 Fig. Difference in repertoire diversity between Control and MS. Difference was measured

using four repertoire diversity estimates considered in present study (separate panels). The

effect sizes are 1.21, 0.98, 0.95 and 0.46 respectively (Cohen’s d). ��—P< 0.01, �—P< 0.05, ns

—non-significant, two-tailed T-test.

(TIF)

S3 Fig. Similarity measures. Values of similarity measures for identical twins and unrelated

individuals that were used for statistical testing in S5 Table.

(TIF)

S4 Fig. Possible biases in sample clustering in present study. A.Hierarchical clustering of

repertoires based on two distinct clonotype matching rules: matching CDR3 amino-acid

sequences (left panel) and matching of CDR3 amino acid sequences but distinct CDR3 nucleo-

tide sequences (right panel). Batch effect for samples on the same sequencing lane is shown

with vertical lines. B. Checking for possible sex bias in repertoire clustering. Multi-dimensional

scaling (MDS) plot is shown for healthy donors of various ages and sexes from the aging study

(n = 39, left panel). Statistical significance of co-clustering for same sex samples (low within

and high between cluster distance) was performed using random permutation of factor levels

between samples, red line shows observed values, P-values are shown as numbers near red

lines (n = 10,000 permutations, right panel).

(TIF)

S5 Fig. In-depth analysis of the cross-sample contamination issue. A. Example of three top

clonotypes coming from different batches (A2, A3 and A4) clearly shows presence of intra-

batch contamination. B. Frequency of parent clonotypes (x axis) and their contamination

traces (y axis) in the pooled samples of aging study. Top 100 clonotypes having the largest fre-

quency in pooled samples were analyzed. C. Input of cross-sample contamination to the

observed inter-sample overlap (F measure) for samples coming from the same (red) and
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different (green) sequencing lane.

(TIF)

S6 Fig. An example of Rep-Seq processing software comparison. Comparison of clonotype

extraction efficiency on A4-i107 sample from the “aging” study described in S1 Text. Note that

error correction in current case was performed using unique molecular identifiers, therefore

this figure only deals with CDR3 mapping and clonotype assembly capabilities of software

tools. MiTCR and MIGEC identified 95% and 98% of clonotypes found by IgBlast. False clono-

type rate was 0.2% and 2.7% respectively.

(TIF)
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