VEAL.: Virtualized Execution Accelerator for Loops
Nathan Clark, Amir Hormat?, and Scott Mahlk&

!College of Computing 2Advanced Computer Architecture Laboratory

Georgia Institute of Technology University of Michigan - AArbor
ntclark@cc.gatech.edu {hormati, mahlké@umich.edu
Abstract dustry, for example the encryption coprocessor in Sun’sablt

Performance improvement solely through transistor secalin SPARC T2 [23]. . . ) i
is becoming more and more difficult, thus it is increasingly . 1he main drawback of this approach is that creating special-
common to see domain specific accelerators used in conjuncized hardware accelerators for each targeted application ¢
tion with general purpose processors to achieve futurequerf ~ ries significant costs. Hardware design and verificatioargff
mance goals. There is a serious drawback to accelerators,software porting, and fabrication challenges all contebto
though: binary compatibility. An application compiled ti-u  the substantial non-recurring engineering costs assatisith
lize an accelerator cannot run on a processor without that ac adding new accelerators. Purchasing accelerator degighs,
celerator, and applications that do not utilize an accetera ~ form of intellectual property (IP), is a popular option tdeai-
will never use it. To overcome this problem, we propose decou ate some of the hardware design costs, but there are still sig
pling the instruction set architecture from the underlyiag nificant integration costs (both hardware and softwareyimgt
celerators. Computation to be accelerated is expressetjesi  the IP accelerators into the rest of the system.

processor’s baseline instruction set, and light-weightayic The goal of this work is to attack those costs. First, we
translation maps the representation to whatever accetgsat  present the design of a hardware accelerator that effécéxe
are available in the system. ecutes a class of loop bodies for a range of applicationsyMan

In this paper, we describe the changes to a compilation applications spend the majority of their time executingimer-
framework and processor system needed to support this abmost loops, and so ASICs tend to implement one or more loop
straction for an important set of accelerator designs thgt-s  bodies. By defining a single architecture to acceleratedpop
port innermost loops. In this analysis, we investigate tiie d the recurring costs of designing an application specifiehcc
namic overheads associated with abstraction as well as theerator are eliminated. The goal is to cost-effectively galiee
static/dynamic tradeoffs to improve the dynamic mapping of 35 ASIC design to make it useful for a wider range of loops,
loop-nests. As part of the exploration, we also provide anfjia \yithout generalizing it to the point where it begins to lodéel
tative analysis of the hardware characteristics of effeetoop a general purpose processor.
ggfne,!ﬁ;?-tgﬁslap\gﬁ)ggﬂ?Lur?]%;hgérlﬁ%'ntga?oﬁygr?(tjo%aélg]gyg?gl The second step is to attack the software costs of target-

ilati utati -lev i -
celerators is an practical way to increase computation effi- g]r?g%gearicr?ge ltehr:tggpliigrit(\;vr?i)enggiﬁe%rrllrgs:;)l/)i/nrgeigrtdfvrv%g rr?
ciency, without the overheads associated with instrucsen changed. To avoid these costs, we develop a software abstrac
modification. tion that virtualizes the salient architectural featuréleop ac-
celerators (henceforth abbreviated LAs). An applicatioat t
uses this abstraction is dynamically retargeted to takemdv
age of the accelerator if it is available in the system; haue
he application will still execute correctly without anycater-
ator in the system. The tradeoff is to abstract away as many
architecture-specific features as possible without rémgia

1 Introduction

For decades, industry has produced, and consumers have r
lied on, exponential performance improvements from micro-
processor systems. This continual performance improvemen
has enabled many applications, such as real-time ray gacin =~ .- : - B
that would have been computationally infeasible only a few S|g_?|r1:|cant olv_erh%ad fo dynarpmalg/ refvaég:t the a.pphnl?m d
years ago. Despite these advances, many compelling applica e resu t'n? eS|gP ISI re err(_el_hto L, or virtualize
tion domains remain beyond the scope of everyday computerexecu'[Ion accelerator for loops. There are two primarycont

systems, and so the quest for more performance remains an a(p_utlons of this work:

tive research _goal. _ e It presents the design of a novel loop accelerator architec-
The traditional method of performance improvement, ture. Quantitative design space exploration ensures that
through increased clock frequency, has fallen by the waysid the accelerator design is broad enough to accelerate many

as the increased power consumption now outweighs any per-  different applications, yet very efficient at executing the
formance benefits. This development has spurned a great deal  targeted style of computation.
of recent research in the area of multicore systems: trying t

provide efficient performance improvements through inseela e It describes a dynamic algorithm for mapping loops onto
parallelism. loop accelerators. The algorithm is analyzed to deter-
Not all applications are well suited for multicore environ- mine the runtime overheads introduced by this dynami-

ments, though. In these situations, an increasingly popust cally mapping loops, and static/dynamic tradeoffs are in-
to provide more performance is through customized hardware vestigated to mitigate the overhead.

Adding application specific integrated circuits (ASICs)am- 2 Overview

plication specific instruction set processors (ASIPs) tea-g
eral purpose design not only provides significant perforrean It is widely acknowledged that the vast majority of execu-
improvements, but also major reductions in power consump-tion time for most applications is spent in loops. Applying
tion as well. There are many examples of customized hardwarehis fact, along with Amdahl’s Law, often leads system desig
being effectively used as part of a system-on-chip (SoQ)in i ers to construct hardware implementing loop bodies whaneve



processors are insufficient to meet performance or power conthe control flow in loops is very simple, removing the need for
sumption goals. For example, special purpose LAs for Fastcontrol flow speculation such as sophisticated branch predi
Fourier Transforms and Viterbi decoding are common in many tors. Second, the repeating control sequence (instrigticred
embedded SoCs. to configure the accelerator can be stored in a circular Quffe
This section begins by describing the general architecturewhich is more efficient to access than a large instructioheac
common across LAs. Next, it gives an overviewrnbdulo Third, the memory accesses that are not data dependent may
schedulinga compilation technique used to schedule loops sobe independent from each other, enabling memory accesses to
that they effectively use the hardware resources availble be decoupled from the computation. Lastly, the intercotinec
them. The section concludes by introducing the issues surfUs, and register files can be customized to fit the needs of the
rounding dynamically retargeting applications to a pattc application or domain that is being targeted.
LA implementation, which are fully discussed in Section 4. 2.2  Utilizing Loop Accelerators

2.1 Loop Accelerator Architectures Assuming that there is an effective piece of hardware for

In order to determine an appropriate architecture for adroa €Xecuting loops, itis also necessary to have a capable @mpi
set of loop bodies, it is first necessary to understand thergen  1ion strategy to make use of the hardware. Modulo scheduling
structure of LAs. The left portion of Figure 1 shows the high IS @ State-of-the-art software pipelining heuristic fdneguling
level structure of an LA. At the top of the accelerator partig  |00PS, and provides the basis for the software techniques pr
this figure, address generators stream data into the aatmler ~Sented in this paper. Previous work on modulo scheduling is
The address patterns typically follow a simple, deterntimis ~ €Xtensive [7, 16, 17, 19, 24, 25, 26], and the purpose of this
pattern (often based on the loop’s induction variable(g}t ~Section is only to introduce fundamental concepts. ,
enables them to be decoupled from the computation performeg, Modulo scheduling is a method of overlapping loop itera-
onthe data. When data is streamed in from the memory systemtions to achieve high throughput. The instructions aregagsi
itis placed in FIFOs that are accessed by function units JFUs 10 FUS so that new iterations can begin executing at a con-
Address generators can be time multiplexed to fetch meltipl Stant rate, called thinitiation interval, or simply|l. A soft-
streams, which enables them to hide any stalls due to burstyVare pipeline is divided into three distinct parts. The peri
memory behavior amongst the different streams, and reduc@ds where the software pipeline is ramping up and ramping
the number of memory ports required. Input data that is notdown are called therologueandepilogue respectively, and
streamed into the accelerator, such as constants or suplasj e steady state (when an iteration is starting and comgeti
are written into a register file. Typically, this registerfis  €very Il cycles) is called thkerel , ,
memory mapped and must be initialized before invoking the _ A Single loop iteration can be broken down into multiple
accelerator. stagesbased on how many times Il cycles has passed since it

