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Abstract: The advanced static VAR compensator 
(now widely known as the static condenser or 
STATCON) uses a high power self-commutating 
inverter to draw reactive current from a transmis- 
sion line. Two fundamentally different types of 
invertor can be used for this purpose, one provid- 
ing control of output voltage magnitude and 
phase angle, and the other having only phase 
angle control. For each of these types, the govern- 
ing equations are derived, and frequency domain 
analysis is used to obtain the relevant transfer 
functions for control system synthesis. Further 
analysis is provided to determine the response of 
the STATCON to negative sequence and harmo- 
nic voltage components on the transmission line. 
The results are illustrated with measured wave- 
forms obtained from a scaled analogue model of 
an 80 MVAR STATCON. 

1 Introduction 

The advanced static VAR compensator (ASVC) is based 
on the principle that a self-commutating static inverter 
can be connected between three-phase AC power lines 
and an energy-storage device, such as an inductor or 
capacitor, and controlled to draw mainly reactive current 
from the lines. This capability is analogous to that of the 
rotating synchronous condenser and it can be used in a 
similar way for the dynamic compensation of power 
transmission systems, providing voltage support, 
increased transient stability, and improved damping [ 1, 
23. The ASVC inverter requires gate-controlled power 
switching devices such as GTO thyristors. GTOs are now 
available with ratings that are sufficiently high to make 
transmission line applications feasible. Consequently the 
ASVC has become an important part of the flexible AC 
transmission system (FACTS), introduced by Hingorani 
[3], and presently being promoted by the Electric Power 
Research Institute (EPRI). 

The EPRI has recently commissioned the design and 
construction of a scaled model of an 80 MVAR ASVC 
for transmission lines [4]. The model represents an 
optimum power circuit configuration based on a voltage- 
sourced inverter, and includes the control system that 
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would be applied to a fullpower installation. The control 
system has been designed to achieve fast dynamic control 
of the instantaneous reactive current drawn from the line. 
This capability ensures that the ASVC will function use- 
fully during transmission line disturbances. The concept 
of instantaneous reactive current is a new one and will be 
explained in the following Sections. 

In the course of this project, the dynamic behaviour of 
the ASVC has been studied in depth. This paper presents 
a simplified mathematical model of the ASVC that has 
made it possible to derive the transfer functions needed 
for control system synthesis. The resulting control system 
designs are briefly outlined and further analysis presented 
to show the behaviour of the ASVC when the line voltage 
is unbalanced or distorted. The analysis is based on a 
vectorial transformation of variables, first described by 
Park [SI for AC machine analysis, and later, using 
complex numbers, by Lyon [6] in the theory of instanta- 
neous symmetrical components. 

2 

2.1 Instantaneous reactive current 
The main function of the ASVC is to regulate the trans- 
mission line voltage at the point of connection. It 
achieves this objective by drawing a controlled reactive 
current from the line. In contrast with a conventional 
static VAR generator, the ASVC also has the intrinsic 
ability to exchange real power with the line. As there are 
no sizeable power sources or sinks associated with the 
inverter and its DC-side components, the real power 
must be actively controlled to a value which is zero on 
average and which departs from zero only to compensate 
for the losses in the system. 

The notion of reactive power is well known in the 
phasor sense. However, to study and control the 
dynamics of the ASVC within a subcycle time frame and 
subject to line distortions, disturbances and unbalance, 
we need a broader definition of reactive power which is 
valid on an instantaneous basis. 

The instantaneous real power at a point on the line is 
given by 

Derivation of ASVC mathematical model 

P = U, io + ub ib + U, i, (1) 

The ASVC scaled model was designed and built at 
the Westinghouse Science and Technology Center 
through the combined efforts of several individ- 
uals. In particular, the authors would like to 
acknowledge the important contributions made 
by Mr. M. Gernhardt and Mr. M. Brennen. 
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We can define the instantaneous reactive current concep- 
tually as that part of the three-phase current set that 
could be eliminated at any instant without altering P. 

