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Abstract
Performance improvement solely through transistor scaling

is becoming more and more difficult, thus it is increasingly
common to see domain specific accelerators used in conjunc-
tion with general purpose processors to achieve future perfor-
mance goals. There is a serious drawback to accelerators,
though: binary compatibility. An application compiled to uti-
lize an accelerator cannot run on a processor without that ac-
celerator, and applications that do not utilize an accelerator
will never use it. To overcome this problem, we propose decou-
pling the instruction set architecture from the underlyingac-
celerators. Computation to be accelerated is expressed using a
processor’s baseline instruction set, and light-weight dynamic
translation maps the representation to whatever accelerators
are available in the system.

In this paper, we describe the changes to a compilation
framework and processor system needed to support this ab-
straction for an important set of accelerator designs that sup-
port innermost loops. In this analysis, we investigate the dy-
namic overheads associated with abstraction as well as the
static/dynamic tradeoffs to improve the dynamic mapping of
loop-nests. As part of the exploration, we also provide a quanti-
tative analysis of the hardware characteristics of effective loop
accelerators. We conclude that using a hybrid static-dynamic
compilation approach to map computation on to loop-level ac-
celerators is an practical way to increase computation effi-
ciency, without the overheads associated with instructionset
modification.

1 Introduction

For decades, industry has produced, and consumers have re-
lied on, exponential performance improvements from micro-
processor systems. This continual performance improvement
has enabled many applications, such as real-time ray tracing,
that would have been computationally infeasible only a few
years ago. Despite these advances, many compelling applica-
tion domains remain beyond the scope of everyday computer
systems, and so the quest for more performance remains an ac-
tive research goal.

The traditional method of performance improvement,
through increased clock frequency, has fallen by the wayside
as the increased power consumption now outweighs any per-
formance benefits. This development has spurned a great deal
of recent research in the area of multicore systems: trying to
provide efficient performance improvements through increased
parallelism.

Not all applications are well suited for multicore environ-
ments, though. In these situations, an increasingly popular way
to provide more performance is through customized hardware.
Adding application specific integrated circuits (ASICs) orap-
plication specific instruction set processors (ASIPs) to a gen-
eral purpose design not only provides significant performance
improvements, but also major reductions in power consump-
tion as well. There are many examples of customized hardware
being effectively used as part of a system-on-chip (SoC) in in-

dustry, for example the encryption coprocessor in Sun’s Ultra-
SPARC T2 [23].

The main drawback of this approach is that creating special-
ized hardware accelerators for each targeted application car-
ries significant costs. Hardware design and verification effort,
software porting, and fabrication challenges all contribute to
the substantial non-recurring engineering costs associated with
adding new accelerators. Purchasing accelerator designs,in the
form of intellectual property (IP), is a popular option to allevi-
ate some of the hardware design costs, but there are still sig-
nificant integration costs (both hardware and software) in tying
the IP accelerators into the rest of the system.

The goal of this work is to attack those costs. First, we
present the design of a hardware accelerator that effectively ex-
ecutes a class of loop bodies for a range of applications. Many
applications spend the majority of their time executing in inner-
most loops, and so ASICs tend to implement one or more loop
bodies. By defining a single architecture to accelerate loops,
the recurring costs of designing an application specific accel-
erator are eliminated. The goal is to cost-effectively generalize
an ASIC design to make it useful for a wider range of loops,
without generalizing it to the point where it begins to look like
a general purpose processor.

The second step is to attack the software costs of target-
ing an accelerator. Software costs primarily result from re-
engineering the application once the underlying hardware has
changed. To avoid these costs, we develop a software abstrac-
tion that virtualizes the salient architectural features of loop ac-
celerators (henceforth abbreviated LAs). An application that
uses this abstraction is dynamically retargeted to take advan-
tage of the accelerator if it is available in the system; however,
the application will still execute correctly without any acceler-
ator in the system. The tradeoff is to abstract away as many
architecture-specific features as possible without requiring a
significant overhead to dynamically retarget the application.

The resulting design is referred to asVEAL, or virtualized
execution accelerator for loops. There are two primary contri-
butions of this work:

• It presents the design of a novel loop accelerator architec-
ture. Quantitative design space exploration ensures that
the accelerator design is broad enough to accelerate many
different applications, yet very efficient at executing the
targeted style of computation.

• It describes a dynamic algorithm for mapping loops onto
loop accelerators. The algorithm is analyzed to deter-
mine the runtime overheads introduced by this dynami-
cally mapping loops, and static/dynamic tradeoffs are in-
vestigated to mitigate the overhead.

2 Overview
It is widely acknowledged that the vast majority of execu-

tion time for most applications is spent in loops. Applying
this fact, along with Amdahl’s Law, often leads system design-
ers to construct hardware implementing loop bodies whenever



processors are insufficient to meet performance or power con-
sumption goals. For example, special purpose LAs for Fast
Fourier Transforms and Viterbi decoding are common in many
embedded SoCs.

This section begins by describing the general architecture
common across LAs. Next, it gives an overview ofmodulo
scheduling, a compilation technique used to schedule loops so
that they effectively use the hardware resources availableto
them. The section concludes by introducing the issues sur-
rounding dynamically retargeting applications to a particular
LA implementation, which are fully discussed in Section 4.

2.1 Loop Accelerator Architectures

In order to determine an appropriate architecture for a broad
set of loop bodies, it is first necessary to understand the general
structure of LAs. The left portion of Figure 1 shows the high
level structure of an LA. At the top of the accelerator portion of
this figure, address generators stream data into the accelerator.
The address patterns typically follow a simple, deterministic
pattern (often based on the loop’s induction variable(s)) that
enables them to be decoupled from the computation performed
on the data. When data is streamed in from the memory system,
it is placed in FIFOs that are accessed by function units (FUs).
Address generators can be time multiplexed to fetch multiple
streams, which enables them to hide any stalls due to bursty
memory behavior amongst the different streams, and reduce
the number of memory ports required. Input data that is not
streamed into the accelerator, such as constants or scalar inputs,
are written into a register file. Typically, this register file is
memory mapped and must be initialized before invoking the
accelerator.

Once data is available, FUs begin processing it, reading val-
ues from the FIFOs or register file and writing results to either
the output memory buffers or registers. The register file that
stores results from the FUs, need not be a monolithic standard
SRAM; many LAs utilize distributed SRAMs [4] or more ef-
ficient structures such as FIFOs [11] or ShiftQs [1]. Addition-
ally, the functionality provided by the FUs is often highly cus-
tomized, executing several RISC-equivalent operations (ops)
back-to-back in the name of improved efficiency [28].