Once data is available, FUs begin processing it, reading val Pgan executing. The different time steps in each stage are
ues from the FIFOs or register file and writing results toesith ~ '€ferred to as the stageycles which range from 0 to II-1.
the output memory buffers or registers. The register file tha 1n€ goal of modulo scheduling heuristics is generally to enak
stores results from the FUs, need not be a monolithic standar !! @ low as possible, so that kernel execution is reached and
SRAM: many LAs utilize distributed SRAMs [4] or more ef- completed as soon as possible. A secondary goal is to make
ficient structures such as FIFOs [11] or ShiftQs [1]. Additio  the number of stages (often abbreviatd for stage count)
ally, the functionality provided by the FUs is often highlys @S Small as possible. To rephrase using standard pipefine te
tomized, executing several RISC-equivalent operatiops)(o minology, lower Il equates to higher iteration throughpotia
back-to-back in the name of improved efficiency [28]. lower SC equates to lower iteration latency. .

Once computation has completed, another set of address While modulo scheduling has proven to be effective, there
generators stream the results back to memory. Input and out&'® Some limitations with the process. One limitation ist tha
put memory streams can optionally be assumed mutually exclu 100PS with function calls cannot be modulo scheduled. This
sive, so that the accelerator does not need to perform memorfroblem can mitigated through intelligent function infigi
dependence analysis, although this will preclude cergging ~ 2nd is not a major drawback. A more important limitation is
of loops. Branches within the loop body are fully predicated that while-loops and loops with side exits require speczath
enabling very simple logic in the accelerator. ware support, such as speculative memory accesses [21, 24].

Generalized LAs typically provide an interface with the-sys Although it is feasible to support while-loops and loopshwit
tem in the same way that current ASICs interface with SoCs: Side exits, we chose to preclude them from this study, to-mini
invoking the accelerator is an atomic act, meaning thereis n Miz€ the architectural impact outside the acceleratoif.itse
need to support precise exceptions in the middle of accelera, _Figure 2 demonstrates the implication of this decision fEac
tor execution; an exception either waits for the accelermto  Par in this figure represents the entire execution time foverg
complete, or aborts the accelerator’s current executione T benchmark from MediaBench or SPECThe black bars on
accelerators also operate using physical addresses, tsoctha the bottom are the fraction of time spent executing in mod-
address translation is needed, and the accelerator camumzt ¢ Ulo schedulable loops. The bars labeled “Speculation Sup-
page faults. Physical addressing is standard for ASICsifbut Port” refer to the time spent in while-loops that would be mod
the operating system issues created through this deciséon a Ulo schedulable, provided the appropriate hardware supger
too onerous, then a virtual address strategy similar to tfee o isted. Bars labeled “Subroutine” are loops with functiotica
by Cell's SPEs [12] could be used instead. that could not be inlined (e.g., calls into the math librargit

This abstract architecture encapsulates the structur@sf m Were not visible to the compiler). ) o
loop-targeting ASICs [27] as well as previously proposea-ge Media processing and floating point applications (the left
eralized LAs [3, 4, 20] targeting scientific and media preees Portion of Figure 2) tend to spend the vast majority of their e
ing applications. It should be noted that this architecisigi- ecution time in modulo schedulable loops. Lack of suppart fo
marily targeting these two domains, and is not meant to targe 100ps requiring speculation will limit the utility of the LAor
all loops, such as linked-list traversa!s' . . . 1A variety SPECint and SPECTp from the 92, 95, and 2000 suiteew

_ There are several reasons why this architecture is more effichosen for this study. We omitted benchmarks that could eapimpiled with
cient at executing loops than general purpose processioss. F Trimaran [30].




Loop Accelerator Memory Memory Y Application
]
oS
Address Address
Generator Generator “\ l
Control e
‘ Codesigned Code
Vlrtu_al = Cache
Machine
Interconnect
Registers \ l Software
— "— — . —— —— —
Hardware
Memory
Address Address Loop L1$
Generator Generator
Accel. Processor
13 1
Memory Memory e

Figure 1. Architecture template for loop accelerators (lef t) and VEAL system organization (right).

some applications (e.g., the applications on the rightigort  for the accelerator when appropriate. This dynamic softwar
of Figure 2); however, modulo schedulable loops clearly rep layer enables the binary flexibility, unchaining the binfiogm
resent an important class of computation worthy of hardwareany one specific accelerator architecture, and allows tieri

acceleraton. to run on systems without any accelerator at all.
23 D ic Ret ti The challenge in virtualization is to determine the appropr
. ynamye Berareetne ate static/dynamic tradeoffs to make in the binary. Highityua

Using specialized hardware to execute loops has many permodulo scheduling heuristics can be sophisticated, taling
formance and power benefits, but hardware and softwarerdesig|ong to perform dynamically. If the translation takes tondoit
costs prevent widespread deployment in many cases. Designcan completely erode all the efficiency benefits from usireg th
ing one architecture for a broad set of loops tackles the-hard accelerator in the first place. At the other end of the spegtru
ware design costs. However, the software design costs nemaiPerforming the mapping entirely statically ties the bintma
a difficult problem. single accelerator implementation, which has significamt-n

Software costs arise from the fact that the control to invoke "€curring engineering costs if the underlying hardwareges.

a LA is statically encoded in the binary. An application that . The remainder of this paper is organized as follows: Sec-
utilizes an accelerator typically has no forward or backivar tion 3 performs a design space exploration for a generalized
compatibility. This means that whenever the underlyingihar LA for a range of media and floating point applications. This
ware platform changes, the application must be re-engsaeer design provides the basis for our work on virtualizationichh
While some marketS, notab|y embedded Systemsy have tradil.s Covered_ln Section 4. SeCtlor_\ 4 Walks t_hrough the details
tionally been willing to bear this overhead, high softwaostc ~ ©f one particular modulo scheduling heuristic and analyzes
prevents the use of accelerators in many markets that are ndfadeoffs involved in performing each step statically usrey-
large enough to justify the effort, and this inhibits inntwa. namically in a co-designed VM.

The standard technique for proving architecturally indepe 3 Generalized Loop Accelerator
dent access to customized hardware is through a library in-
terface. However, this is not flexible enough, because the li  To mitigate the costs of customized hardware, it often makes
brary interface often assumes a specific execution model insense to extend the programmability of ASICs, making them
the underlying hardware that prohibits future hardwareuan more useful across a broader set of applications. The goal of
tion. Additionally, libraries impede optimization acrasser- this section is to do just that: design an architecture tfiate
face boundaries, yielding highly suboptimal code (e.g.cimu tively supports the set of modulo schedulable loops from the
of the computation in sin(x) and cos(x) is identical, butif a MediaBench and SPECFP applications on the left portion of
application had consecutive calls to these functions, ildlo  Figure 2. Designing this architecture has two purposest,Fir
not take advantage of the redundant work). Architects need t we provide a quantitative analysis of the tradeoffs invdive

provide more flexible interfaces to customized hardware. with adding each execution resource to the accelerator Pre
The method we propose to avoid the software engineeringvious work [3, 20] designing generalized LAs presented de-
costs is to virtualize the accelerator interface. That iswill signs without this analysis. Second, this design helpsgthey

analyze the steps used during compilation to map applicatio static/dynamic tradeoffs in modulo scheduling to targettan

onto LAs, and perform as many of them dynamically as possi- It would stand to reason that the time needed to modulo sched-
ble as part of @&o-designed virtual machinshown in the right  ule a loop is correlated with the number and type of resources
portion of Figure 1). The loops to be accelerated are encodedn the target machine, and so a representative architeisgure
using the baseline instruction set of a general purposeeproc necessary to accurately measure translation overheads.