. +B-phase 

/ \ 

L C - p h a s e  
axis 

, 

Fig. 1 Vector representation of instantaneous three-phase variables 

The algebraic definition of instantaneous reactive current 
is obtained by means of a vectorial interpretation of the 
instantaneous values of the circuit variables, as explained 
in the following Section. 

2.2 Vector representation of instantaneous 

A set of three instantaneous phase variables that sum to 
zero can be uniquely represented by a single point in a 
plane, as illustrated in Fig. 1. By definition, the vector 
drawn from the origin to this point has a vertical projec- 
tion onto each of three symmetrically disposed phase 
axes which corresponds to the instantaneous value of the 
associated phase variable. This transformation of phase 
variables to instantaneous vectors can be applied to volt- 
ages as well as to currents. As the values of the phase 
variables change, the associated vector moves around the 
plane describing various trajectories. The vector contains 
all the information on the three-phase set, including 
steady-state unbalance, harmonic waveform distortions, 
and transient components. Fig. 2 provides a graphical 
illustration of the vector trajectory that would develop in 
the case of a three-phase set with severe harmonic distor- 
tion. The diagram shows the vector trajectory and relates 
it back to the actual phase-variable waveforms. 

three-phase quantities 

V 

Fig. 2 Example of uector trajectory: 25%fifth harmonic 

In Fig. 3, the vector representation is extended by 
introducing an orthogonal co-ordinate system in which 
each vector is described by means of its ds- and qs- 
components. The transformation from phase variables to 
ds and qs co-ordinates is as follows: 

L I 

Fig. 3 shows how the vector representation leads to the 
definition of instantaneous reactive current. In the 
diagram, two vectors are drawn, one to represent the 
transmission line voltage at the point of connection and 
the other to describe the current in the ASVC lines. 

, tqs-axis 

(B - axis) I 

Ids "ds +ds-axis 
( A -  axis) 

Fig. 3 Definition of orthogonal co-ordinates 

Using eqns. 2, the instantaneous power given by eqn. 1 
can be rewritten in terms of ds and qs quantities as 
follows: 

= + ugsigs) 

= 3 lu l  I i l  cos ($1 (3) 
where 4 is the angle between the voltage and the current 
vectors. Clearly, only that component of the current 
vector which is in phase with the instantaneous voltage 
vector contributes to the instantaneous power. The 
remaining current component could be removed without 
changing the power, and this component is therefore the 
instantaneous reactive current. These observations can be 
extended to the following definition of instantaneous 
reactive power: 

Q = 3 lu l  I i l  sin (4) 
jqs - ugs ids) (4) 

where the constant 3/2 is chosen so that the definition 
coincides with the classical phasor definition under bal- 
anced steady-state conditions. 

Fig. 4 shows how further manipulation of the vector 
co-ordinate frame leads to a useful separation of vari- 
ables for power control purposes. A new co-ordinate 
system is defined where the d-axis is always coincident 
with the instantaneous voltage vector and the q-axis is in 
quadrature with it. The d-axis current component, id ,  
accounts for the instantaneous power and the q-axis 
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current, i,, is the instantaneous reactive current. The d 
and q axes are not stationary in the plane. They follow 
the trajectory of the voltage vector, and the d and q co- 
ordinates within this synchronously rotating reference 

t q  -axis 4 tqs -axis 

(+ds-axis)  
( A -  axis)  

Fig. 4 Definition of rotating referenceframe 

frame are given by the following time-varying transform- 
ation: 

and substituting in eqn. 1 we obtain 

P = 3{ I v l i d  Q = 3 ID1 i, (6) 
Under balanced steady-state conditions, the co-ordinates 
of the voltage and current vectors in the synchronous 
reference frame are constant quantities. This feature is 
useful for analysis and for decoupled control of the two 
current components. 