Once computation has completed, another set of address
generators stream the results back to memory. Input and out-
put memory streams can optionally be assumed mutually exclu-
sive, so that the accelerator does not need to perform memory
dependence analysis, although this will preclude certain types
of loops. Branches within the loop body are fully predicated
enabling very simple logic in the accelerator.

Generalized LAs typically provide an interface with the sys-
tem in the same way that current ASICs interface with SoCs:
invoking the accelerator is an atomic act, meaning there is no
need to support precise exceptions in the middle of accelera-
tor execution; an exception either waits for the accelerator to
complete, or aborts the accelerator’s current execution. The
accelerators also operate using physical addresses, so that no
address translation is needed, and the accelerator cannot cause
page faults. Physical addressing is standard for ASICs, butif
the operating system issues created through this decision are
too onerous, then a virtual address strategy similar to the one
by Cell’s SPEs [12] could be used instead.

This abstract architecture encapsulates the structure of most
loop-targeting ASICs [27] as well as previously proposed gen-
eralized LAs [3, 4, 20] targeting scientific and media process-
ing applications. It should be noted that this architectureis pri-
marily targeting these two domains, and is not meant to target
all loops, such as linked-list traversals.

There are several reasons why this architecture is more effi-
cient at executing loops than general purpose processors. First,

the control flow in loops is very simple, removing the need for
control flow speculation such as sophisticated branch predic-
tors. Second, the repeating control sequence (instructions) used
to configure the accelerator can be stored in a circular buffer,
which is more efficient to access than a large instruction cache.
Third, the memory accesses that are not data dependent may
be independent from each other, enabling memory accesses to
be decoupled from the computation. Lastly, the interconnect,
FUs, and register files can be customized to fit the needs of the
application or domain that is being targeted.

2.2 Utilizing Loop Accelerators

Assuming that there is an effective piece of hardware for
executing loops, it is also necessary to have a capable compila-
tion strategy to make use of the hardware. Modulo scheduling
is a state-of-the-art software pipelining heuristic for scheduling
loops, and provides the basis for the software techniques pre-
sented in this paper. Previous work on modulo scheduling is
extensive [7, 16, 17, 19, 24, 25, 26], and the purpose of this
section is only to introduce fundamental concepts.

Modulo scheduling is a method of overlapping loop itera-
tions to achieve high throughput. The instructions are assigned
to FUs so that new iterations can begin executing at a con-
stant rate, called theinitiation interval, or simply II . A soft-
ware pipeline is divided into three distinct parts. The peri-
ods where the software pipeline is ramping up and ramping
down are called theprologueandepilogue, respectively, and
the steady state (when an iteration is starting and completing
every II cycles) is called thekernel.

A single loop iteration can be broken down into multiple
stagesbased on how many times II cycles has passed since it
began executing. The different time steps in each stage are
referred to as the stagecycles, which range from 0 to II-1.
The goal of modulo scheduling heuristics is generally to make
II as low as possible, so that kernel execution is reached and
completed as soon as possible. A secondary goal is to make
the number of stages (often abbreviatedSC for stage count)
as small as possible. To rephrase using standard pipeline ter-
minology, lower II equates to higher iteration throughput and
lower SC equates to lower iteration latency.

While modulo scheduling has proven to be effective, there
are some limitations with the process. One limitation is that
loops with function calls cannot be modulo scheduled. This
problem can mitigated through intelligent function inlining,
and is not a major drawback. A more important limitation is
that while-loops and loops with side exits require special hard-
ware support, such as speculative memory accesses [21, 24].
Although it is feasible to support while-loops and loops with
side exits, we chose to preclude them from this study, to mini-
mize the architectural impact outside the accelerator itself.

Figure 2 demonstrates the implication of this decision. Each
bar in this figure represents the entire execution time for a given
benchmark from MediaBench or SPEC.1 The black bars on
the bottom are the fraction of time spent executing in mod-
ulo schedulable loops. The bars labeled “Speculation Sup-
port” refer to the time spent in while-loops that would be mod-
ulo schedulable, provided the appropriate hardware support ex-
isted. Bars labeled “Subroutine” are loops with function calls
that could not be inlined (e.g., calls into the math library that
were not visible to the compiler).

Media processing and floating point applications (the left
portion of Figure 2) tend to spend the vast majority of their ex-
ecution time in modulo schedulable loops. Lack of support for
loops requiring speculation will limit the utility of the LAfor

1A variety SPECint and SPECfp from the 92, 95, and 2000 suites were
chosen for this study. We omitted benchmarks that could not be compiled with
Trimaran [30].
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Figure 1. Architecture template for loop accelerators (lef t) and VEAL system organization (right).

some applications (e.g., the applications on the right portion
of Figure 2); however, modulo schedulable loops clearly rep-
resent an important class of computation worthy of hardware
acceleration.

2.3 Dynamic Retargeting

Using specialized hardware to execute loops has many per-
formance and power benefits, but hardware and software design
costs prevent widespread deployment in many cases. Design-
ing one architecture for a broad set of loops tackles the hard-
ware design costs. However, the software design costs remain
a difficult problem.

Software costs arise from the fact that the control to invoke
a LA is statically encoded in the binary. An application that
utilizes an accelerator typically has no forward or backward
compatibility. This means that whenever the underlying hard-
ware platform changes, the application must be re-engineered.
While some markets, notably embedded systems, have tradi-
tionally been willing to bear this overhead, high software cost
prevents the use of accelerators in many markets that are not
large enough to justify the effort, and this inhibits innovation.

The standard technique for proving architecturally indepen-
dent access to customized hardware is through a library in-
terface. However, this is not flexible enough, because the li-
brary interface often assumes a specific execution model in
the underlying hardware that prohibits future hardware innova-
tion. Additionally, libraries impede optimization acrossinter-
face boundaries, yielding highly suboptimal code (e.g., much
of the computation in sin(x) and cos(x) is identical, but if an
application had consecutive calls to these functions, it would
not take advantage of the redundant work). Architects need to
provide more flexible interfaces to customized hardware.