sor. At runtime, a co-designed virtual machine (VM) morstor The LA architecture template shown in Figure 1 will serve
execution of the application and dynamically generatesrobn  as the basis for our generalized design. Customizing the tem



‘ B Modulo Schedulable O Speculation Support O Subroutine OAcyclic

I 1) - .
90% I I
80%
: i i
E 70% I I
c
S 60%
: i i
g 50% T
; ] i
o o/
£ 40% I I
©
S 30% A
: ] i
20% 1 I I
10% 7 I I
0% -
D O .. O 2 & g 2 L RS
&)QQ 6\Q® @Q\o eQ\O@o(’b,\\oobq]oonoob ¥ K
O\ & & 4 ‘
AV AV SR
S e 99
Figure 2. Percent of execution time spent in various types of code. “Speculation Support” refers to while-
loops and loops with side exits, “Subroutine” refers to loop s that have a non-inlinable function call, and

“Acyclic” refers to code not known to be in a loop.

plate for the targeted application set now requires idginigf One surprising result from Figure 3(a) is that the point of
how many resources of each type these applications requirediminishing returns for integer units is very high, on the or
To determine this, we modified the Trimaran toolset [30] to der of 24 units. Due to this result, we chose to experiment
compile for and simulate a processor with attached LA. The with another type of FU, a CCA [5]. The CCA is a combina-
accelerator connects to the processor through a systensbus utional structure specifically designed to efficiently intplent

ing a memory mapped interface. All speedups reported in thisthe most common types of integer computations. It supports
paper are for entire applications, not just loop bodies,iand 4 inputs, 2 outputs, and can execute as many as 15 standard
clude synchronization overheads from copying results t an RISC ops atomically in 2 clock cycles. The 15 RISC ops are
from the accelerator over a 10 cycle system bus. organized into 4 rows, where the first and third row can execut
1 Desi S Expl . simple arithmetic (add, subtract, comparison) and bitwage

3. esign Space Exploration ical ops, and the second and fourth rows execute only bitwise

The baseline architecture in our design space explorasiona Ops. The primary benefits of the CCA result because it exe-
sumes a hypothetical LA with infinite resources. That isplo ~ cutes larger pieces of computation as a group, reducinggsor
are modulo scheduled onto a machine with unlimited register and interconnect requirements, as well as squeezing mate wo
FUs, memory ports, etc. Architectural parameters were thenout of each clock cycle. The top line in Figure 3(a) shows that
individually varied to determine what fraction of the infimi ~ when one CCAlis added to the LA, the required number of inte-
resources speedup was attainable using finite resoureeasdth ~ ger units drops dramatically. Some integer units are stgided
tual speedup numbers are presented in Section 4). The modultP support multiplication and shifts, which are not handbgd
scheduling heuristic used to target each application tathe — the CCA.

celerators is discussed in detail in Section 4.1. As presljou Figure 3(b) shows the required number of registers needed
mentioned, only the benchmarks on the left portion of Figure to store live-ins, live-outs, constants, and temporaryesiffor
were used in this analysis. the loop. Note that registers are not needed to store values

Figures 3(a) and 3(b) show the results of the design spacédhat are read from or written into memory FIFOs nor are they
exploration for FUs and register requirements. The x-axis i needed for values that are read directly off the intercotoec
these graphs represents the number of resources avaitable inetwork (i.e., values computed the previous cycle). Whereth
the system and the y-axis is the fraction of infinite-reseurc are not enough registers to support a loop, it is simply run on
speedup attained. For example, the gray line in Figure 3(b)the baseline processor. Overall, few registers are needwrpt
shows that when there is only one floating-point registes, th port the majority of important loops. As would be expected,
average speedup across the targeted application suitét®60 adding a CCA to the system reduces the register requirements
what is attainable with infinite floating-point registers. since fewer temporaries are needed to communicate between

Figure 3(a) explores the FUs available in the accelerator,separate units.
where |IEx and FEx represent integer and double-precision Similar to Figures 3(a) and 3(b), Figure 4(a) shows the the
floating-point units, respectively. One interesting restdm fraction of infinite-resource speedup attained when varitie
this experiment was that very few floating-point units (FEx i number of load/store streams supported in the accelerator.
the left graph) were needed to attain a significant amount ofthis analysis, we define a stream as a unique referencerpatter
speedup in the application set. This is partially due to theij.e., a base address and a linear function that modifies that a
significant number of integer-only applications in our &#rg dress each loop iteration. As would be expected, loads are
suite, but the long latency of floating-point operationg alen- more important than stores. Surprisingly, many loops can be
tributes to this result. If a floating-point unit is fully ppned
(which was assumed), modulo scheduling does a very good job  2note, the number of streams is not equal to the number of mepts.
utilizing the unit every possible cycle. Many streams will share a time-multiplexed memory port i design.




——
[5¥=CCA =6 IEx with CCA =8 IEx no CCA —#—FEx] [=*=Load streams ~#~store Streams|
08 / N
06 fr/

§o04
0.2 /

0.2

Fraction of Speedup Attained
o
>

Fraction of Speedup Attained

0 4 8 12 16 20 24 28 32 36

0 5 10 15 20 25 30 35 40
Number of Resources

Number of Resources

(a) Function unit requirements (a) Memory stream resource requirements
1
‘*IReg ~#-FReg =®=|Reg no CCA ‘
. ‘ ‘ ‘ poosssssrorsoreed
‘A/' / o ,/v/“/"‘“"

4
'

0.6 T

f

0.4 f

. j
/ |
!

Fraction of Speedup Attained

Fraction of Speedup Attained

T T T T T T T T 0 10 20 30 40 50 60 70 80
0 4 8 12 16 20 24 28 32 36 Supported Il

. Number of Resources (b) Impact of the maximum supported Il
(b) Register file resource requirements

Figure 4. Resource requirements for a general-

Figure 3. Execution resource needs. Each line is ized loop accelerator

the fraction of infinite-resource loop accelerator
speedup attained when varying the number of

function units The graph in Figure 4(b) shows the maximum supported Il

by the LA (i.e., loops that cannot be scheduled at the maximum
Il will not be accelerated). This essentially demonstrales

supported without any address generators streaming detia ou [ONgest recurrence paths in the studied loops since rewere
memory: these loops only have scalar outputs, which are readree loops can always be scheduled at an Il of 1 with infinite

directly from the memory mapped register file upon loop com- F€SOUrces. . . . o
pletior%/. y mapp 9 P P Maximum supported Il is an important consideration in the

o _ loop accelerator design, because the size of the loop dasitro
_Another surprising result from the memory stream analysis directly proportional to the maximum supported Il. Since th
is that a very large number of memory streams were needed t&ernel repeats every Il cycles, each FU needs to be able to ex-
support several important loops in the examined benchmarksecute 11 different instructions, and thus maximum suppbtte
For comparison purposes, previously proposed general LAsdetermines the size of the control structure. As with the mem
only supported 3 load/1 store [3] stream or 6 total loadéstor ory stream limitation, if a particular loop is too large tosep-

streams [20] per loop. Supporting fewer memory streams isported by an I, often times proactive loop fissioning enable
desirable, since it requires less hardware (e.g., stoadmke the loop to utilize an accelerator.
addresses and access patterns).