2.3 Equivalent circuit and equations 
Fig. 5 shows a simplified representation of the ASVC, 
including a DC-side capacitor, an inverter, and series 
inductance in the three lines connecting to the transmis- 
sion line. This inductance accounts for the leakage of the 
actual power transformers. The circuit also includes 
resistance in shunt with the capacitor to represent the 
switching losses in the inverter, and resistance in series 
with the AC lines to represent the inverter and trans- 
former conduction losses. The inverter block in the 
circuit is treated as an ideal, lossless power transformer. 

Fig. 5 Equivalent circuit of ASVC 

In terms of the instantaneous variables shown in Fig. 
5, the AC-side circuit equations can be written as follows: 

L 

where p = d/dt, and a per-unit system has been adopted 
according to the following definitions: 

Using the transformation of variables defined in eqn. 5, 
eqns. 7 can be transformed to the synchronously rotating 
reference frame as follows: 

P [ 4 ]  = 

where w = de/dt. Fig. 6 illustrates the AC-side circuit 
vectors in the synchronous frame. When i' is positive, the 
ASVC is drawing inductive VARS from the line, and for 
negative ib it is capacitive. 

t d  -axis 

I q  eq 

Fig. 6 ASVC vectors in synchronousfiame 

2.4 Types of voltage-sourced inverter 
Neglecting the voltage harmonics produced by the 
inverter, we can write a pair of equations for e& and <. 

e& = kv&, cos (a) 

e: = kv&, sin (a) 

(10) 

(1 1) 
where k is a factor for the inverter which relates the 
DC-side voltage to the amplitude (peak) of the phase-to- 
neutral voltage at the inverter AC-side terminals, and a is 
the angle by which the inverter voltage vector leads the 
line voltage vector. It is important to distinguish between 
two basic types of voltage-sourced inverter that can be 
used in ASVC systems. 

Inverter Type I allows the instantaneous values of 
both a and k to be varied for control purposes. Provided 
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that U&, is kept sufficiently high, e& and e; can be indepen- 
dently controlled. This capability can be achieved by 
various pulse-width-modulation (PWM) techniques that 
invariably have a negative impact on the efficiency, har- 
monic content, or utilisation of the inverter. Type I 
inverters are presently considered uneconomical for 
transmission line applications and their control will only 
be briefly considered here. 

Inverter T y p e  I I  is of primary interest for transmission 
line ASVCs. In this case, k is a constant factor, and the 
only available control input is the angle, a, of the inverter 
voltage vector. This case will be discussed in greater 
detail. 

2.5 Inverter type I control system 
Inspection of eqn. 9 leads directly to a rule that will 
provide decoupled control of i& and ih. The inverter 
voltage vector is controlled as follows: 

c 
e& = - (xl - mi;) -t I v' I (12) 

O b  

I: 
e; = - (x2 + 06) 

O b  

Substitution of eqns. 12 and 13 into eqn. 9 yields 

r - R : w h  - 1 

Eqn. 14 shows that i& and ih respond to x1 and x; respec- 
tively, through a simple first-order transfer function, with 
no crosscoupling. The control rule of eqns. 12 and 13 is 
thus completed by defining the feedback loops and 
proportional-plus-integral compensation as follows : 

x1 = k, + - i&* - i&) ( 3 
x2 = k, + - i;* - ih) ( 3 

The control is thus actually performed using feedback 
variables in the synchronous reference frame. The reac- 
tive current reference, i:, is supplied from the ASVC 
outer-loop voltage control system, and the real power is 

''9 I d  + e  

t la t I C  

rotating axis 
co-ordinate 

transformation 

vector 
resolver 

"ab "bb 

Fig. 7 Block diagram of inverter Type I control 

regulated by varying i&* in response to error in the 
DC-link voltage via a proportional plus integral com- 
pensation. A block diagram of the control scheme is pre- 
sented in Fig. 7. 