The method we propose to avoid the software engineering
costs is to virtualize the accelerator interface. That is, we will
analyze the steps used during compilation to map applications
onto LAs, and perform as many of them dynamically as possi-
ble as part of aco-designed virtual machine(shown in the right
portion of Figure 1). The loops to be accelerated are encoded
using the baseline instruction set of a general purpose proces-
sor. At runtime, a co-designed virtual machine (VM) monitors
execution of the application and dynamically generates control

for the accelerator when appropriate. This dynamic software
layer enables the binary flexibility, unchaining the binaryfrom
any one specific accelerator architecture, and allows the binary
to run on systems without any accelerator at all.

The challenge in virtualization is to determine the appropri-
ate static/dynamic tradeoffs to make in the binary. High quality
modulo scheduling heuristics can be sophisticated, takingtoo
long to perform dynamically. If the translation takes too long, it
can completely erode all the efficiency benefits from using the
accelerator in the first place. At the other end of the spectrum,
performing the mapping entirely statically ties the binaryto a
single accelerator implementation, which has significant non-
recurring engineering costs if the underlying hardware changes.

The remainder of this paper is organized as follows: Sec-
tion 3 performs a design space exploration for a generalized
LA for a range of media and floating point applications. This
design provides the basis for our work on virtualization, which
is covered in Section 4. Section 4 walks through the details
of one particular modulo scheduling heuristic and analyzesthe
tradeoffs involved in performing each step statically versus dy-
namically in a co-designed VM.

3 Generalized Loop Accelerator
To mitigate the costs of customized hardware, it often makes

sense to extend the programmability of ASICs, making them
more useful across a broader set of applications. The goal of
this section is to do just that: design an architecture that effec-
tively supports the set of modulo schedulable loops from the
MediaBench and SPECFP applications on the left portion of
Figure 2. Designing this architecture has two purposes. First,
we provide a quantitative analysis of the tradeoffs involved
with adding each execution resource to the accelerator. Pre-
vious work [3, 20] designing generalized LAs presented de-
signs without this analysis. Second, this design helps gauge the
static/dynamic tradeoffs in modulo scheduling to target anLA.
It would stand to reason that the time needed to modulo sched-
ule a loop is correlated with the number and type of resources
in the target machine, and so a representative architectureis
necessary to accurately measure translation overheads.

The LA architecture template shown in Figure 1 will serve
as the basis for our generalized design. Customizing the tem-
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Figure 2. Percent of execution time spent in various types of code. “Speculation Support” refers to while-
loops and loops with side exits, “Subroutine” refers to loop s that have a non-inlinable function call, and
“Acyclic” refers to code not known to be in a loop.

plate for the targeted application set now requires identifying
how many resources of each type these applications require.
To determine this, we modified the Trimaran toolset [30] to
compile for and simulate a processor with attached LA. The
accelerator connects to the processor through a system bus us-
ing a memory mapped interface. All speedups reported in this
paper are for entire applications, not just loop bodies, andin-
clude synchronization overheads from copying results to and
from the accelerator over a 10 cycle system bus.

3.1 Design Space Exploration

The baseline architecture in our design space exploration as-
sumes a hypothetical LA with infinite resources. That is, loops
are modulo scheduled onto a machine with unlimited registers,
FUs, memory ports, etc. Architectural parameters were then
individually varied to determine what fraction of the infinite-
resources speedup was attainable using finite resources (the ac-
tual speedup numbers are presented in Section 4). The modulo
scheduling heuristic used to target each application to theac-
celerators is discussed in detail in Section 4.1. As previously
mentioned, only the benchmarks on the left portion of Figure2
were used in this analysis.

Figures 3(a) and 3(b) show the results of the design space
exploration for FUs and register requirements. The x-axis in
these graphs represents the number of resources available in
the system and the y-axis is the fraction of infinite-resource
speedup attained. For example, the gray line in Figure 3(b)
shows that when there is only one floating-point register, the
average speedup across the targeted application suite is 60% of
what is attainable with infinite floating-point registers.

Figure 3(a) explores the FUs available in the accelerator,
where IEx and FEx represent integer and double-precision
floating-point units, respectively. One interesting result from
this experiment was that very few floating-point units (FEx in
the left graph) were needed to attain a significant amount of
speedup in the application set. This is partially due to the
significant number of integer-only applications in our target
suite, but the long latency of floating-point operations also con-
tributes to this result. If a floating-point unit is fully pipelined
(which was assumed), modulo scheduling does a very good job
utilizing the unit every possible cycle.

One surprising result from Figure 3(a) is that the point of
diminishing returns for integer units is very high, on the or-
der of 24 units. Due to this result, we chose to experiment
with another type of FU, a CCA [5]. The CCA is a combina-
tional structure specifically designed to efficiently implement
the most common types of integer computations. It supports
4 inputs, 2 outputs, and can execute as many as 15 standard
RISC ops atomically in 2 clock cycles. The 15 RISC ops are
organized into 4 rows, where the first and third row can execute
simple arithmetic (add, subtract, comparison) and bitwiselog-
ical ops, and the second and fourth rows execute only bitwise
ops. The primary benefits of the CCA result because it exe-
cutes larger pieces of computation as a group, reducing storage
and interconnect requirements, as well as squeezing more work
out of each clock cycle. The top line in Figure 3(a) shows that
when one CCA is added to the LA, the required number of inte-
ger units drops dramatically. Some integer units are still needed
to support multiplication and shifts, which are not handledby
the CCA.

Figure 3(b) shows the required number of registers needed
to store live-ins, live-outs, constants, and temporary values for
the loop. Note that registers are not needed to store values
that are read from or written into memory FIFOs nor are they
needed for values that are read directly off the interconnection
network (i.e., values computed the previous cycle). When there
are not enough registers to support a loop, it is simply run on
the baseline processor. Overall, few registers are needed to sup-
port the majority of important loops. As would be expected,
adding a CCA to the system reduces the register requirements,
since fewer temporaries are needed to communicate between
separate units.

Similar to Figures 3(a) and 3(b), Figure 4(a) shows the the
fraction of infinite-resource speedup attained when varying the
number of load/store streams supported in the accelerator.2 In
this analysis, we define a stream as a unique reference pattern,
i.e., a base address and a linear function that modifies that ad-
dress each loop iteration. As would be expected, loads are
more important than stores. Surprisingly, many loops can be

2Note, the number of streams is not equal to the number of memory ports.
Many streams will share a time-multiplexed memory port in the design.
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Figure 3. Execution resource needs. Each line is
the fraction of infinite-resource loop accelerator
speedup attained when varying the number of
function units

supported without any address generators streaming data out to
memory; these loops only have scalar outputs, which are read
directly from the memory mapped register file upon loop com-
pletion.