Empirically speaking, the loops that required a large numbe ) o . .
of memory streams tended to be very large. These large loops Using the analysis in this section as a guide, we propose a
typically resulted from aggressive function inlining ugsdthe ~ generalized LA design consisting of 1 CCA, 2 integer units,
compiler to improve loop accelerator utilization in thegar 2 double-precision floating-point units, 16 floating-poéamtd
applications. One potential way to reduce the hardware-over integer registers, 16 load memory streams (time-multgudex
head of supporting these large loops is to time-multiplex th among 4 address generators), 8 store memory streams (time-
address generators. Large loops tend to have larger lisggiv multiplexed among 2 address generators), and a maximum |1 of
the address generators time to process several differeahss. ~ 16. This is sufficient for attaining 83% of the speedup pdssib
Another potential solution is to break the large loops up int Using a hypothetical loop accelerator with infinite resesrc
smaller loops using a technique such as loop fissioning. ThisTo estimate the die area impact of this design, estimatdseof t
would reduce the required number of streams for each individ constituent parts were collected using Cadence tools aBifla |
ual loop but increase memory traffic, as dividing the loop up 90 nm standard cell library. We project the design would con-
typically creates communication streams between the small sume 3.8nm? of die area, the majority of that (2.38m?) be-
loops. ing consumed by the two double-precision floating pointaunit

3.2 Loop Accelerator Design



To put these numbers in perspective, the ARM 11 processor (doad streams can potentially be broken into one or more small

single-issue embedded processor with 8 stage pipeline 16K
caches, 128K L2 cache, and no FPU) consumes#:34 in a
similar process. An ARM Cortex A8 processor (dual-issue, 13

loops by loop fissioning; function calls can often be inlirted
remove the control flow exit from the middle of the loop, as
well.

stage pipeline, 32K L1 caches, 256K L2 cache) would consume Separating Control and Memory Streams: After trans-

roughly 10.2mm?2, meaning that the loop accelerator could be

forming the loop to fit the accelerator, data dependence-info

added to an embedded system for less than the cost of a secorfiation is used to identify the control and address calauiati

simple core, or the cost of increasing the cache and issufwid

These calculations are then mapped onto the special hagdwar

The design space exploration presented here has omittegupporting address generation and accelerator contreleXh

two major portions of the data path: the register file strrectu
and interconnect customizations that often occur in cutet
hardware accelerators. The primary reason for this onrigsio
that there are currently few modulo scheduling algorithinas t
take these customizations into consideration. Withoutsoke
support to analyze the costs of architectural customiadiio
terms of reduced performance), it is difficult to make ingglht
design decisions, and this exploration is left for futurekvo

4 Virtualizing the Accelerator

The LA architecture is very effective at executing the mod-
ulo schedulable loops from the wide range of applicationd-st
ied. However, the tradeoffs made in that design will not fit al
situations. When this is the case, a new accelerator must-be d
signed for the system, which creates a burden on the applicat
developer. Traditionally, control used to invoke an acGetE
is statically placed in the binary, meaning the applicatigh

ample loop in Figure 5 has op 15 as the loop-back branch.
Following the backward slice of dependence edges from that
branch delineates a simple control pattern where op 13-ncre
ments an induction variable and op 14 compares it to a termi-
nating condition. Likewise, loads and stores (ops 2 and &) a
followed to identify their address computation patternss(d
and 11 in this example). If the control and address patterns
are more complicated than supported by the accelerator, the
translation terminates at this point.

Mapping address computations to the hardware can poten-
tially be more complicated than control depending on thellev
of support provided in the accelerator. For example, if the
address calculation units do not have memory ordering hard-
ware (i.e., there is no support for the equivalent of a loades
gueue), then the mapping algorithm must provide guarantees
that decoupling the load/store streams will never causertep
dency violations. Compiler-based memory disambiguates h
proven very challenging over the years, and thus we assume

have to be re-engineered to function on a different hardwarep g qware support for memory ordering exists.

platform. This software porting cost often prevents hamtwa
innovation in situations where it otherwise provides digaint
benefits.

The way to eliminate the software cost is to generate the

control for the accelerator dynamically, only after the lapp

cation knows what accelerators are available in the system
This type of system has previously been termed a co-designe

VM [29], because software dynamic translation is designed i
conjunction with new hardware features.

Dynamically generating control for the LA relies on the as-
sumption that the cost of performing the translation is loth:-
erwise, the translation cost would outweigh any benefits pro
vided by the custom hardware. Thus, the key to virtualizatio

of custom hardware is analyzing the algorithms used to gener

ate control, performing the time consuming parts staticatd

encoding them in the binary in a way that is binary compatible

with other systems.

Towards this end, this section first walks through an example

demonstrating the translation process. Later, this se&to
plores the implications of performing each translatiop stat-
ically versus dynamically to develop an appropriate maghin
independent interface.

4.1 Loop Accelerator Translation

Identifying and Transforming Hot Loops: Many steps are
necessary to retarget an application to leverage loop erecel
tors; these are illustrated in Figure 5. The initial stepiliis-s
ply to identify loops within the program that can potentidlke
mapped onto the accelerator. Loop identification (i.e.,ifigd

CCA Mapping: The next step in compiling for the accel-
erator is to attempt to collapse multiple RISC instructiore
a single CCA instruction (if a CCA is present in the system).
The CCA is designed to efficiently execute larger pieces-of in
teger computation, thus moving computation to this resmurc
improves the loop schedule. Optimally utilizing the CCAIis a

P-complete problem [13], so this work uses a greedy algo-
rithm to keep runtime overheads low.

CCA mapping begins by selecting a seed node in the
dataflow graph. In the example loop in Figure 5, seed ops are
examined in numerical order. Op 5 is selected as the first seed
since the targeted CCA from Section 3 does not support shifts
or multiplies needed to execute ops 3 and 4. This seed is then
recursively grown along its dataflow edges to extend the sub-
graph to include ops 8 and 6, which are supported by the CCA.
Once the subgraph cannot be grown further, those three eps ar
replaced with a new CCA instruction, op 16, and the process
begins with a new seed, op 7. Ops 7 and 10 could legally be
combined; however, doing so would lengthen one of the recur-
rence cycles, which may increase Il.

After identifying subgraphs for execution on the CCA, mod-
ulo scheduling begins. Modulo scheduling iglassof soft-
ware pipelining heuristics, and it was necessary to choose 0
heuristic as the foundation of this study. We chose the Swing
modulo scheduling algorithm [19] because previous work [7]
demonstrated that it produces high quality schedules agig-is
nificantly faster than other modulo scheduling algorithpes;
ticularly when the machine has a large number of resources.
Speed makes it well suited to a dynamic environment where

strongly connected components of a control flow graph) is atranslation overheads are important.

simple linear time problem, and common in nearly all compil-
ers.

Minimum Il Calculation: The first step in modulo
scheduling algorithms is to compute the minimum II, which

Once loops are identified, they must be checked to ensurds a function of both the recurrences in the loop and the re-

that the LA provides sufficient features to support the loop.

sources available in the accelerator. Consider the exaomge

For example, the loop may require more load streams thanin Figure 5 again. This loop has two recurrences, ops 3-16-9

the accelerator can support, or have function calls withe t

and ops 4-7, which are both 4 cycles long. Because the longest

loop body. Generally speaking, there are proactive compila recurrence is 4 cycles long, the Il must be at least 4, sinise it
tion methods to make these ostensibly unsupported loops eximpossible to start future iterations before the recureesm-
ecute on the accelerator. For example, a loop with too manypletes execution. Resources may also affect the minimurn Il o



Identify, transform Separate control, CCA mapping

Mil Calculation Priority Calculation Scheduling
hot loops memory streams

I
Application /
I
1

1

e' @ Function Unit

CCA Int1 Int2

\ 0 4] 3
) CU)_ e

2
) AN

10

Critcal Recurrence: 4,7
RecMIl = 4 } Mil = 4

(
\
1
[}
\
)
\
)
1
)
)
\
\
1
[}
\
\

2nd Recurrence: 3, 16, 9
ResMIl =3 Other ops: 10

Figure 5. Scheduling an example loop body. Assume multiplie s take 3 cycles, the CCA takes 2 cycles, and
all other ops take 1 cycle.

