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SUMMARY 

Transformation  matrices from  one j o i n t   a x i s  system to   another   a re  used i n  t h e  
control  of  robot arms  and i n  the  passage of sensor  information  along  the arms. The 
Denavit-Hartenberg  parameters, which precisely  descr ibe  the  re la t ive  locat ion of  one 
j o i n t   a x i s  system w i t h  respect  to  another,   define  the  elements i n  these  matrices. 
This  paper  presents a vector-algebra  approach t o   e x t r a c t   t h e  Denavit-Hartenberg 
parameters  for any  assembled  robot arm. 

Measurement data needed i n  the  parameter-extraction  process  can be generated by 
varying t h e  jo in t   angles  i n  a robot arm and measuring the  location of  a point on the  
robot hand (or   other   extension) .  The Denavit-Hartenberg  parameters  relating consecu- 
t i v e   j o i n t   a x i s  systems are  then  calculated  with  these  data. The parameter- 
extract ion method appears  promising  as a useful   tool   for   researchers  and may possibly 
be  a useful  industrial   procedure.  

INTRODUCTION 

Researchers   are   current ly   t rying  to  improve the  control  and design of robot  arms 
and t o  add  a certain  degree of autonomy for  future  space  applications,  such a s   t h e  
service and repa i r  of s a t e l l i t e s   ( r e f .  1 ) .  Commercially avai lable   (or   prototype)  
robot arms a r e  used to  verify  concepts,   validate  mathematical  models, and r ea l i ze  
operational problems. However, a d i f f i c u l t y   a r i s e s  i n  that  parameters i n  the mathe- 
matical  equations  necessary  to  describe  these arms are  not  always  available  or  the 
supplied  parameters  are  not  sufficiently  accurate  for  end-point  control. 

I f  an operator  remotely  controls  the hand  of  a robot arm  by  commanding t ransla-  
t i ona l  and ro ta t iona l   ra tes   about   the  hand a x i s  system,  then  these  rates must be 
resolved  mathematical ly   into  joint   ra tes   a long  the arm to   e f f ec t   t hese  commands 
(resolved-rate  control,   ref.  2 ) .  Th i s  resolution depends on the  location of the 
j o i n t s   r e l a t i v e   t o  each  other. These locat ions  are   usual ly   not   avai lable  and a r e  
d i f f i c u l t   t o  measure f o r  assembled  commercially available  robot arms. But ,  i n  stud- 
ies  involving  the  control  of  these arms, this  information i s  required. 

Because researchers  often  use  robot arms i n  a manner other   than  that   for  which 
they were or iginal ly   intended  ( for  example, some robot arms were not   or iginal ly  
intended  to  be control led i n  a te leoperator  mode  by resolved  rate),   necessary param- 
eters   are   of ten  not   avai lable   for   the  requis i te   mathematical  models.  Moreover, cer- 
tain  parameters may represent  proprietary  information. Whatever the  reason,  there i s  
a d e f i n i t e  need for  an  accurate method to  extract   these  parameters  without  having  to 
disassemble  the  robot arms. Such a method may also  prove  useful i n  t h e  extract ion of 
a new s e t  of definit ive  parameters  to  al low resumed control of  a  misaligned  or  bent 
robot arm, f o r  example on a factory  f loor   or  i n  a  space appl icat ion of  a  rigid-body 
manipulator ;   v ia   industr ia l  enhancements,  such  a method may be useful i n  the  rout ine 
factory  cal ibrat ion of robot arms. 

The purpose  of t h i s  paper i s  t o  develop  a  vector-algebra  approach  for  calculat- 
ing   the   re la t ive   jo in t  geometry  of  an  assembled robot arm. Specif ical ly ,   the  
Denavit-Hartenberg  parameters  (ref. 3), which completely  characterize  this geometry, 
are   calculated.  



SYMBOLS 

homogeneous transformation  matrix from coordinate system i t o  i - 1 

length of  a 

common normal vector between Zi-l and Zi 

vector from world  coordinate  system to   cen ter  of c i r cu la r   t r a j ec to ry  of 

+ 
i 

point F ' about  l ine of ro t a t ion   fo r   j o in t  i 

point on extension  attached  to  robot hand 

in t ege r   t o   i nd ica t e   d i f f e ren t   ax i s  systems  and associated  parameters 

constant  defined by equation ( 6 )  

integer  argument  used to  label  corresponding measurement data 

vector from  world coordinate system to   genera l   po in t  on l i n e  of ro ta t ion   for  
j o i n t  i 

vector from world coordinate system to   po in t  where v touches  line  of 
+* 
i ro ta t ion   fo r   j o in t  i 

number of u n i t  vectors ui(k) t o  be averaged 

or ig in  of j o i n t  i and  world ax i s  system, respect ively 

measured posit ion  vector i n  world coordinates   to   point  F 

measured vector  associated wi th  measurement da ta   se t  k 

+ 

+ 

Q( X ' Y ,  2) point i n  three-dimensional  space 

+ 
Ri 

ri 

+ r i 

i 

i 

8 

U 
+ 

Gi (k  1 

V 
+ 
i 

+* 
V i 

2 

posit ion  vector from or ig in  of world coordinate  system  to  origin  of 
coordinate system i 