Another surprising result from the memory stream analysis
is that a very large number of memory streams were needed to
support several important loops in the examined benchmarks.
For comparison purposes, previously proposed general LAs
only supported 3 load/1 store [3] stream or 6 total load/store
streams [20] per loop. Supporting fewer memory streams is
desirable, since it requires less hardware (e.g., storage for base
addresses and access patterns).

Empirically speaking, the loops that required a large number
of memory streams tended to be very large. These large loops
typically resulted from aggressive function inlining usedby the
compiler to improve loop accelerator utilization in the target
applications. One potential way to reduce the hardware over-
head of supporting these large loops is to time-multiplex the
address generators. Large loops tend to have larger IIs, giving
the address generators time to process several different streams.
Another potential solution is to break the large loops up into
smaller loops using a technique such as loop fissioning. This
would reduce the required number of streams for each individ-
ual loop but increase memory traffic, as dividing the loop up
typically creates communication streams between the smaller
loops.
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Figure 4. Resource requirements for a general-
ized loop accelerator

The graph in Figure 4(b) shows the maximum supported II
by the LA (i.e., loops that cannot be scheduled at the maximum
II will not be accelerated). This essentially demonstratesthe
longest recurrence paths in the studied loops since recurrence-
free loops can always be scheduled at an II of 1 with infinite
resources.

Maximum supported II is an important consideration in the
loop accelerator design, because the size of the loop control is
directly proportional to the maximum supported II. Since the
kernel repeats every II cycles, each FU needs to be able to ex-
ecute II different instructions, and thus maximum supported II
determines the size of the control structure. As with the mem-
ory stream limitation, if a particular loop is too large to besup-
ported by an II, often times proactive loop fissioning enables
the loop to utilize an accelerator.

3.2 Loop Accelerator Design

Using the analysis in this section as a guide, we propose a
generalized LA design consisting of 1 CCA, 2 integer units,
2 double-precision floating-point units, 16 floating-pointand
integer registers, 16 load memory streams (time-multiplexed
among 4 address generators), 8 store memory streams (time-
multiplexed among 2 address generators), and a maximum II of
16. This is sufficient for attaining 83% of the speedup possible
using a hypothetical loop accelerator with infinite resources.
To estimate the die area impact of this design, estimates of the
constituent parts were collected using Cadence tools and a IBM
90 nm standard cell library. We project the design would con-
sume 3.8mm2 of die area, the majority of that (2.38mm2) be-
ing consumed by the two double-precision floating point units.



To put these numbers in perspective, the ARM 11 processor (a
single-issue embedded processor with 8 stage pipeline, 16KL1
caches, 128K L2 cache, and no FPU) consumes 4.34mm2 in a
similar process. An ARM Cortex A8 processor (dual-issue, 13-
stage pipeline, 32K L1 caches, 256K L2 cache) would consume
roughly 10.2mm2, meaning that the loop accelerator could be
added to an embedded system for less than the cost of a second
simple core, or the cost of increasing the cache and issue width.

The design space exploration presented here has omitted
two major portions of the data path: the register file structure
and interconnect customizations that often occur in customized
hardware accelerators. The primary reason for this omission is
that there are currently few modulo scheduling algorithms that
take these customizations into consideration. Without software
support to analyze the costs of architectural customization (in
terms of reduced performance), it is difficult to make intelligent
design decisions, and this exploration is left for future work.

4 Virtualizing the Accelerator

The LA architecture is very effective at executing the mod-
ulo schedulable loops from the wide range of applications stud-
ied. However, the tradeoffs made in that design will not fit all
situations. When this is the case, a new accelerator must be de-
signed for the system, which creates a burden on the application
developer. Traditionally, control used to invoke an accelerator
is statically placed in the binary, meaning the applicationwill
have to be re-engineered to function on a different hardware
platform. This software porting cost often prevents hardware
innovation in situations where it otherwise provides significant
benefits.

The way to eliminate the software cost is to generate the
control for the accelerator dynamically, only after the appli-
cation knows what accelerators are available in the system.
This type of system has previously been termed a co-designed
VM [29], because software dynamic translation is designed in
conjunction with new hardware features.

Dynamically generating control for the LA relies on the as-
sumption that the cost of performing the translation is low;oth-
erwise, the translation cost would outweigh any benefits pro-
vided by the custom hardware. Thus, the key to virtualization
of custom hardware is analyzing the algorithms used to gener-
ate control, performing the time consuming parts statically, and
encoding them in the binary in a way that is binary compatible
with other systems.

Towards this end, this section first walks through an example
demonstrating the translation process. Later, this section ex-
plores the implications of performing each translation step stat-
ically versus dynamically to develop an appropriate machine-
independent interface.

4.1 Loop Accelerator Translation

Identifying and Transforming Hot Loops: Many steps are
necessary to retarget an application to leverage loop accelera-
tors; these are illustrated in Figure 5. The initial step is sim-
ply to identify loops within the program that can potentially be
mapped onto the accelerator. Loop identification (i.e., finding
strongly connected components of a control flow graph) is a
simple linear time problem, and common in nearly all compil-
ers.

Once loops are identified, they must be checked to ensure
that the LA provides sufficient features to support the loop.
For example, the loop may require more load streams than
the accelerator can support, or have function calls within the
loop body. Generally speaking, there are proactive compila-
tion methods to make these ostensibly unsupported loops ex-
ecute on the accelerator. For example, a loop with too many

load streams can potentially be broken into one or more smaller
loops by loop fissioning; function calls can often be inlinedto
remove the control flow exit from the middle of the loop, as
well.

Separating Control and Memory Streams: After trans-
forming the loop to fit the accelerator, data dependence infor-
mation is used to identify the control and address calculations.
These calculations are then mapped onto the special hardware
supporting address generation and accelerator control. The ex-
ample loop in Figure 5 has op 15 as the loop-back branch.
Following the backward slice of dependence edges from that
branch delineates a simple control pattern where op 13 incre-
ments an induction variable and op 14 compares it to a termi-
nating condition. Likewise, loads and stores (ops 2 and 12) are
followed to identify their address computation patterns (ops 1
and 11 in this example). If the control and address patterns
are more complicated than supported by the accelerator, then
translation terminates at this point.

Mapping address computations to the hardware can poten-
tially be more complicated than control depending on the level
of support provided in the accelerator. For example, if the
address calculation units do not have memory ordering hard-
ware (i.e., there is no support for the equivalent of a load-store
queue), then the mapping algorithm must provide guarantees
that decoupling the load/store streams will never cause depen-
dency violations. Compiler-based memory disambiguation has
proven very challenging over the years, and thus we assume
hardware support for memory ordering exists.