2.6 Further model development for inverter type Il 
control 

For Type I1 inverter control it is necessary to include the 
inverter and DC-side circuit equation in the model. The 
instantaneous power at the AC- and DC-terminals of the 
inverter is equal, giving the following power balance 
equation : 

(17) vic i& = $(e& 6 + eh ih) 
and the DC-side circuit equation is 

Combining eqns. 9, 10, 11, 17 and 18, we obtain the fol- 
lowing state equations for the ASVC: 

k-wb 
0 - cos (a) 

I: 

(19) 
Steady-state solutions for eqn. 19 using typical system 
parameters are plotted in Fig. 8 as a function of a. 
(subscript 0 denotes steady-state values). Note that iio 
varies almost linearly with respect to a. , and the range of 
a. for one per-unit swing in i;,, is very small. Neglecting 
losses (i.e. R: = 0, Rp = a), the steady-state solutions 

30r i 

I 20 / 

I 
I 
I Y 
I 

I I I 

- 3 4 5  -1; -d5  0 5  1 0  1 5  

a o, degrees 

Fig. 8 
voltage vector angle 

Steady-state operating points against inverter (Type I I )  output 

E = 0.15, C' = 0.88, k = 4/n, R; = 0.01, Rp = 10O/k, do = 1.0, m0 = 377, wb = 377 
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I 

The undamped poles of the system are thus at would be is follows: 
0 = ob j' q = i' qo I v ' l =  vb 

i' E] (20) 
1 a. = 0 ii0 = Who = i; [vb - qo 

2.7 Linearisation of ASVC equations for small pertur- 
bations 

The ASVC state eqns. 19 are nonlinear if a is regarded as 
an input variable. We can, however, find useful solutions 
for small deviations about a chosen steady-state equi- 
librium point. The linearisation process yields the follow- 
ing perturbation equations: [ AG] [ Aii] 

p Ai: = [AJ Ai: + [BJ 
AV&, A 4 C  

CALI = 

[BJ= 0 I 
1 0 qkC'ob(iio sin (ao) - 'Lo cos (a,))] 

Standard frequency domain analysis can be used to 
obtain transfer functions from eqns. 21. Numerical 
methods have been used to obtain specific results, but it 
is useful to first consider some general results, neglecting 
the system power losses (i.e. R: = 0, R> = 00). For this 
case, the block diagram of Fig. 9 shows how the control 

L L  I 

Fig. 9 Small-signal block diagram showing d y m k  behaviour of 
ASVC system with Type I1 inverter 

input, Aa, influences the system states. The corresponding 
transfer function relating Ai: and Aa is as follows: 

(22) 
AZ'(s) 
4= 
Ads) 

@=% C = L  3ko C' 

@[sz + CC"]V&~~ + [@Cob]iho 
S[SZ + o; + C C ]  

where 

L: 2 

(23) 

The transfer function, eqn. 22, also has a pair of complex 
zeroes on the imaginary axis. These move along the ima- 
ginary axis as a function of ii0, occuring at lower fre- 
quency than the poles only when 

A numerical computation of AZi(s)/Aa(s) from eqn. 21, 
including the losses, has been done for two operating 
points to illustrate the movement of the complex zeroes. 
Fig. 1OA presents the result for each case in a plot of log 
gain and phase against frequency. 