length of r ; re la t ive   d i s tance  between coordinate  systems i - 1 
+ 

and i along Zi-l 
i 

vector  along Zi-l from or ig in  of coordinate  system i - 1 t o   t a i l  of a i 

vector from world coordinate  system t o   t a i l  of vector 8i (see  f ig .  8 )  

u n i t  vector normal to  plane of c i r cu la r   t r a j ec to ry  of point F and i n  

i 

+ 

direct ion of rotational  vector w 
+ 

calculated u n i t  vector u associated  with measurement data set k 

vector drawn from point on l i ne  of ro t a t ion   fo r   j o in t  i to   po in t  on l i n e  

+ 
i 

of ro t a t ion   fo r   j o in t  i + 1 

vector v with minimum length; normal vector between l ines  of ro ta t ion   for  + 
j o i n t s  i and i + 1 i 



xi 

Xw,Yw,Zw world coordinate  axes 

X i ' Y i ' Z i  coordinate  along xi, Yi, and Zi, respect ively 

XWI Ywr  zw world coordinate  along X,, Y,, and Zw, respec t ive ly  

'i 

axis   d i rec ted   a long  common normal  between Zi-l and Zi 

ax i s   d i r ec t ed  t o  complete right-hand  axis  system  with Xi and Zi 

ax i s  of ro t a t ion  of j o i n t  i + 1 

'i angle between Zi-l and Zi, measured pos i t i ve ly  (as shown i n   f i g .  3) about 
pos i t i ve  Xi 

f'i 
constant  bias angle, which when  summed with  joint   angle  Qi, y i e lds   j o in t  

angle ei 

0 joint   angle   with  ini t ia l   value  corresponding t o  pos i t ion  of robot arm 
i i n   f i g u r e  1 

€li (k ) joint   angle  associated  with  data set k 

Aei(k) incremental  changes  in  joint  angle  ei(k) 

'i 

I 
joint   angle  between Xi-l and Xi, measured pos i t i ve ly  (as shown i n   f i g .  3) 

about   posi t ive Zi-l 

'i 
real var iab le   in   vec tor   l ine   equat ion  

* 
'i 

value of Ai which makes  v normal t o   l i n e  of ro ta t ion  of j o i n t  i 
-+ 
i 

pi 

8 un i t   vec to r   i n   d i r ec t ion  of u x u 

% 

rad ius  of c i r cu la r   t r a j ec to ry  of poin t  F about   l ine of ro t a t ion   fo r  
j o i n t  i 

+ + 
i i i+ 1 

ro t a t iona l   ve loc i ty  of j o i n t  i + 

Mathematical  notations: 

II II length of vector  

0 dot   o r  scalar product 

X cross or  vector  product 

ANALYSIS 

A robot arm wi th   ro t a t iona l   j o in t s  is depic ted   in   f igure  1. As shown  by t h e  
i n s e t  of w r i s t  motions i n   t h i s   f i g u r e ,  B4 corresponds t o  a ro t a t ion  of t he  bottom 
of the  wrist assembly mounted a t  t h e  end of the  arm, whereas 0, d i r e c t l y  rotates 
and Q5 tilts the  cyl indrical   e lement   (end  effector)  which is a t t a c h e d   t o   t h e  
w r i s t .  I n   r ea l i t y ,  a mechanism which opens  and closes is at tached t o  the  wrist f o r  
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manipulating  objects. The robot arm i n  f igure  1 i s  used f o r   i l l u s t r a t i o n ,   b u t   t h e  
subsequent  development i s  va l id   fo r  any  geometric  configuration  of  robot arm. 

Suppose the  exact  location and or ien ta t ion  of  each j o i n t   a x i s  system of the  
robot arm i n  f igure  1 are   not  known.  The object ive i n  t h i s   a n a l y s i s  i s  t o  develop  a 
method t o  determine  the  parameters which establ ish  the  geometr ic   re la t ionships  among 
t h e  j o i n t   a x i s  systems for   an assembled  robot arm.  !Chis object ive i s  accomplished by 
moving the arm to   d i f f e ren t   pos i t i ons  and  making ce r t a in  measurements, which a r e  
l a t e r  used i n  equations t o  extract   the  desired  parameters.  

Measurements 

Joint   angle  measurements.- As a point of reference  for   joint   angle  measurements, 
define = 0 (i = 1, 2 ,  ..., 6 )  f o r   t h e   i n i t i a l   p o s i t i o n  of the  robot arm  shown i n  
f i gu re  1. Thereaf ter ,   these  joint   angles   are   referenced  to  t h i s  i n i t i a l   z e r o  
posit ion.  