CCA Mapping: The next step in compiling for the accel-
erator is to attempt to collapse multiple RISC instructionsinto
a single CCA instruction (if a CCA is present in the system).
The CCA is designed to efficiently execute larger pieces of in-
teger computation, thus moving computation to this resource
improves the loop schedule. Optimally utilizing the CCA is an
NP-complete problem [13], so this work uses a greedy algo-
rithm to keep runtime overheads low.

CCA mapping begins by selecting a seed node in the
dataflow graph. In the example loop in Figure 5, seed ops are
examined in numerical order. Op 5 is selected as the first seed,
since the targeted CCA from Section 3 does not support shifts
or multiplies needed to execute ops 3 and 4. This seed is then
recursively grown along its dataflow edges to extend the sub-
graph to include ops 8 and 6, which are supported by the CCA.
Once the subgraph cannot be grown further, those three ops are
replaced with a new CCA instruction, op 16, and the process
begins with a new seed, op 7. Ops 7 and 10 could legally be
combined; however, doing so would lengthen one of the recur-
rence cycles, which may increase II.

After identifying subgraphs for execution on the CCA, mod-
ulo scheduling begins. Modulo scheduling is aclassof soft-
ware pipelining heuristics, and it was necessary to choose one
heuristic as the foundation of this study. We chose the Swing
modulo scheduling algorithm [19] because previous work [7]
demonstrated that it produces high quality schedules and issig-
nificantly faster than other modulo scheduling algorithms,par-
ticularly when the machine has a large number of resources.
Speed makes it well suited to a dynamic environment where
translation overheads are important.

Minimum II Calculation: The first step in modulo
scheduling algorithms is to compute the minimum II, which
is a function of both the recurrences in the loop and the re-
sources available in the accelerator. Consider the exampleloop
in Figure 5 again. This loop has two recurrences, ops 3-16-9
and ops 4-7, which are both 4 cycles long. Because the longest
recurrence is 4 cycles long, the II must be at least 4, since itis
impossible to start future iterations before the recurrence com-
pletes execution. Resources may also affect the minimum II of
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loops. Using Figure 5 as an example, since there are 5 inte-
ger instructions in the loop (3, 4, 7, 9, and 10) and 2 integer
units, II must be at least⌈ 5

2
⌉, or 3, because an iterations worth

of computation must be issued every II cycles. The minimum
II for a loop is the maximum of the recurrence and resource
constrained IIs (abbreviated RecMII and ResMII), or 4 in this
case. A more thorough discussion of algorithms to compute II
is covered in [24].

Priority Calculation: Now that II is known, ops are priori-
tized to determine the order in which to schedule them. Simpli-
fying a bit, the priority function used in Swing modulo schedul-
ing tries to schedule the most critical recurrence in a loop first,
moving through less critical recurrences, and then finally to
ops that do not appear on any recurrence paths. The intuition
behind this is that scheduling the recurrences is a more con-
strained problem since the ops have a minimum and maximum
schedule time. Failing to schedule a recurrence at a target II
will create impossible schedules, forcing the scheduler toin-
crease II (lowering performance) in order to translate the loop.
Using Figure 5 as an example again, the modulo scheduling
priority will try to schedule the most critical recurrence (ties
broken arbitrarily) 4-7, followed by the next most criticalre-
currence 3-16-9, followed by the remaining acyclic ops.

Scheduling: Once the ops are prioritized, a modulo reser-
vation table (shown at the right of Figure 5) is constructed to
store the scheduling results. The table has II rows and a column
for each FU. Ops are placed in the table using a slightly modi-
fied list scheduling algorithm. Initially, the reservationtable is
empty and the scheduler places the highest priority op, 4, ina
schedule slot. Since op 4 requires an integer unit, and none are
being used, it is placed on Int 1 at time 0. Next, op 7 is placed.
Since op 7 depends on the result of op 4, a 3 cycle op, the earli-
est op 7 can execute is time 3, and so it is greedily placed on the
first available integer unit in that cycle. The process repeats for
the second recurrence 3-16-9. Finally, op 10 depends on results
from ops 7 and 9, so the earliest it can be scheduled is at time
4. Time 4 is cycle 0 in the modulo schedule, though (recall,
cycle = schedule time mod II), and both the integer units
are full that cycle. The scheduler increments the schedule time,
and op 10 is finally placed at time 5 (cycle 1). Op 10 is colored
gray in the figure to represent that it is scheduled at a different
stage in the modulo schedule than the other ops. Once all the
ops are placed, they represent all the control signals needed to

configure the LA’s datapath. Full details on how the prioritiza-
tion and scheduling algorithms work can be found in [19].

Register Assignment: After a loop schedule is generated,
a postpass maps operands from the loop representation in base-
line assembly code to the register files/memory buffers in the
LA. If there are not enough registers to support the translated
loop, translation aborts, and the loop is executed on the base-
line processor. In addition to operand mapping, a translator
must also generate load/store instructions to move scalar in-
puts/outputs between the LA and the scalar processor. Control
data representing the loop schedule is transferred to the loop
accelerator through a memory mapped interface.

4.2 Dynamic Compilation Considerations

Now that the process of mapping loops onto the LA is clear,
we must investigate the implications of performing this process
in a co-designed VM. The role of the VM is to provide archi-
tectural independence for the application binary. From a high
level, the VM operates by observing an application’s execution
and dynamically optimizing portions that benefit from acceler-
ation. Optimized control is then placed in a software managed
code cache, and the original code is modified to send a code
cache pointer to the LA, starting accelerator execution. The
complexities of this approach (e.g., handling I/O, supporting
precise exceptions, code cache management, etc.) have been
well covered in previous co-designed VM work [29], and it is
not the purpose of this paper to rehash those details.

Given this framework for providing architectural indepen-
dence, we shall explore the ramifications of performing eachof
the accelerator translation steps statically versus dynamically.
Performing the translation entirely dynamically is desirable be-
cause it would provide complete architectural independence of
the application binary; even legacy binaries could utilizethe ac-
celerator. However, this decision would seriously degradethe
benefits provided by the custom hardware. One reason for this
is the overhead needed to translate the loops.