loops. Using Figure 5 as an example, since there are 5 inteconfigure the LA's datapath. Full details on how the priasgti
ger instructions in the loop (3, 4, 7, 9, and 10) and 2 integertion and scheduling algorithms work can be found in [19].
units, Il must be at leagt3 ], or 3, because an iterations worth ~ Register Assignment: After a loop schedule is generated,
of computation must be issued every Il cycles. The minimum & Postpass maps operands from the loop representationdn bas
Il for a loop is the maximum of the recurrence and resource line assembly code to the register files/memory buffers én th
constrained lis (abbreviated RecMIl and ResMIl), or 4 irsthi LA If there are not enough registers to support the traedlat
case. A more thorough discussion of algorithms to compute 11100p, translation aborts, and the loop is executed on the-bas
is covered in [24]. line processor. In addition to operand mapping, a translato
must also generate load/store instructions to move saalar i
Priority Calculation: Now that Il is known, ops are priori- ~ puts/outputs between the LA and the scalar processor. @ontr
tized to determine the order in which to schedule them. Simpl data representing the loop schedule is transferred to the lo
fying a bit, the priority function used in Swing modulo schéd  accelerator through a memory mapped interface.
ing tries to schedule the most critical recurrence in a loag,fi 4 o Dynamic Compilation Considerations
moving through less critical recurrences, and then finaly t ) _
ops that do not appear on any recurrence paths. The intuition Now that the process of mapping loops onto the LA is clear,
behind this is that scheduling the recurrences is a more conWe must investigate the implications of performing thisqess
strained problem since the ops have a minimum and maximumn & co-designed VM. The role of the VM is to provide archi-
schedule time. Failing to schedule a recurrence at a target | tectural independence for the application binary. Fromgh hi
will create impossible schedules, forcing the schedulénto  level, the VM operates by observing an application’s execut
crease |l (lowering performance) in order to translate topl ~ and dynamically optimizing portions that benefit from aecel
Using Figure 5 as an example again, the modulo schedulingation. Optimized control is then placed in a software madage
priority will try to schedule the most critical recurrendée¢ ~ code cache, and the original code is modified to send a code
broken arbitrarily) 4-7, followed by the next most criticae- ~ cache pointer to the LA, starting accelerator executione Th
currence 3-16-9, followed by the remaining acyclic ops. complexities of this approach (e.g., handling I/O, suppgrt
precise exceptions, code cache management, etc.) have been
Scheduling: Once the ops are prioritized, a modulo reser- well covered in previous co-designed VM work [29], and it is
vation table (shown at the right of Figure 5) is constructed t not the purpose of this paper to rehash those details.
store the scheduling results. The table has Il rows and aolu Given this framework for providing architectural indepen-
for each FU. Ops are placed in the table using a slightly modi-dence, we shall explore the ramifications of performing edch
fied list scheduling algorithm. Initially, the reservatitable is the accelerator translation steps statically versus djcedin
empty and the scheduler places the highest priority op, 4, in Performing the translation entirely dynamically is delsiesbe-
schedule slot. Since op 4 requires an integer unit, and n@ne a cause it would provide complete architectural independerfic
being used, it is placed on Int 1 at time 0. Next, op 7 is placed. the application binary; even legacy binaries could utilireac-
Since op 7 depends on the result of op 4, a 3 cycle op, the earlicelerator. However, this decision would seriously degtage
estop 7 can execute is time 3, and so it is greedily placeden th benefits provided by the custom hardware. One reason for this
first available integer unit in that cycle. The process répka is the overhead needed to translate the loops.
the second recurrence 3-16-9. Finally, op 10 depends olisesu  Figure 6 demonstrates the importance of driving the trans-
from ops 7 and 9, so the earliest it can be scheduled is at timdation overhead as low as possible. This graph shows the av-
4. Time 4 is cycle 0 in the modulo schedule, though (recall, erage speedup across benchmarks when varying the translati
cycle = schedule time mod IT), and both the integer units  cost per loop and targeting the LA proposed in Section 3 (ad-
are full that cycle. The scheduler increments the schedukst  ditional details on the experimental setup appear latehig t
and op 10 is finally placed at time 5 (cycle 1). Op 10 is colored section). The various lines reflect how frequently the ti@ns
gray in the figure to represent that it is scheduled at a differ tion penalty must be paid. For example, the top line assumes
stage in the modulo schedule than the other ops. Once all thehat each modulo schedulable loop need only be translatas on
ops are placed, they represent all the control signals etede  during benchmark execution, and the bottom line assumds eac



2.8
’ = Once
2.6 7 T0.10% [
0.50%
2.4 \\ -1,
=g
2.2 5% M
\\ 10%
27 \

T T T T T T 7 i ) )
50000 100000 150000 200000 250000 300000 350000 400000 450000 500000
Translation Overhead (Cycles)

0

Figure 6. Speedup attained when varying the
translation overhead penalty. Each line repre-
sents how frequently the penalty must be paid.

loop must be translated 10% of the times it is invoked, due to
eviction from a code cache.

This figure shows that driving the translation cost very low
has significant benefits.

the overhead to 20,000 cycles increases the speedup pdovid
by the LA from 1.47 up to 1.92. An alternate way to view
Figure 6 is that it stresses the importance of providing ghou
space in the code cache so that loops do not need to be repe
edly translated.

Some have suggested that translation overhead is becomin

less important with the proliferation of multicore procerss
since one processor can run the application in parallel with
the translation. While this will lessen the translation anp

to some degree, it is not difficult to imagine situations vener
translation latency is still critically important, such asrk-
loads with many short running tasks, or systems with frequen
context switching [15].

Now that it is established that translation overhead ist& cri
cal concern, we will look at the implication of performingoba
step of LA translation dynamically.

Loop Identification and Transformation: Identification of
loops is feasible at runtime. Several dynamic binary oémi
tion systems already perform loop identification, as it airedt
extension to region formation [2, 8, 9]. Performing this dym
ically does have several drawbacks, however. As noted in [2]
high quality loop transformations are much too complicated
perform in a time-constrained environment. This prevemts i
portant optimizations, such as inlining and loop fissiorheétp
fit loops onto a targeted accelerator.

Performing loop transformations improves the utilizatidn
the LA, but the downside is that the application will only map
to accelerators that provide a superset of the capabitifidse
accelerator targeted in the static compilation stage. kame
ple, if a loop was statically fissioned so that it only usedablo
streams, then that application would not be able to use agfutu
accelerator with only 3 load streams unless the applicatims
statically recompiled. Because it is unlikely that the nemdf

For example, if the overhead was
100,000 cycles per loop and the miss rate was 1%, lowering
e

tained by binaries without loop transforms (i.e., compitex-
mally) compared to binaries compiled with loop transforma-
tions (aggressive inlining, aggressive predication, auiliced
unrolling) when targeting the LA from Section 3. For example
the O fraction shown by many benchmarks in this figure means
that the runtime system was not able to retarget any of the im-
portant loops in the application without proactive helpirthe
compiler. On average, not performing loop transformatiens
duced speedup attained by the accelerator by 75%, dembnstra
ing that itis critically important to perform the transfoations.

The loop transformations do not functionally change thee¢od
and no special encoding is needed to representthem in the bas
line instruction set of the processor. Loop detection reai
dynamic, as it is a low-overhead process to perform in the VM.

Modulo Scheduling: In order to gauge the overheads as-
sociated with dynamically modulo scheduling loops onto an
accelerator, the algorithm was implemented as a post-pass t
compilation in the Trimaran toolset. The number of instruc-
tions needed to retarget each loop was recorded using OPro-
file [18] on an x86 system, which reads on-chip performance
counters; the average translation penalty per loop is tegdm
Figure 8.

These penalties were measured while translating loops to
target the specific LA proposed in Section 3. However, the
resultsare representative of a broad class of accelerator archi-
tectures. ResMIl, RecMIl, and Priority calculation runés
are a function of both the number of operations and data de-
pendences in a loop, not the targeted architecture. Thelgree
CCA identification algorithm will select larger or smallerts
graphs based on the size of the targeted CCA, but the algo-
rithm still selects each operation as a seed at most once and

(,{tecursively grows that seed independent of the CCA architec

ure. If no CCA exists in the system, the overhead is simply
ﬁ!iminated. The register assignment process uses a oneto-
apping from the baseline ISA to the accelerator registois;
is only architecture dependent to the extent that if thezd@w
few registers, translation will abort. Scheduling is théymtep
where the overhead is highly architecture-dependent. i=xpe
ments show, however, that scheduling comprises less than 3%
of the translation overhead. Even if the accelerator agchit
ture made list scheduling 5 times longer (highly unliketh)s
overhead would only constitute 12.5% of the total transtati
time. For these reasons, we believe the results presented he
are applicable to a wide range of LA architectures.