'i 

world  coordinates.- The world reference  axis  system indicated i n  f igure  2 is  an 
a r b i t r a r i l y   f i x e d   a x i s  system. For  example, the   o r ig in  of t h i s   a x i s  system may be 
loca ted   a t   the   corner  of  a f l a t   t a b l e  upon which the  robot arm i s  stationed,  or  the 
world a x i s  system may correspond t o   t h e   a x i s  system  of  a l a s e r   t r a n s i t   o r  a  camera. 
With respec t   to  t h i s  world a x i s  system, t h e  rectangular  coordinates  (xw,yw,  zw)  of  the 
point F i n  f igure  2 are  obtained. The point F i s  loca ted   a rb i t r a r i l y  on  some 
extension of the  robot hand so t h a t  when a rotat ion  occurs ,  by varying a joint   angle  
Bi, the   point  F w i l l  move t o  another  position i n  the  world coordinate  space. It i s  
not  necessary  to know the  length  or   or ientat ion o f  the  extension. 

The robot arm is  moved t o   d i f f e r e n t   p o s i t i o n s  by varying i t s  joint   angles .  A t  
each new posi t ion,   the   joint   angles  Bi a r e   ava i l ab le  from sensors i n  the  robot arm 
i t s e l f ,  whereas the  locat ion of point F i s  ac tua l ly  measured by using  external 
measurement devices  (sensors).  It is  assumed t h a t  measurements  of jo in t   angles  Bi 
and  corresponding  world  coordinates of point F are   avai lable   €or   the  robot  arm i n  
d i f fe ren t   pos i t ions   for   th i s   ana lys i s .  Before  proceeding,  the  axis  systems t o  be 
established  are  described. 

J o i n t  Axis  Systems 

Figure 3 i l l u s t r a t e s   t h e   a x i s  systems  associated wi th  j o i n t s  i and i + 1. By 
convention,  joint i i s  associated w i t h  the  coordinate system i - 1. Hence, 
j o i n t  i corresponds  to  the  axis system  with o r i g i n   a t  Oi-l, whereas j o i n t  i + 1 
corresponds to   t he   o the r   ax i s  system wi th  or ig in  Oi. B y  def in i t ion ,   the   ax is  of 
ro t a t ion   fo r   j o in t  i always l ies   a long  the  associated Zi-l. The vector gi i s  
t h e  normal vector between Zi- and Zi,  being  directed toward Zi. The in te r -  
section  point  of ai w i t h  Zi locates   the  or igin Oi. The a x i s  Xi o r ig ina t e s  
from Oi i n  the same d i r ec t ion   a s  4 .  In the   event   tha t  Zi-l and Zi i n t e r s e c t  
( f i g .  3( b) ), ai i s  the  zero  vector,  and Xi i s  then  directed from t h i s  intersec- 
t i o n  i n  the   d i rec t ion  of the  cross  product  obtained  by+multiplying a u n i t  vector 
along Zi-l by a u n i t  vector  along Zi. The vector r i s  the  vector from the  

or igin Oi-, to   the+in tersec t ion  of ai w i t h  Z i - 1  ( f i g .  3 ( a )  ) ; fo r   i n t e r sec t ing  
l i n e s  of rotat ion,  r is  a vector  along Zi from oiml t o  0. ( f i g .   3 ( b ) ) .  The 
angle ai is  the  angfe between  a l i n e   p a r a l l e l   t o  Zi-l througA the  or igin Oi 
and Zi, being  measured posi t ive  about   posi t ive Xi ( f i g .   3 ) .   F ina l ly ,   t he   j o in t  

+ 

3. 

i 
-* 

4 



angle 8; is the  angle  between Xi-l and a l i n e  paral le l  t o  Xi through oi-l and 
i s  measured pos i t ive   about   pos i t ive  Zi-l ( f i g .  3 ) .  The axes yi and Y ~ - ~ ,  which 
simply  complete  right-hand axis  systems, are not shown f o r   c l a r i t y .  

The lengths of a and r are denoted by ai, and ri. The r e l a t i v e   j o i n t  -+ -+ 
parameters ai, ri, and ai and the   jo in t   angle  Bi a r e   r e f e r r e d   t o  as the  
Denavit-Hartenberg  parameters  (ref. 2)  and  completely  character ize   the  re la t ive  joint  
geometry. 

i i 

Basic coordinate  transformation.- The r e l a t i v e   j o i n t  geometry d ic ta tes   the   bas ic  
transformation  equations between adjacent   joints .  The coordinates of a po in t  
Q(x,y,z)  with respect to   t he   coo rd ina te  system i i n   f i g u r e  3 can be transformed t o  
coordinates 

- .  
X 

Y 

z 

1 - .  

with 

- ~ 

of Q with  respect  to  the  coordinate  system i - 1 by the   r e l a t ion :  

i- 1 1 1. 