Figure 6 demonstrates the importance of driving the trans-
lation overhead as low as possible. This graph shows the av-
erage speedup across benchmarks when varying the translation
cost per loop and targeting the LA proposed in Section 3 (ad-
ditional details on the experimental setup appear later in this
section). The various lines reflect how frequently the transla-
tion penalty must be paid. For example, the top line assumes
that each modulo schedulable loop need only be translated once
during benchmark execution, and the bottom line assumes each
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Figure 6. Speedup attained when varying the
translation overhead penalty. Each line repre-
sents how frequently the penalty must be paid.

loop must be translated 10% of the times it is invoked, due to
eviction from a code cache.

This figure shows that driving the translation cost very low
has significant benefits. For example, if the overhead was
100,000 cycles per loop and the miss rate was 1%, lowering
the overhead to 20,000 cycles increases the speedup provided
by the LA from 1.47 up to 1.92. An alternate way to view
Figure 6 is that it stresses the importance of providing enough
space in the code cache so that loops do not need to be repeat-
edly translated.

Some have suggested that translation overhead is becoming
less important with the proliferation of multicore processors,
since one processor can run the application in parallel with
the translation. While this will lessen the translation impact
to some degree, it is not difficult to imagine situations where
translation latency is still critically important, such aswork-
loads with many short running tasks, or systems with frequent
context switching [15].

Now that it is established that translation overhead is a criti-
cal concern, we will look at the implication of performing each
step of LA translation dynamically.

Loop Identification and Transformation: Identification of
loops is feasible at runtime. Several dynamic binary optimiza-
tion systems already perform loop identification, as it a natural
extension to region formation [2, 8, 9]. Performing this dynam-
ically does have several drawbacks, however. As noted in [2],
high quality loop transformations are much too complicatedto
perform in a time-constrained environment. This prevents im-
portant optimizations, such as inlining and loop fission, tohelp
fit loops onto a targeted accelerator.

Performing loop transformations improves the utilizationof
the LA, but the downside is that the application will only map
to accelerators that provide a superset of the capabilitiesof the
accelerator targeted in the static compilation stage. For exam-
ple, if a loop was statically fissioned so that it only used 4 load
streams, then that application would not be able to use a future
accelerator with only 3 load streams unless the applicationwas
statically recompiled. Because it is unlikely that the number of
features would decrease as systems evolve, and complex loop
transformations are important to accelerator utilization, we ad-
vocate performing loop transformations statically.

Figure 7 shows the importance of these loop transforma-
tions. Each bar in this graph shows the fraction of speedup at-

tained by binaries without loop transforms (i.e., compilednor-
mally) compared to binaries compiled with loop transforma-
tions (aggressive inlining, aggressive predication, and reduced
unrolling) when targeting the LA from Section 3. For example,
the 0 fraction shown by many benchmarks in this figure means
that the runtime system was not able to retarget any of the im-
portant loops in the application without proactive help from the
compiler. On average, not performing loop transformationsre-
duced speedup attained by the accelerator by 75%, demonstrat-
ing that it is critically important to perform the transformations.
The loop transformations do not functionally change the code,
and no special encoding is needed to represent them in the base-
line instruction set of the processor. Loop detection remains
dynamic, as it is a low-overhead process to perform in the VM.

Modulo Scheduling: In order to gauge the overheads as-
sociated with dynamically modulo scheduling loops onto an
accelerator, the algorithm was implemented as a post-pass to
compilation in the Trimaran toolset. The number of instruc-
tions needed to retarget each loop was recorded using OPro-
file [18] on an x86 system, which reads on-chip performance
counters; the average translation penalty per loop is reported in
Figure 8.

These penalties were measured while translating loops to
target the specific LA proposed in Section 3. However, the
resultsare representative of a broad class of accelerator archi-
tectures. ResMII, RecMII, and Priority calculation runtimes
are a function of both the number of operations and data de-
pendences in a loop, not the targeted architecture. The greedy
CCA identification algorithm will select larger or smaller sub-
graphs based on the size of the targeted CCA, but the algo-
rithm still selects each operation as a seed at most once and
recursively grows that seed independent of the CCA architec-
ture. If no CCA exists in the system, the overhead is simply
eliminated. The register assignment process uses a one-to-one
mapping from the baseline ISA to the accelerator registers;this
is only architecture dependent to the extent that if there are too
few registers, translation will abort. Scheduling is the only step
where the overhead is highly architecture-dependent. Experi-
ments show, however, that scheduling comprises less than 3%
of the translation overhead. Even if the accelerator architec-
ture made list scheduling 5 times longer (highly unlikely),this
overhead would only constitute 12.5% of the total translation
time. For these reasons, we believe the results presented here
are applicable to a wide range of LA architectures.

There are a few important trends to take away from Fig-
ure 8. First, the average loop translation time varies widely
from benchmark to benchmark. The primary reason for this is
that the size of the loops also varies by a large factor, and larger
loops usually require more work to modulo schedule. A sec-
ondary reason for the high variance is that the algorithm used
in the priority calculation takes significantly more time ifthere
are many recurrences in the loop. Applications that took the
longest time to translate did not necessarily have the largest
loops.

The most important take-away from Figure 8 is the distribu-
tion of time spent in various phases of the modulo scheduling
algorithm. On average, it took approximately 99,716 instruc-
tions to map each loop onto the targeted LA. 69% of those
instructions were devoted to calculating the priority usedin
scheduling, and 20% of the instructions were spent mapping
subgraphs onto the CCA. The vast majority of translation time
was spent performing these two tasks, which motivates us to
perform these steps statically if possible. The remaining com-
ponents of the algorithm only constitute 10,908 instructions on
average, implying they can be done dynamically without caus-
ing significant performance degradation.
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Figure 7. Percentage of speedup attained when using regular binaries compared to using binaries com-
piled using static loop transformation techniques (e.g., a ggressive function inlining) that are too complex
to perform dynamically.

Static ResMII and RecMII Calculation: Together,
ResMII and RecMII calculation comprised roughly 1,250 in-
structions of translation overhead per loop. If it were necessary
to reduce this overhead, each of these values could be calcu-
lated statically and placed in a data section in the binary right
before the loop. Then once translation began, the VM could
recover these values with two loads the addresses immediately
preceding the top of the loop, forgoing the value calculation,
and maintaining binary compatibility. The downside of stati-
cally determining the ResMII is that it is highly architecture de-
pendent; an incorrect value would either produce a poor sched-
ule (if ResMII was unnecessarily high), or cause schedulingto
take much longer (if ResMII was too low) because of repeated
attempts to schedule at impossibly low IIs. Static RecMII cal-
culation makes more sense, because recurrence lengths gener-
ally do not change much as architectures evolve (e.g., an addin
a recurrence path will typically takes 1 cycle no matter how the
accelerator architecture changes). However, resource latencies
do occasionally change, and the overhead needed to compute
RecMII dynamically is quite low, thus we advocate performing
both ResMII and RecMII calculations dynamically to maintain
architectural independence.