There are a few important trends to take away from Fig-
ure 8. First, the average loop translation time varies widel
from benchmark to benchmark. The primary reason for this is
that the size of the loops also varies by a large factor, ageéita
loops usually require more work to modulo schedule. A sec-
ondary reason for the high variance is that the algorithnd use
in the priority calculation takes significantly more timetiere
are many recurrences in the loop. Applications that took the
longest time to translate did not necessarily have the &irge
loops.

The most important take-away from Figure 8 is the distribu-
tion of time spent in various phases of the modulo scheduling
algorithm. On average, it took approximately 99,716 irstru
tions to map each loop onto the targeted LA. 69% of those
instructions were devoted to calculating the priority used
scheduling, and 20% of the instructions were spent mapping
subgraphs onto the CCA. The vast majority of translatioretim

features would decrease as systems evolve, and complex loopas spent performing these two tasks, which motivates us to

transformations are important to accelerator utilizative ad-
vocate performing loop transformations statically.

perform these steps statically if possible. The remainomg-c
ponents of the algorithm only constitute 10,908 instruttion

Figure 7 shows the importance of these loop transforma-average, implying they can be done dynamically without €eaus

tions. Each bar in this graph shows the fraction of speedup at

ing significant performance degradation.



1
0.9 —

©

208 =

s
Z o7
S o6
©

8
205

7]
%5 0.4 —

§o03

b

S 0.2

w

0.1
o‘D“C‘““D“D““C‘““““‘

O D L L @ @ @
LS S
9 Q Q (%) (o) (o) (o) (o) R Q ¢
TV SIS IS F TS S T o
/\’L&'L&&@@QQ@@&{DQ N

Figure 7. Percentage of speedup attained when using regular binaries compared to using binaries com-
piled using static loop transformation techniques (e.g., a garessive function inlining) that are too complex
to perform dynamically.

Static ResMIl and RecMIl Calculation: Together, Loop: Loop: Data:
ResMIl and RecMIl calculation comprised roughly 1,250 in- L Add L Add 0
structions of translation overhead per loop. If it were rsseey 2 Id 2 Id 0
to reduce this overhead, each of these values could be calcu- >  5P! 3 shl 3
lated statically and placed in a data section in the binayfytri 4 Mpy 4 Mpy 1

; 5  And 16 Brl CCA 4

before the loop. Then once translation began, the VM could c s

. B . ub 7 Or 2
recover these values with two loads the addresses immBdiate [~ 5  shr 5
preceding the top of the loop, forgoing the value calcutgtio 8  Yor 10 add 6
and maintaining binary compatibility. The downside of istat 5  Shr 11 Add
cally determining the ResMll is that it is highly architectule- 10 Add 12 str Loop:
pendent; an incorrect value would either produce a poordsche 1, 244 13 add 1 add
ule (if ResMIl was unnecessarily high), or cause scheduting 12 str 14 Cmp 5 14
take much longer (if ResMIl was too low) because of repeated 13  aga 15  Br Loop 3 sShl
attempts to schedule at impossibly low Ils. Static RecMl ca 14 cmp o 4 Mpy
culation makes more sense, because recurrence lengths gene 15 Br Loop CCA: 16 Brl CCA
ally do not change much as architectures evolve (e.g., aimadd R 5  And 7  oOr
a recurrence path will typically takes 1 cycle no matter hiogv t 6 Sub 9  shr
accelerator architecture changes). However, resoureedigs 8  Xor 10 Add
do occasionally change, and the overhead needed to compute ..
RecMII dynamically is quite low, thus we advocate perforgin (a) (b) (c)
both ResMIl and RecMIl calculations dynamically to maintai
architectural independence. _ Figure 9. (a) Pseudo-assembly code for the loop
~ Static Scheduling and Register Assignment: Schedul- in Figure 5. (b) How to statically encode CCA
ing and register assignment allotted for 9,650 instrustiper identification. (c) How to statically encode pri-
loop of translation overhead. Performing either of thespst ority calculation

statically would strongly tie the application to one specifi-

chitecture, which is the antithesis of the desired outcdbtat-

ically scheduling ties the binary to a specific quantity aad | ) ) )

tency for each type of execution resource (e.g., the aatnite ~ Then, the dynamic translator can recognize these simpte fun

must have 3 2-cycle multipliers). Statically assigningiseg tion calls and attempt to map the instructions onto whatever

ters ties the binary to a specific number of registers in the LA CCAs are available in the LA. If a statically identified suagh

as well as a specific configuration of the interconnect betwee cannot be executed as a single unit on available CCAs, the ops

FUs and register files. Statically performing either sctiedgu  can still be executed independently on the remaining ei@tut

or register assignment reduces binary flexibility more thap ~ resources. This property means static CCA identificaticgsdo

of the other modulo scheduling steps, and so we propose pernot tie the binary to one particular CCA (or even any CCA at

forming them dynamically as well. all). Thus, performing CCA identification statically proeis
Static CCA Identification: CCA identification accounted @ significant reduction in mapping overhead without any com-

for a significant fraction (20%) of the 100,000 instructicamts-  Patibility impact.

lation overhead. One potential way to statically encodedie+ Static Priority Calculation:  Priority calculation is the

cision isprocedural abstractionproposed in previous work [5]  longest step (by a significant margin) in modulo schedulorg f

and shown in Figure 9(b). Figure 9(a) shows the assembly in-the LA. Statically encoding the scheduling priority of loop-

structions for the loop in Figure 5. Recall that in that exéenp erations in a binary compatible manner can be accomplished

ops 5-6-8 were collapsed into a single CCA instruction.iStat by placing a single number for each operation in a data sec-

cally a compiler can identify this subgraph and insert ablhan  tion before the loop itself (shown in Figure 9(c)). With a-sin

and-link instruction to a new function containing those .ops gle pass over the loop, the VM can determine how many ops



OCCA Subgraph ID NResMIl BRecM Il OPriority BScheduling MRegister Assignment

500000 7

450000

400000 ]

350000 ]

300000 ]

250000

200000 ]

150000 1

Translation Overhead (Instructions)
]
]

100000

500001}‘555 E? @HZﬂW_TEQQ{H . ?E

0= T

O O o B ¥ R L
@’ @’ &N o o o o IS

K R & (& &

N

Figure 8. The measured translation penalty per loop.