A i - 1  = 

i 

1 1 1  

-cos a s i n  8 
i i 

I 
I 

I 

s i n  ei cos  a cos 8 -s in  a cos 8 i i i 

I o  s i n  a i 

Lo 0 
0 I 

where A i - l  i s  t h e  homogeneous transformation  matrix from coordinate system i t o  
i - 1 ( r e f .  4, f o r  example). This basic  transformation  matrix, whose elements are 
defined by the  Denavit-Hartenberg parameters, i s  used i n   c o n t r o l l i n g  a robot arm and 
i n  transforming  sensor  signals  along  the arm. 

Relationship between jo in t   ang le s  Bi and e;.- I f   the   convent ion   in   f igure  3 

were used t y  define  axis  systems  for  the  robot arm i n   f i g u r e  1, t!e jo in t   ang le s  
would be Oi (i = 1, 2, ..., 6). In   general ,   the   joint   angle  ei is  not   equa l   to  
t he   j o in t   ang le  Oi, which is r e f e r e n c e d   t o   t h e   i n i t i a l   c o n d i t i o n  of the  robot arm i n  
f igu re  1. A t  t h i s  time, ei is measurable,  but 8; i s  not  measurable  because :he 
a x i s  systems  have  not  yet  been  established.  Corresponding  values of Oi and Oi 

5 



r e s u l t  from appl ica t ion  of the  subsequent  parameter  extraction  equations,  and i f  
required,  a nonl inear   re la t ionship  could  be formed. However, most o f t e n ,   t h i s  func- 
t i o n a l   r e l a t i o n s h i p  is  adequately  described by the  l inear   equat ion:  

I ei = ei + pi 

I 
where pi is  a cons t ap t   b i a s ,   r e f l ec t ing   an   i n i t i a l   o f f se t   i n  €Ii. Hence, i f  a 
calculated  value  of fIi corresponds t o  a measured value  of Oi, then pi i s  calcu- 
l a t e d  by using  these  values   in   equat ion ( 3 ) .  

Problem Statement  

Given t h e  world coordinate system i n  f i gu re  4,  l e t  t he   l oca t ion  of t he   po in t  

O i -  1 and the   d i r ec t ion  of Xi-l be known. Now, wi th   jo in t   angles  Bi and corre- 
sponding  locations of po in t  F ( f ig .  21, calcufate  the  Denavit-Hartenberg param- 
eters ai, ai, and ri, and the   j o in t   ang le  ei. Fur thermore ,   f ind   the   o r i   in  Oi 
of the   next   ax is  system, which i s  located somewhere on t h e  dashed l i n e   f o r  wit,, and 
t h e   d i r e c t i o n  of Xi. The process i s  then  repeated  to   es tabl ish  subsequent   axis  
systems. To i n i t i a t e   t he   p rocess ,   u se   t he   o r ig in  Ow and the   d i r ec t ion  of X, 
which a re   spec i f ied .  

9 

Circular   Trajectory of Point  F 

In   f igure 2, l e t  8 ,  vary  and  the  remaining Qi be fixed. Then, the   po in t  F 
on the  robot a r m  w i l l  generate a c i rcu lar   t ra jec tory   about  Zo .  In  general ,   as Qi 

v a r i e s ,   t he   po in t  F w i l l  generate a c i rcu lar   t ra jec tory   about  Zi-l. For a value 
of Qi, the  locat ion of point  F i n  world coordinates  can  be measured ( f o r  example, 
see appendix A). 

Center of c i r cu la r   t r a j ec to ry . -  Figure+5 shows t h e   c i r c u l a r   t r a j e c t o r y  of 
po in t  F. caused by changing 8 ;  (where lIwl II i s  the  t i m e  der ivat ive  of  8 , ) .  The 
vec tor  pfi(k) g ives   the  posi t iGn of F i n  world coordinates  when Bi has  ;he value 
O i ( k ) ,  where k has  been  introduced to  label  corresponding  data.+ The center  of t he  
c i r c u l a r   t r a j e c t o r y   i n   f i g u r e  5 i s  given by the  constant   vector  Ci. The components 

l. 

of t h i s   v e c t o r   a r e  computed by forming the  dot  product: 

which can  a l s o  be  expressed a s  

6 



where 

Ki = -pi ci - q 2  
-% 

is a  constant. 

Equation (5) represents  k  linear  equations in four  unknowns:  Ki  and  the 
three  components  of  the  vector Ci.  Four  different  position  vectors (si (k) , -% 

k = 1, 2, 3, and 4)  are  sufficient  to  provide  enough  equations  for  the  solution of 
these  constants.  Thus,  a  robot  arm  with 6 rotational  joints  would  require 24 
position  measurements ( 4  for  each  of  the 6 joints).  Each  position  vector  is  made  up 
of three  components,  representing  a  point  in  the  world  coordinate  system (X~,Y~,Z~). 
In  actual  situations,  where  sensor  errors  are  present,  more  measurements  will  be 
needed to allow  least-squares  estimates  of  the  constants. 