Static Scheduling and Register Assignment: Schedul-
ing and register assignment allotted for 9,650 instructions per
loop of translation overhead. Performing either of these steps
statically would strongly tie the application to one specific ar-
chitecture, which is the antithesis of the desired outcome.Stat-
ically scheduling ties the binary to a specific quantity and la-
tency for each type of execution resource (e.g., the architecture
must have 3 2-cycle multipliers). Statically assigning regis-
ters ties the binary to a specific number of registers in the LA,
as well as a specific configuration of the interconnect between
FUs and register files. Statically performing either scheduling
or register assignment reduces binary flexibility more thanany
of the other modulo scheduling steps, and so we propose per-
forming them dynamically as well.

Static CCA Identification: CCA identification accounted
for a significant fraction (20%) of the 100,000 instruction trans-
lation overhead. One potential way to statically encode this de-
cision isprocedural abstraction, proposed in previous work [5]
and shown in Figure 9(b). Figure 9(a) shows the assembly in-
structions for the loop in Figure 5. Recall that in that example
ops 5-6-8 were collapsed into a single CCA instruction. Stati-
cally a compiler can identify this subgraph and insert a branch-
and-link instruction to a new function containing those ops.
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Figure 9. (a) Pseudo-assembly code for the loop
in Figure 5. (b) How to statically encode CCA
identification. (c) How to statically encode pri-
ority calculation

Then, the dynamic translator can recognize these simple func-
tion calls and attempt to map the instructions onto whatever
CCAs are available in the LA. If a statically identified subgraph
cannot be executed as a single unit on available CCAs, the ops
can still be executed independently on the remaining execution
resources. This property means static CCA identification does
not tie the binary to one particular CCA (or even any CCA at
all). Thus, performing CCA identification statically provides
a significant reduction in mapping overhead without any com-
patibility impact.

Static Priority Calculation: Priority calculation is the
longest step (by a significant margin) in modulo scheduling for
the LA. Statically encoding the scheduling priority of loopop-
erations in a binary compatible manner can be accomplished
by placing a single number for each operation in a data sec-
tion before the loop itself (shown in Figure 9(c)). With a sin-
gle pass over the loop, the VM can determine how many ops
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Figure 8. The measured translation penalty per loop.

are in the loop and determine the address of each op’s pri-
ority by subtracting this number. For example, if a loop has
8 instructions, then an operation’s priority value is located at
PC − 8 ∗ instruction size. In Figure 9, ops 1 and 2 have pri-
ority 0, because they are part of a memory stream. Ops 4 and 7
are on one of the critical recurrences, so they have priorities 1
and 2, respectively. The scheduler then uses these priorities to
dynamically schedule the ops in a statically determined order.

Statically encoding the scheduling priority has the fortunate
characteristic that it focuses on scheduling the most critical re-
currences in the loop first, and recurrences are largely archi-
tecture independent.3 Statically encoding priority in the binary
enables a high quality schedule, while at the same time reduc-
ing the average loop translation time from 100,000 down to
31,000 instructions.

One potential, non-static solution to reducing the priority
overhead is to use a simpler priority function. A promising can-
didate is the height-based priority function proposed in [24].
The simpler priority function was previously found to be ef-
fective in [24] because of the more exhaustive backtracking
scheduler used in that algorithm, as opposed to the simpler list
scheduling algorithm used here. However, using the height-
based priority function in conjunction with the single-pass list
scheduling often yielded sub-optimal schedules. Evaluation of
this degradation is presented in Section 4.3.

A second potential non-static solution for reducing priority
overhead is the combination of dynamically computing height-
based priority combined with the complex scheduling algo-
rithm from [24]. Priority computation would be simplified, but
the scheduling is made more complicated to (hopefully) com-
pensate for reduced priority quality. We chose not to investigate
this combination in our experiments because previous work [7]
already demonstrated that the modulo scheduling algorithm
used here produces equivalent (or higher) quality schedules in
less time than the scheduling algorithm used in [24]. There
may be other scheduling algorithms that can rapidly produce

3It should be noted again that the criticality of recurrencesare only archi-
tecture independent if execution latencies of the FUs remain consistent across
the architectures (e.g., a multiplier is 3 cycles across different architectures).

high quality results using a simple priority function, but we
leave their development to future work.

4.3 Static/Dynamic Tradeoff Evaluation

Figure 10 shows the speedup for several different architec-
tures over a single-issue processor modeled after the ARM 11
described in Section 3. These speedups are for the entire ap-
plication, not just the loop bodies, and include communication
overhead for transferring data to and from the processor over
a system bus. The code cache used to store LA control pro-
vided enough space to store the previous 16 translated loops
using an LRU eviction policy. Using the target architecturepro-
posed in Section 3, this works out to approximately 48 KB of
dedicated storage, which is small compared with typical code
cache sizes [8]. Code cache hit rates for each application var-
ied slightly, but all were very close to 100%. Communication
overhead between the general purpose processor and the LA
was assumed to be a fixed 10 cycles (same as the L2 cache ac-
cess time), although this latency is largely irrelevant given the
streaming nature of the target applications.

The left-most bar for each application shows the speedup
from using the LA assuming no translation penalty. This is
equivalent to the speedup of a statically compiled binary. The
next bar, labeled “Fully Dynamic”, shows the speedup when
assuming a realistic translation cache and the penalties mea-
sured from performing the entire modulo scheduling algorithm
dynamically. The “Fully Dynamic Height Priority” bar is also
fully dynamic, but instead uses the simpler height-based pri-
ority function. The “Static CCA/Priority” bar represents the
speedups when CCA mapping and more-complicated priority
calculation are performed offline and encoded in the binary.
The “2-Issue” bar shows the speedup of a dual-issue CPU mod-
eled after the ARM Cortex A8 described in Section 3, and the
“4-Issue” represents a hypothetical quad-issue Cortex A8 with
larger L2 cache. Note that the ARM 11 w/ loop accelerator
would consume approximately 8.25mm2 of die area, com-
pared to 10.2mm2 for the 2-issue CPU and 14.0mm2 for the
4-issue CPU.
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Figure 10. Static/dynamic and algorithm tradeoffs for key m apping stages.