40 

3 0 h  

frequency, Hz 

Fig. 1 OA Transferfinction Al'q(s)/Aa(s)/Aa(s) 
k 4 / ~ ,  L = 0.15, C E 0.88, R, = 0.01, R, = 100.0/& 

Case I : Full capacitive load 

CO = - 1.01 p.u. a. = - 0.01 1 rad (0.63') 

arb(s) 2893(s + 8.7 + j133OXs + 8.7 - j1330) 
A4s)  = (s + 23.8Xs + 15.4 +j1476Xs + 15.4 -j1476) 

Case 2: Full inductive load 
ibo = 1.07 p.u. a. = 0.01 rad (0.57") 

AZ'(s) 
4= 
Aa(s) 

2111(s + 11.4 + j1557Xs + 11.4 -j1557) 
(s + 23.8Xs + 15.4 +j1476)(s + 15.4 -j1476) 

While Case 1 is amenable to feedback control, Case 2 
clearly has little phase margin near the system resonant 
frequency. The latter situation is typical for the condition 
iio > 'Lox. = 0.44 p.u. in this example.) A controller has 
been designed to overcome this problem by using non- 
linear state-variable feedback to improve the phase 
margin when ibo > i iox. The nonlinear feedback function, 
A:, has the following form : 

Aq' = Ai; - g[iio - Cox] AV&, (25) 
where g is a gain factor to be set by design. Fig. 10B 
shows the transfer function, AQ(s)/Aa(s), for the same 
operating points as Fig. 10A, with g = 2.0. The improved 
phase margin in Case 2 is clearly seen. The control 
scheme block diagram is shown in Fig. 11, with the addi- 
tional integral compensation required to obtain zero 
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111 

steady-state error in i:, . This scheme has been implement- 
ed in the ASVC scaled model with a closed-loop control 
bandwidth set to approximately 200 rad/s. This makes it 
possible to swing between full inductive mode and full 
capacitive mode in slightly more than a quarter of a 
cycle. 

L Y  - 4 00 
-1800 100 200 300 

frequency, Hz 

Fig. 108 Transfe*function AQ(s)/Aa(s) 

Aa Aa 
Ai; AV;, 
- - e(G0 - - g = 2.0 

3 Line voltage unbalance and harmonic distortion 

With balanced sinusoidal line voltage and an inverter 
pulse number of 24 or greater, and ASVC draws no low- 
order harmonic currents from the line. However, harmo- 
nic currents of low order do occur when the line voltage is 
unbalanced or distorted. As might be expected from a 
nonlinear load, the ASVC currents include harmonics not 
present in the line voltage. It is important to understand 
ASVC behaviour under these conditions as it can influ- 
ence equipment rating and component selection. 

The ASVC harmonic currents can be calculated by 
postulating a set of harmonic voltage sources in series 
with the ASVC tie lines as shown in Fig. 12. If we further 
neglect losses (i.e. RL = 0, Ri = CO) and assume the 
steady-state condition, a = 0 and w = a b ,  eqns. 19 are 
modified as follows: 

L L  

where vi,,, and U& are the d and q components of the har- 
monic voltage vector. Eqns. 26 are linear and can be 
solved using Laplace transforms. Consider the effect of a 
single balanced harmonic set of order n where negative 
values of n denote negative sequence. The associated har- 
monic voltage vector has magnitude, U; and rotates with 
angular velocity nab.  In the synchronous reference frame 
it rotates with angular velocity (n - 1 ) o b  as shown in Fig. 
13 and 

= cos [(n - 1)wb t] 

viq = v i  sin [(n - 1)Ob t ]  (27) 

These sinusoidal inputs on the d- and q-axes give rise to 
sinewave responses i id ,  i&, and of frequency (n 
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- 1 ) q , .  Generally i;h3 and i& do not form a balanced 
two-phase sinusoidal set. They can be resolved into a 
positive-sequence set and a negative-sequence set using 
normal two-phase phasor symmetrical components. We 
thus find two distinct current component vectors in 
response to the n-order harmonic voltage vector. Within 
the synchronous reference frame, these rotate with fre- 
quency (n - 1 ) w b  and (1 - n)ob, respectively. The corre- 
sponding ASVC line currents have frequencies nob and 
(2 - $ a b y  respectively. Note also that the inverter 

I I 8  
reference 

I I 

co-ordinate 
t ransfor mot ion 7-7 

vector 
phase-locked 

Fig. 11 Block diagram for inverter Type I1 control 

'ha 
I dc eo la LS - va 

sourced 
inverter 

Fig. 12 ASVC equivalent circuit with harmonic voltage sources 

+d-axis 

t 

Fig. 13 Harmonic vectors in the synchronous reference frame 
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develops an alternating voltage component of frequency 
(n - l)ob at its DC terminals. 