Once  the  vector 8 and  the  scalar  Ki  are  found,  the  radius  of  the  circle is 
given  by  equation (6), written  as i 

TJnit  vector  u .- Figure 6 shows  the  circular  trajectory of point F and  two -% 

i 
position  vectors  Zi(k)  and  Pi(k+l) , along  with  the  incremental  Joint  angle 3. 

between  these  position  vectors. A unit  vector  normal to the  plane of the  circular 
trajectory  a2d  passing  through  point  Ci  (whose  coordinates  are  the  components of 
the vector C. ) is 

1 
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With 0 < dei( k )  < n, zi( k) in   equat ion ( 9 )  is i n   t h e  same d i r ec t ion  as  the   ro ta - '  
t i o n a l   v e c t o r  mi. An average ui over M vec tors  -+  -+ 

M 

k= 1 

should  be  used t o  reduce  the  effects   of  errors i n   a c t u a l  measurements. 

L i n e s  of Rotation  and  Transverse Vector 

Figure 7 shows l i n e s  of r o t a t i o n   f o r   j o i n t s  i and i + 1. Any poin t  on  t h e  
l i n e  of r o t a t i o n   f o r   j o i n t  i is  representable by the  vector   l ine  equat ion 

Likewise, any poin t  on t h e   l i n e  of r o t a t i o n   f o r   j o i n t  i + 1 is described by 

a = c  + ? l  u 
i+ 1 i+ 1 i + l   i + l  

Define a t ransverse  vector  v between these   l i nes  of ro t a t ion  as + 
i 

+ -+ 
v = R  - 1  

+ 
i i+ 1 i 

P a r a l l e l   l i n e s  of ro t a t ion  (ui X u 
+ + + + = o ;  u . U  i+ 1 i i+ 1 

= * l ) . -  First of a l l ,  

co inc iden t   l i nes  of ro ta t ion   for   consecut ive   jo in ts   a re   no t  of interest   because these 
j o i n t s   a r e   e f f e c t i v e l y  one  and  not  dist inguishable.   Therefore,   in  f igure 7, f o r  
p a r a l l e l   l i n e s ,  

+ + ci+l - ci f 0 

a 



For  parallel  lines  of  rotation,  the  point  F  in  figure 2 generates  circular  trajec- 
tories  in  figure 7 which  lie  in  the  same  plane;  therefore, 

-+* + -+ 
v = c  -c 
i i+ 1 i 

is  normal to these  lines  and  has  a  length  equal  to  their  distance of separation. 
Equation ( 15)  is  equation ( 13),  with Ai = Ai+l = 0. Relocate 3; so that  its  ini- 
tial  point  is  the  known  location  of  the origm oi-l on the  line  of  rotation  for 
joint  i;  that  is, 

+* + 
2,  = R 
1 i- 1 

where  is  the  vector  from  the  world  axis  system  to +* oi-l (fig. 8). Then,  the 
corresponding  terminal  point of v  on  the  line of rotation  for  joint  i + 1 is i 

+ 
Ri- 1 

I* = 2 .  + v +* +* 
i+ 1 1 i 

In  effect,  equation (16) reflects  the  assignment  of  r = 0 to parallel  lines  of 
rotation. 

+ 
i 

- Skew  lines  of  rotation.-  If  the  lines  of  rotation  in  figure 7 are  not  parallel, 

let  and g+l be  those  values of hi  and  in  equations ( 11) and ( 12), 
respectively,  which  make  v  in  equation  (13)  norma?  to  the  lines  of  rotation. + Ai + 

i 

Denote  this  vector  v  by  vi.  Then, + +* 
i 

+* +* +* 

where 

+* 
R = c  + A  u 

+ * +  
i+ 1 i+ 1 i+l  i+l 
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and 

+* + * +  R = c  + A * u  
i i 1 i  

are  the  intersection  points 

v two  orthogonality  conditions  are +* 
i' 

of v with  the  lines  of  rotation. By definition  of +* 
i 

v * U  = o  +* + 
i i 

and 

v * U  
+* + = o  i i+ 1 

Equations  (21)  and  (22)  can  be  solved  simultaneously  for  the  scalar  values AT and 

g+l to  get 

and 

where,  for  skewed  lines, + + 
(ui+ 1 i * U )  # 1. 

10 



Relat ive  Joint  Geometry 

In figure 8, and R represent   pos i t ion   vec tors   in  world coordinates where 
+ 

i i 
+ a i n t e r s e c t s   t h e   l i n e s  of r o t a t i o n   f o r   j o i n t s  i and i + 1. Thus, 
i 

s ' = R  
+* 

i i 

R = A  + +* 
i i+ 1 

-b +* 
i i a = v  

-b  -b  -b 

The d i r ec t ion  of Xi is chosen t o  be e i t h e r   i n   t h e   d i r e c t i o n  of ui X u o r  + + 
i + l  

+ a . Conditions  for  these  options  are shown i n  table I and are dependent on the   r e l a -  

t ionship  between consecutive  l ines of rotation.  Correspondingly  consistent  equations 
for  determining 0; and a r e  shown i n   t a b l e  11. 

i 

'i 
I 

Equation  for  tan el. -  All the   equat ions  for   tan Eli i n   t a b l e  I1 have similar 

explanations;  therefore,   only  consider 

The numerator t e r m  in  equation  (29) shows the  cross product of a vector si-l 
along Xi- and a vector  a. along Xi and  then  forming  the  dot  protuct of the  
resul t  and a un i t   vec to r  ui along Zi-l produces lldi-,Il I18iII s i n  Oi with+the 
correct sign f o r  a pos i t ive   ro ta t ion   about   pos i t ive  Zi-l (or equivalently  ui) .  