are in the loop and determine the address of each op’s pri-high quality results using a simple priority function, buew
ority by subtracting this number. For example, if a loop has leave their development to future work.
8 instructions, then an operation’s priority value is lechat
PC — 8 xinstruction_size. In Figure 9, ops 1 and 2 have pri- 4.3 Static/Dynamic Tradeoff Evaluation
ority 0, because they are part of a memory stream. Ops 4 and 7
are on one of the critical recurrences, so they have pesriti Figure 10 shows the speedup for several different architec-
and 2, respectively. The scheduler then uses these m®tdi  tures over a single-issue processor modeled after the ARM 11
dynamically schedule the ops in a statically determine@iord  described in Section 3. These speedups are for the entire ap-
Statically encoding the scheduling priority has the foatgn  plication, not just the loop bodies, and include commurdcat
characteristic that it focuses on scheduling the mostatitie- overhead for transferring data to and from the processar ove
currences in the loop first, and recurrences are largelyi-arch a system bus. The code cache used to store LA control pro-
tecture independentStatically encoding priority in the binary ~ vided enough space to store the previous 16 translated loops
enables a high quality schedule, while at the same time reducusing an LRU eviction policy. Using the target architecfome-
ing the average loop translation time from 100,000 down to posed in Section 3, this works out to approximately 48 KB of
31,000 instructions. dedicated storage, which is small compared with typicakcod
One potential, non-static solution to reducing the prjorit cache sizes [8]. Code cache hit rates for each application va
overhead is to use a simpler priority function. A promisiage  ied slightly, but all were very close to 100%. Communication
didate is the height-based priority function proposed ][2 overhead between the general purpose processor and the LA
The simpler priority function was previously found to be ef- was assumed to be a fixed 10 cycles (same as the L2 cache ac-
fective in [24] because of the more exhaustive backtrackingcess time), although this latency is largely irrelevanegithe
scheduler used in that algorithm, as opposed to the simigter | - streaming nature of the target applications.
scheduling algorithm used here. However, using the height- The left-most bar for each application shows the speedup
based priority function in conjunction with the single-péist from using the LA assuming no translation penalty. This is
scheduling often yielded sub-optimal schedules. Evajuatf equivalent to the speedup of a statically compiled binahye T
this degradation is presented in Section 4.3. next bar, labeled “Fully Dynamic”, shows the speedup when
A second potential non-static solution for reducing ptiori  assuming a realistic translation cache and the penalties me
overhead is the combination of dynamically computing heigh sured from performing the entire modulo scheduling algomit
based priority combined with the complex scheduling algo- dynamically. The “Fully Dynamic Height Priority” bar is as
rithm from [24]. Priority computation would be simplifiedyb  fully dynamic, but instead uses the simpler height-baséd pr
the scheduling is made more complicated to (hopefully) com- ority function. The “Static CCA/Priority” bar representset
pensate for reduced priority quality. We chose not to ingast speedups when CCA mapping and more-complicated priority
this combination in our experiments because previous wijrk [ calculation are performed offline and encoded in the binary.
already demonstrated that the modulo scheduling algorithmThe “2-Issue” bar shows the speedup of a dual-issue CPU mod-
used here produces equivalent (or higher) quality schednle eled after the ARM Cortex A8 described in Section 3, and the
less time than the scheduling algorithm used in [24]. There “4-Issue” represents a hypothetical quad-issue Cortex A8 w
may be other scheduling algorithms that can rapidly producelarger L2 cache. Note that the ARM 11 w/ loop accelerator
31t should be noted again that the criticality of recurrenags only archi- would consume apprOXima?tely 8.26m* of die area, com-
tecture independent if execution latencies of the FUs rermansistent across ~ Pared to 10.2nm? for the 2-issue CPU and 14:m? for the
the architectures (e.g., a multiplier is 3 cycles acrodemifit architectures). 4-issue CPU.




ONo Overhead OFully Dynamic E Fully Dynamic Height Priority B Static CCA/Priority K2 Issue B4 Issue

Speedup

Figure 10. Static/dynamic and algorithm tradeoffs for key m apping stages.

Several interesting patterns emerge from Figure 10. First,processors designed for general purpose control strisctiie
for many benchmarks, such as rawcaudio, the translation ove Reconfigurable Streaming Vector Processor (RSVP) [3] is a
head of performing modulo scheduling entirely dynamically vector-based accelerator designed for loops in multimagia
has a negligible impact on the LA's speedup (comparing theplications running in an embedded environment. The archi-
first two bars). In the case of rawcaudio, there is only onte cri tecture is similar to what we have proposed; however, RSVP
ical loop in the application and so the translation cost @lga  uses SIMD execution units, and a single SRAM to buffer mem-
amortized. Other applications showed little performareggrd- ory accesses. Mathew et al. propose another LA architecture
dation because their most critical loops were quite smak-m  in [20], which is very similar to the architecture propose&dé
ing the translation costs negligible. The translation bead The main difference is the memory buffering structure apety
for many other loops/asquite significant, however. Mpeg2dec of execution resources provided. This paper extends thase t
notably went from a speedup of 2.1 down to 1.15, and pegwi- previous works by providing a quantitative analysis of &&ce
tenc and 172.mgrid lost all performance benefits from the LA. ator resource needs using loops from a diverse applicagion s
On average, factoring the translation costs broughtthedspge =~ Other work, such as [21, 25], proposed adding hardware to a

from 2.76 down to 2.27. standard pipeline for efficiently supporting the contralist
The “Fully Dynamic” and “Fully Dynamic Height Priority”  tures of loops. The control in our proposed acceleratorgtesi
bars for each application show the tradeoff involved in g ire is very similar to [21], but this work extends prior customniz
more-complex priority function in comparison with the sieyp  tions by additionally customizing execution and memory re-
height-based priority. The less sophisticated heighetgsi- sources. The LA architecture presented in this paper was pri

ority function sometimes generates schedules with higlser | marily developed to provide a realistic target for evalugtily-
(and thus, worse performance), but the translation times ar namic mapping algorithms.

significantly faster. On average, the benefits of fasterstean Statically generating efficient code for loops is also amare
tion time outweighed the benefits of better schedules, dingi  of much related work. Software pipelining has proven to be an
a speedup of 2.41 compared with 2.27. excellent way to improve the resource utilization of loog-ex
The “Static CCA/Priority” bar in Figure 10 shows that by cution. Lam [16] showed that developing an optimal software
moving the particularly difficult portions of mapping loop& pipelining is an NP-complete problem, and so many heuris-

fline, the speedups can approach that of natively compildd.co tics have been developed to produce high-quality schedules
On average, performing CCA mapping and priority calcutatio in a reasonable amount of time [7, 17, 19, 24, 25, 26]. The
offline reduced translation penalties to the point wherettes- most pertinent related work is the Swing Modulo Schedul-
age speedup was 2.66 as compared with 2.76 for natively coming algorithm [19], the basis of our analysis in Section 4.2.
piled code. This hybrid static/dynamic mapping strategy-pr Later work [7] demonstrated that this algorithm produceghhi
vides a significant 25% and 39% more speedup up over fully quality schedules in much shorter runtimes than other nmdul
dynamic solutions utilizing height-based and recurrebbased  scheduling algorithms, making it a good starting point fgr d
priority functions, respectively. o namically retargeting loops. While the work in this paped di
The “2 Issue” and “4 Issue” bars in Figure 10 show that not exploit this fact, modulo scheduling algorithms haverbe
the loop accelerator is a much more effective use of die areaextended to support loops with complex control flow, such as
than more general purpose processor enhancements, such 8Rle exits [17], and entire loop nests [26], not just innesmo
increasing issue width or cache size. loops. One major contribution of this paper is the evaluatio
of modulo scheduling in the context of dynamically targgtin
5 Related Work an LA. The relative runtime of each modulo scheduling stage
As mentioned in previous sections, accelerators are a popwas measured, and we explore the tradeoffs associated with
ular method to increase the performance and efficiency of mi-statically encoding the results of each stage in an apjgicat
croprocessor designs. Several people have proposed@ecele binary.
tors specifically targeting loop nests, because the regolar Abstracting the underlying hardware structure to enable
trol structure in loops provides significant efficiency gaaver hardware innovation without affecting binary compatyili



also has much related work. Perhaps the best known example[4]
of this is the Transmeta Code Morphing Software [8], which
dynamically converts x86 applications into VLIW programs. [
DynamoRIO [2], Daisy [9, 10], and DIF [22] are all examples
that dynamically translate applications to target entickffer-

ent microarchitectures. Several proposals exist to oahydlate (6]
select portions of an application to target acceleratoos.ek-
ample, [5, 14] all explored the benefits of dynamically birgli
applications to acyclic accelerators. Other work [6] lodled [7]
dynamically binding for SIMD accelerators. This paper is th
first proposal for dynamically binding to cyclic accelerato i8]
6 Concluding Remarks