Eqns. 26 and 27 have been solved to obtain algebraic 
expressions for the magnitudes of these harmonic cur- 
rents in the particular case where n = - l (i.e. fundamen- 
tal negative sequence voltage.) In this case, the ordinals of 
the harmonic currents are - 1 and 3, and the magnitudes 
are calculated from the following: 

0 -  
1; 0- 

Ib' 0-  
-4 0 -  

2 3- 
-4 6 -  

L J 

\ /- 

These expressions have been evaluated using typical 
parameters with vi  = 1 P.u., and are plotted against per- 
unit capacitive reactance in Fig. 14. Notice that for 
C = 21:/k2 both iLl and i; become infinite. This condi- 
tion occurs if the second harmonic of the line frequency is 
equal to the ASVC-resonant-pole frequency defined in 
eqn. 23. Also, when C' = 81:/kZ, i'- is zero and the ASVC 
draws no negative-sequence fundamental current from 
the line. 

r 

-.-.- .-.-.-.-._.- 

I 

1 . 2  1.6 0.8 0.185 o,4 0.740 

per-unit DC-l ink capacitance, C' 

Fig. 14 ASVC current components with fundamental negative- 
sequence voltage on the line 
k = 4/74 C = 0.15 p a ,  R, = 0, R ,  = m 

4 

It is beyond the scope of this paper to discuss the EPRI 
ASVC scaled model in detail. However, two sets of mea- 
sured waveforms from the model are presented in Figs. 
15 and 16 to illustrate the system behaviour under tran- 
sient conditions. Fig. 15 shows the dynamic response of 
the instantaneous reactive current controller. In this case 
a squarewave reference, iL*, is injected, and the oscillo- 
gram shows ih, a, and the ASVC line currents. Fig. 16 
shows the ASVC response to a simulated transient unbal- 
anced fault. In this case, the full ASVC control system is 
functional and ih* comes from the system voltage control- 
ler. Initially, the ASVC is supplying 1 p.u. capacitive 
VARS to the line. A phase-to-neutral fault, lasting 
approximately five cycles, is simulated and the oscillo- 

Experimental results from ASVC scaled model 
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gram shows the associated ASVC currents. Note that the 
reactive current reference, i;* is limited in magnitude to 
2 p.u. 

22 5: 

22 5: 

a 0  

1 0  

ih 0 
-1 0 
1 0  

1; 0 
-1 0 

1 0  

-1  0 
I / I I , I I , I , I I I I  

0 32 64 96 128 160 192 
time, ms 

Fig. 15 Measured transient response of reactive-current 
system 

control 

- 3  46 
3 46 

";b 

-3 46 
4 0  

Ib 0 
-4 0 
4 0  

Ib 0 
- 4  0 

, 4 6  
-Iq 2 3 

vd, 

0 

0 
I I I I I 1 I  1 1 1 1  1 1 1  

0 32 64 96 128 160 192 
time, s 

Fig. 16 ASVC system response to line-to-neutralfault 

5 Conclusions 

There is every indication that ASVCs will be an impor- 
tant part of power transmission systems in the future. A 
sound analytical basis has now been established for 
studying their dynamic behaviour. The mathematical 
model derived here can readily be extended to represent 
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the ASVC in broader system studies. The ASVC analysis 
has also led to control-system designs for both Type I 
and Type I1 voltage-sourced inverters. The Type I1 
inverter control is particularly significant because it 
makes it possible to obtain excellent dynamic per- 
formance from the lowest cost inverter and transformer 
combination. 
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