The  denomina:or is Ilai,l II llai II cos 0;. , Hence, the   f rac t ion   represents   t an  e!, 
where 0 < Oi < 2n. The jo in t   ang le  Oi in  equation  (29)  corresponds  to  the  f ixed 
pos i t ion  of j o i n t  i a f t e r  u has  been  determined  and  joint i + 1 is  being 
var ied  t o  obtain u 

+ 
+ 1  

+ + 

-+ 
+ i 

i+1' 
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Tan a with Xi i n   d i r e c t i o n  of a .- The appropriate equation in table 11 is + 
i .. . - i 

The right-hand side of this   equat ion shows the  cross  product of a vector  along 
Zi-, (or u . )  and a vector  along Zi (of ui+l) and  then  the  dot  product of t h i s  

r e s u l t  and a unit   vector  along X i  (o r  2i/ll;i 11) g ives   s in  a . The dot  product  in 
t h e  denominator yields cos a . i 

+ 4. 

1 

i 

Tan ai with Xi i n   d i r e c t i o n  of ?ii x when consecutive  l ines of ro t a t ion  

intersect.-   Figure 9 shows the   un i t   vec tor  ui+l along zit the   un i t   vec tor  u 
along a l i n e   p a r a l l e l  t o  Zi,,, and the  angle ai between these t w o  vectors.  A u n i t  
vector  defined by 

+ + 
i 

u x u  
i i + l  

Ilu x u II 
i i+ 1 

6 i =  + -f 

es tab l i shes   the   d i rec t ion  of Xi. Hence, 

+ 
i+ 1 

i i+l 

t a n  a = i u * U  
+ + 

i s  t h e   r a t i o  of s i n  a t o  COS a . O r ,  equivalent ly ,  i i 

llUi x z  II + 
t a n  a = 

i+ 1 

i i+ 1 
i 4. + u * U  

which is shown i n   t a b l e  11. 

12 



Calibrat ion of J o i n t  Angles 

I 

The joint  angle  can be ca l ibra ted  as follows.  After  posit ional  data 
'i 3.  (k) are obta ined   for   var ia t ions   in   the   jo in t   angle  Bi I l e t  0; be the  f ixed 

v h u e  of ei when the   next   pos i t iona l   da ta  

'i+ 1 d a t a   i n   t h e  parameter extraction  procedure. Then, (e i )  corresponds t o  ei. I f  
the   func t iona l   re la t ionship  between ei and 0; i s  the  l inear   equat ion ( 3 )  I then 

ti+ 1 ('1 a r e   c o l l e c t e d   f o r   v a r i a t i o n s   i n  . Moreover, l e t  (e:)* be  the  value of €Ii t h a t  if gomputed with  the  posi t ional  * 

Thereafter,   with  this  value  of pi, equation ( 3 )  gives e; for  different   values   of  
0: - 

Extraction  of  the  Denavit-Hartenberg  parameters  allows  the  definition  of  joint 
ax i s  systems for   the   robot  arm, such as those   depic ted   in   f igure  10. The procedure 
in   t h i s   ana lys i s   app l i e s   no t   on ly   t o   robo t  arms bu t   a l so  t o  o ther   jo in ted  mecha- 
nisms.  In  addition,  errors are not  propagated. Although on ly   ro t a t iona l   j o in t s   a r e  
d i scussed   i n   t he   t ex t ,   t r ans l a t iona l   o r   s l i d ing   j o in t s  are easi ly   handled  as   indi-  
c a t e d   i n  appendix B.  