Several interesting patterns emerge from Figure 10. First,
for many benchmarks, such as rawcaudio, the translation over-
head of performing modulo scheduling entirely dynamically
has a negligible impact on the LA’s speedup (comparing the
first two bars). In the case of rawcaudio, there is only one crit-
ical loop in the application and so the translation cost is easily
amortized. Other applications showed little performance degra-
dation because their most critical loops were quite small, mak-
ing the translation costs negligible. The translation overhead
for many other loopswasquite significant, however. Mpeg2dec
notably went from a speedup of 2.1 down to 1.15, and pegwi-
tenc and 172.mgrid lost all performance benefits from the LA.
On average, factoring the translation costs brought the speedup
from 2.76 down to 2.27.

The “Fully Dynamic” and “Fully Dynamic Height Priority”
bars for each application show the tradeoff involved in using the
more-complex priority function in comparison with the simpler
height-based priority. The less sophisticated height-based pri-
ority function sometimes generates schedules with higher IIs
(and thus, worse performance), but the translation times are
significantly faster. On average, the benefits of faster transla-
tion time outweighed the benefits of better schedules, providing
a speedup of 2.41 compared with 2.27.

The “Static CCA/Priority” bar in Figure 10 shows that by
moving the particularly difficult portions of mapping loopsof-
fline, the speedups can approach that of natively compiled code.
On average, performing CCA mapping and priority calculation
offline reduced translation penalties to the point where theaver-
age speedup was 2.66 as compared with 2.76 for natively com-
piled code. This hybrid static/dynamic mapping strategy pro-
vides a significant 25% and 39% more speedup up over fully
dynamic solutions utilizing height-based and recurrence-based
priority functions, respectively.

The “2 Issue” and “4 Issue” bars in Figure 10 show that
the loop accelerator is a much more effective use of die area
than more general purpose processor enhancements, such as
increasing issue width or cache size.

5 Related Work
As mentioned in previous sections, accelerators are a pop-

ular method to increase the performance and efficiency of mi-
croprocessor designs. Several people have proposed accelera-
tors specifically targeting loop nests, because the regularcon-
trol structure in loops provides significant efficiency gains over

processors designed for general purpose control structures. The
Reconfigurable Streaming Vector Processor (RSVP) [3] is a
vector-based accelerator designed for loops in multimediaap-
plications running in an embedded environment. The archi-
tecture is similar to what we have proposed; however, RSVP
uses SIMD execution units, and a single SRAM to buffer mem-
ory accesses. Mathew et al. propose another LA architecture
in [20], which is very similar to the architecture proposed here.
The main difference is the memory buffering structure and type
of execution resources provided. This paper extends these two
previous works by providing a quantitative analysis of acceler-
ator resource needs using loops from a diverse application set.
Other work, such as [21, 25], proposed adding hardware to a
standard pipeline for efficiently supporting the control struc-
tures of loops. The control in our proposed accelerator design
is very similar to [21], but this work extends prior customiza-
tions by additionally customizing execution and memory re-
sources. The LA architecture presented in this paper was pri-
marily developed to provide a realistic target for evaluating dy-
namic mapping algorithms.

Statically generating efficient code for loops is also an area
of much related work. Software pipelining has proven to be an
excellent way to improve the resource utilization of loop exe-
cution. Lam [16] showed that developing an optimal software
pipelining is an NP-complete problem, and so many heuris-
tics have been developed to produce high-quality schedules
in a reasonable amount of time [7, 17, 19, 24, 25, 26]. The
most pertinent related work is the Swing Modulo Schedul-
ing algorithm [19], the basis of our analysis in Section 4.2.
Later work [7] demonstrated that this algorithm produces high
quality schedules in much shorter runtimes than other modulo
scheduling algorithms, making it a good starting point for dy-
namically retargeting loops. While the work in this paper did
not exploit this fact, modulo scheduling algorithms have been
extended to support loops with complex control flow, such as
side exits [17], and entire loop nests [26], not just innermost
loops. One major contribution of this paper is the evaluation
of modulo scheduling in the context of dynamically targeting
an LA. The relative runtime of each modulo scheduling stage
was measured, and we explore the tradeoffs associated with
statically encoding the results of each stage in an application
binary.

Abstracting the underlying hardware structure to enable
hardware innovation without affecting binary compatibility



also has much related work. Perhaps the best known example
of this is the Transmeta Code Morphing Software [8], which
dynamically converts x86 applications into VLIW programs.
DynamoRIO [2], Daisy [9, 10], and DIF [22] are all examples
that dynamically translate applications to target entirely differ-
ent microarchitectures. Several proposals exist to only translate
select portions of an application to target accelerators. For ex-
ample, [5, 14] all explored the benefits of dynamically binding
applications to acyclic accelerators. Other work [6] looked at
dynamically binding for SIMD accelerators. This paper is the
first proposal for dynamically binding to cyclic accelerators.

6 Concluding Remarks
Adding customized hardware to a processor is an effective

way to improve the performance and efficiency of the sys-
tem. However, significant hardware and software non-recurring
engineering costs prevent customized hardware from being
adopted in many situations. This paper addresses those costs
in the context of cyclic computation. Cyclic computation ac-
celerators are a compelling design point, because they encom-
pass a larger fraction of many applications’ execution timethan
acyclic accelerators, even though cyclic accelerators arenot as
broadly applicable as acyclic ones.

This paper presented the design of a generalized loop accel-
erator. Design space exploration was used to ensure that the
accelerator is applicable to a wide range of media and floating
point applications. This generalized design provides a good
architecture for executing common modulo schedulable loops,
thus eliminating the engineering costs associated with design-
ing loop-specific accelerators from scratch. The proposed de-
sign provides 83% of the speedup attainable through a hypo-
thetical accelerator with infinite resources, and consumesonly
3.8mm2 of die area in a 90nm process.

Software costs were addressed by virtualizing the acceler-
ator interface. Modulo schedulable loops are statically trans-
formed in the binary and expressed in the baseline instruction
set. At runtime, a dynamic translator attempts to map the loops
onto any available accelerators using modulo scheduling. This
work found dynamically modulo scheduling loops has a signif-
icant performance overhead and proposed statically encoding
scheduling priority and CCA mapping to be an effective tech-
nique for minimizing the overhead. Overall, the loop accelera-
tor and dynamic compilation system provided a mean speedup
of 2.66 over a single-issue processor, and the resulting binary
remains flexible enough to be used by systems with different
(or even no) accelerators.
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