Adding customized hardware to a processor is an effective (9]

way to improve the performance and efficiency of the sys-
tem. However, significant hardware and software non-r@agirr
engineering costs prevent customized hardware from being10]
adopted in many situations. This paper addresses those cost
in the context of cyclic computation. Cyclic computation ac

celerators are a compelling design point, because theynenco [11]
pass a larger fraction of many applications’ execution tina
acyclic accelerators, even though cyclic acceleratorsatras 12l

broadly applicable as acyclic ones.
This paper presented the design of a generalized loop accel-
erator. Design space exploration was used to ensure that thas]
accelerator is applicable to a wide range of media and flgatin
point applications. This generalized design provides adgoo
architecture for executing common modulo schedulabledpop
thus eliminating the engineering costs associated witflgdes
ing loop-specific accelerators from scratch. The proposed d
sign provides 83% of the speedup attainable through a hypo{!®!
thetical accelerator with infinite resources, and consuonés
3.8mm? of die area in a 90nm process. [16]
Software costs were addressed by virtualizing the acceler-
ator interface. Modulo schedulable loops are staticaliygr

[14]

formed in the binary and expressed in the baseline instnucti (7]
set. At runtime, a dynamic translator attempts to map thpdoo

onto any available accelerators using modulo schedulihgs T  [18]
work found dynamically modulo scheduling loops has a signif
icant performance overhead and proposed statically engodi (19]
scheduling priority and CCA mapping to be an effective tech-
nigue for minimizing the overhead. Overall, the loop acele  [20]

tor and dynamic compilation system provided a mean speedup
of 2.66 over a single-issue processor, and the resultingrpin
remains flexible enough to be used by systems with different!?4
(or even no) accelerators.

7. Acknowledgments

Much gratitude goes to the anonymous referees who pro-,3
vided excellent feedback on this work. We owe thanks to Krisz
tian Flautner, Todd Austin, Trevor Mudge, and Serap Savari[24]
who helped shape this work. This research was supported
by ARM Limited, the National Science Foundation grants 25]
CNS-0615261 and CCF-0347411, and equipment donated b)&
Hewlett-Packard and Intel Corporation.

[22]

[26]
References
[1] S. Aditya and M. Schlansker. ShiftQ: A buffered intercest for cus- 27]
tom loop accelerators. IRroc. of the 2001 International Conference
on Compilers, Architecture, and Synthesis for Embeddeti®ggpages
158-167, Nov. 2001. (28]
[2] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: a foansnt dy-
namic optimization system. IRroc. of the SIGPLAN '00 Conference on
Programming Language Design and Implementatipages 1-12, June
2000 [29]
[3] S.Ciricescu, R. Essick, B. Lucas, P. May, K. Moat, J. Ngivl. Schuette,
and A. Saidi. The reconfigurable streaming vector proce@&8sVP). In [30]

Proc. of the 36th Annual International Symposium on Micobétecture
pages 141-150, 2003.

N. Clark et al. OptimoDE: Programmable accelerator ragithrough
retargetable customization, Aug. 2004.Rroc. of Hot Chips 16

N. Clark et al. An architecture framework for transpdrarstruction set
customization in embedded processorsPtac. of the 32nd Annual In-
ternational Symposium on Computer Architecfyrages 272-283, June
2005.

N. Clark et al. Liquid SIMD: Abstracting SIMD hardware ing
lightweight dynamic mapping. IRroc. of the 13th International Sym-
posium on High-Performance Computer Architectupages 216-227,
2007.

J. Codina, J. Llosa, and A. Gonzalez. A comparative stoidsnodulo
scheduling techniques. Rroc. of the 2002 International Conference on
Supercomputingpages 97-106, June 2002.

J. Dehnert et al. The Transmeta code morphing softwasieiguspecula-
tion, recovery, and adaptive retranslation to addresslifeathallenges.
In Proc. of the 2003 International Symposium on Code Generaitd
Optimization pages 15-24, Mar. 2003.

K. Ebcioglu and E. Altman. Daisy: Dynamic compilationrfd00% ar-
chitectural compatibility. IProc. of the 24th Annual International Sym-
posium on Computer Architectyrpages 26—38, June 1997.

K. Ebcioglu, E. Altman, M. Gschwind, and S. Sathaye. nBsic bi-
nary translation and optimization|EEE Transactions on Computers
50(6):529-548, June 2001.

K. Fan, M. Kudlur, H. Park, and S. Mahlke. Cost sensitimedulo

scheduling in a loop accelerator synthesis systemProt. of the 38th
Annual International Symposium on Microarchitectupages 219-230,
Nov. 2005.

M. Gschwind, D. Erb, S. Manning, and M. Nutter. An opemusz® en-
vironment for cell broadband engine system softwdEEE Computer
40(6):37-47, 2007.

A. Hormati et al. Exploiting narrow accelerators withtd-centric sub-
graph mapping. IProc. of the 2007 International Symposium on Code
Generation and Optimizatiompages 341-353, Mar. 2007.

S. Huy, I. Kim, M. H. Lipasti, and J. E. Smith. An approaabr fim-
plementing efficient superscalar CISC processorsPrit. of the 12th
International Symposium on High-Performance Computehitecture
pages 213-226, 2006.

S. Hu and J. E. Smith. Reducing startup time in co-deigrirtual ma-
chines. InProc. of the 33rd Annual International Symposium on Com-
puter Architecturepages 277-288, 2006.

M. Lam. Software pipelining: an effective schedulinechnique for
VLIW machines. InProc. of the SIGPLAN '88 Conference on Program-
ming Language Design and Implementatipages 318-327, 1988.

T. Lattner. An Implementation of Swing Modulo Schedgjiwith Exten-
sions for Superblocks. Master’s thesis, Computer Scieregt.DUniver-
sity of Illinois at Urbana-Champaign, Urbana, IL, June 2005

J. Levon. OProfile - a System Profiler for Linux 2004.
http://oprofile.sourceforge.net/doc/index.html, Rateid June 6, 2007.

J. Llosa et al. Swing modulo scheduling: A lifetime-siive approach.
In Proc. of the 5th International Conference on Parallel Ateletures
and Compilation Techniquepages 80-86, 1996.

B. Mathew and A. Davis. A loop accelerator for low powentzedded
VLIW processors. IrProc. of the 2004 International Conference on on
Hardware/Software Co-design and System Synthpages 6-11, 2004.

M. Merten and W.-M. Hwu. Modulo schedule buffers. Pmoc. of the
34th Annual International Symposium on Microarchitecfyrages 138 —
149, 2001.

R. Nair and M. Hopkins. Exploiting instruction level qadielism in pro-
cessors by caching scheduled groupsPioc. of the 24th Annual Inter-
national Symposium on Computer Architectyrages 13-25, June 1997.

U. Nawathe et al. An 8-core, 64-thread, 64-bit, powdicieit SPARC
SoC (Niagara2), Feb. 2007. Rroc. of ISSCC

B. R. Rau. lterative modulo scheduling: An algorithnr feoftware
pipelining loops. InProc. of the 27th Annual International Symposium
on Microarchitecture pages 63—74, Nov. 1994.

B. R. Rau, M. S. Schlansker, and P. P. Tirumalai. Codeegaion for
modulo scheduled loops. Proc. of the 25th Annual International Sym-
posium on Microarchitecturgpages 158—169, Nov. 1992.

H. Rong, Z. Tang, R. Govindarajan, A. Douillet, and G.Gao. Single-
dimension software pipelining for multidimensional loogsCM Trans-
actions on Architecture and Code Optimizatiaifl):7, 2007.

R. Schreiber et al. PICO-NPA: High-level synthesis ofhprogrammable
hardware acceleratorsJournal of VLSI Signal Processing1(2):127—
142, 2002.

M. Sivaraman and S. Aditya. Cycle-time aware architeetsynthesis of
custom hardware accelerators.Hroc. of the 2002 International Confer-
ence on Compilers, Architecture, and Synthesis for Emlzb&gstems
pages 35-42, 2002.

J. E. Smith and R. NaiVirtual Machines Morgan Kaufmann Publishers,
2005.

Trimaran. ~ An infrastructure
http://www.trimaran.org/.

for research in ILP, 2000.