CONCLUDING REMARKS 

A vector-algebra method i s  developed t o   e x t r a c t   t h e   r e l a t i v e   j o i n t  geometry 
(Denavit-Hartenberg  parameters)  of a robot arm o r   o the r   j o in t ed  mechanisms. The only 
measurements requi red   a re   the   loca t ions  of a po in t  on the  robot  hand €o r   d i f f e ren t  
j o i n t  angles. A minimum of four   locat ions ( i . e . ,  world coordinates  for  four  loca- 
t i o n s  of t he   po in t )  is  required; however, more points  should  be  used t o  reduce  the 
e f f e c t s  of measurement e r ro r s .  The robot arm i s  posi t ioned by changing a set of 
j o in t   ang le s  (which a re   re fe renced   to   an   a rb i t ra r i ly   spec i f ied   zero   pos i t ion) ,   and  
then  the  locat ion  of  a po in t  on the.  robot hand i s  measured wi th   respec t   to  a f ixed 
world a x i s  system  (which i s  a l s o   a r b i t r a r i l y   s p e c i f i e d ) .  These pos i t ions  and j o i n t  
angles  are used in   equa t ions   t o   ex t r ac t   t he   r e l a t ive   j o in t   pa rame te r s .  More specif i -  
ca l ly ,   t ra jec tor ies   genera ted  by a poin t  on the  robot arm ( c i r c u l a r   t r a j e c t o r y   f o r  
r o t a t i o n a l   j o i n t s  and l i n e   t r a j e c t o r y   f o r   s l i d i n g   j o i n t s )  and  obtained by individual  
j o i n t  movements provide  sufficient  information  to  determine  unit  vectors  along  the 
l i n e s   o f   r o t a t i o n   o r   t r a n s l a t i o n  and t o  subsequently  extract  the  Denavit-Hartenberg 
parameters. 

This  method f o r   e x t r a c t i n g   r e l a t i v e   j o i n t  geometry  of robot arms w i l l  be  useful 
t o   r e s e a r c h e r s  who need these  data   for   exis t ing  robot  arms fo r   e i t he r   va l ida t ion   o f  
mathematical  models or   for   s tudies   involving  the  actual   control   of   these  devices .  
This method, which does  not  require  the  robot arm t o  be  disassembled, may a l so   be  
u s e f u l   i n   t h e   r e c a l i b r a t i o n  of a misaligned  or  bent  robot arm and, i f   s u f f i c i e n t l y  
accurate,   could become a useful  industrial   procedure.  A merit of t he  method i s  t h a t  
e r r o r s  are not  propagated. 

Langley  Research  Center 
National  Aeronautics  and  Space  Administration 
Hampton, VA 23665 
Ju ly  11,  1983 
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APPENDIX A 

WORLD COORDINATES OF POINT F BY SINGLE  SIGHTING DEVICE 

The  symbols  used i n  t h i s  appendix a re   def ined  as  follows: 

d dis tance from origin  of  world a x i s  system t o  poin t  F 

F point  associated  with  robot arm; center  of  sphere 

world coordinates 

Y,Yl 'Y2 elevation  angles  of  sighting  device 

Y m X  
e levat ion  angle  such t h a t   i f   l i n e  of s igh t  i s  lowered s u f f i c i e n t l y ,  it w i l l  

pass  through  center  of  sphere 

P S  

J ,  azimuth  angle  of  sighting  device 

known sphere  radius 

The parameter-extraction method presented i n  t h e   t e x t   u s e s   t h e  world  coordinates 
of a po in t  F on the  robot arm as  input  data.   There are several  ways t o   g a t h e r   t h i s  
information,  with some ways being more accurate  than  others.  

A technique which might  be usefu l   in   ob ta in ing   the  world coordinates  of a 
po in t  F i s  shown i n   f i g u r e  A l .  Since  point F is  somewhat a rb i t ra ry ,   cons ider  it 
t o  be  the  center of a sphere  of known rad ius  ps on an  extension  that  is  held by t h e  
robot  hand. For  reference,   an  arbitrary  reference  point i s  selected so t h a t  when it  
i s  sighted,  the  azimuth  angle (1, and elevat ion  angle  y of t h e   t r a n s i t  are con- 
s ide red   t o  be  zero. N o w ,  3, i s  increased by changing y u n t i l  a l ine-of-sight 
tangent   to   the   sphere  i s  produced a t  y = y2. With 4 constant ,  y i s  then  reduced 
t o  y = y1 which corresponds to   the  other   l ine-of-s ight   tangent .  The desired  eleva- 
t ion   angle  y2 is the  maximum elevation  angle ymax which e x i s t s  as (1, is  
increased, as ind ica t ed   i n   f i gu re  A2. With these  l ine-of-sight  angles,   the  distance 
t o  poin t  F is 

and the  world coord ina tes   a re  

14 



APPENDIX A 

YW = d cos(” + y2 ) s i n  J, 

x W = d  COS^' + y2 ) COS 3, 

N o  measurements were made to  ascertain  the accuracy of t h i s  measurement 
technique. 
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Line-of-sight 
tangent  lines 

Sphere  on  extension 
attached  to  robot  hand 

Sighting  device 

Arbitrary  reference  point 
($ = 0 ;  y = 0 )  

Figure A l e -  Using sighting  device  to  obtain  world  coordinates ( x w I y w I z w )  of 
point  F l oca t ed   a t   cen te r  of sphere  being  held by robot hand. 
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Line-of-sight 
tangent  lines 

Circumferential  surface 
of sphere 

Sighting device 

(l) = 0; y = 0) 

Figure A2.- I l l u s t r a t i o n  of maximum elevat ion  angle   for   l ine-of-s ight   tangent  
l i n e  to  spherical   surface.  
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APPENDIX B 

RELATIVE J O I N T  GEOMETRY FOR SLIDING  JOINTS 

In  the  text,  primary  emphasis i s  placed on r o t a t i o n a l   j o i n t s ;  however, t h e  same 
basic analysis   holds   for   Pl iding  joints   (extendable   segments) .  L e t  r be t h e  
extension  variable  and €Ii+! be a cons t an t   fo r   j o in t  i + 1 i n   t h e  rogot arm. 
Measuring  locations of a p o m t  F on the  robot  arm f o r  two dif fa ren t   ex tens ions  

(‘i+ 1 

+ 
i 1  

(k) , where k = 1 and 2 )  gives  two po in t s  on a l i n e .  L e t  Pi+l (1 1 correspond 

t o  the  extension r = r ( 1 ) and ( 2 )  correspond t o  + r + = r (21 ,  where 

‘lri+ 1 

-+ -+ 
i+ 1 i+ 1 i+ 1 i+ 1 

-+ ( 2 )  II > Ilri+l ( 1 ) 11. Then, ins tead  of the   un i t   vec tor   in   equa t ion  (9), t h e   u n i t  -+ 

vector  i s  

Furthermore,   instead  of  the  l ine  equation (121 ,  t he  new l ine  equat ion i s  

-+ + 
i+ 1 

The remaining  steps  in  the  parameter  extraction  are  the same a s   i n   t h e   t e x t .  

The l i n e  of  extension  represented by equation ( B 2 )  can  be s h i f t e d ,   i f   d e s i r e d ,  
t o   p a s s  through some chosen point ;   for  example, the  Pi+l( l )   in   the  equat ion  can  be 

replaced by Ri-,. This makes the  ai  terms  in  equation ( 2 )  equal t o   z e r o   f o r   s l i d -  

i n g   j o i n t s   ( r e f .  5). 

-+ 

+ 
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TABLE I. - DIRECTION OF Xi 

Consecutive 
lines of rotation 

Do not  intersect  and 
not  parallel 

Intersect  but  not 
parallel 

Parallel  but 
separated 

Coincident  lines  are 
excluded 

f O  

20 

0 

0 

Ila I1 + 

20 

0 

20 

0 

Direction of xi 

+ + + Either  ui x ui+l or ai 

+ a i 

Excluded 
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1 Direction 
~ of current 

I' xi 

I 

TABLE  11.-  CONSISTENT  TANGENT  EQUATIONS FOR ai  AND ei 

Previously  defined  direction of Xi-l 

U 
+ + 

x u  i-1 i 

+ + 
Ilu. x ui+l II 
1 tan a = + i u m u  

+ 
i i + l  

+ 
tan  a. 1 = [It x ui+l) -+ 8 dl+ u * U  + 

II a . II i i+l 
1 

+ a i- 1 

+ + 
Ilu. x u  II 
1 i+l 

i i+ l  

tan a = + i u * U  
+ 

+ 
+ +  
u . U  i+ 1 i i+l 



I 
I 

Wrist notions 

/ d- Wrist 

Figure 1.- Robot arm  with  rotational joints. Initial position. 
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Measurement point  

Deflected  extension 
attached t o  robot 

end e f f ec to r  

I e 3  

/ 

, 
0 3' 

e '  
G3 

I 

World reference 

Figure 2.- World  axis  system  and  robot arm with  extension  for  measurements. 
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1-1 X. 1-1 

( a )  Nonintersect ing  l ines  of ro ta t ion .  

(b) In te rsec t ing   l ines  of ro t a t ion .  

Figure 3. -  Consecutive  joint   axis  systems  and  relative  joint  geometry. 
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\ 
\ 

\ 
\ 
\ 
\ 
\ 
\ 

I 
I 

&i+1 

I 
I 

I 
I 

I 
I 

I 
I '  

Figure 4.- I l l u s t r a t i o n  of world a x i s  System, vector Ri-l, and  direct ion of Xi-l 
+ 

f o r  problem  statement. Dashed l i nes   r ep resen t  unknown l i n e s  of ro t a t ion  for  
consecutive  joints.  
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trajectory of point F 

X i-1 

Figure 5.- Circular  trajectory of point  F  about  line of rotation  for  joint i. 
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X i-1 

Figure 6.- Un i t  vector i n  same direct ion  as   joint   rotat ional   vector .  
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\ 
\ 

\ 
\ 

Figure 7.- Lines of rotation  €or  consecutive  joints  and  transverse vector. 
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I: 

Figure 8.- Composite  figure  showing  geometry  involved in parameter- 
extraction method. 
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Line paral le l  t o  Z i-1 

,- u n i t  circle 

Figure 9. - Geometry i l l u s t r a t i n g  xi defined i n   d i r e c t i o n  Of h i  X Qi+l  
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. .. 

Figure 10. -  -bot arm with axis systems. 
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