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As a first step towards a realistic phenomenological description of vector and axial-vector mesons in
nuclear matter, we calculate the spectral functions of the ρ and the a1 meson in a chiral baryon-meson
model as a low-energy effective realization of QCD, taking into account the effects of fluctuations from
scalar mesons, nucleons, and vector mesons within the functional renormalization group (FRG) approach.
The phase diagram of the effective hadronic theory exhibits a nuclear liquid-gas phase transition as well as
a chiral phase transition at a higher baryon-chemical potential. The in-medium ρ and a1 spectral functions
are calculated by using the previously introduced analytically-continued FRG (aFRG) method. Our results
show strong modifications of the spectral functions—in particular near the critical endpoints of both phase
transitions—which may well be of relevance for electromagnetic rates in heavy-ion collisions or neutrino
emissivities in neutron-star merger events.
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I. INTRODUCTION

The properties of matter under extreme conditions in
temperature and/or density (as encountered for instance in
the early Universe), the core of neutron stars, and binary
neutron star mergers are in the focus of ongoing theoretical
as well as experimental and observational efforts. Hot and
dense strong-interaction matter is created and studied in
relativistic heavy-ion collisions at the world’s most power-
ful accelerator facilities while the properties of neutron
stars and their dynamics are inferred from observations of
electroweak signals and more recently from gravitational
radiation in merger events. In both cases, key challenges
include the investigation of the in-medium modifications of
hadrons and their connection to changes in the underlying
symmetries, the equation of state, transport properties, and
the phase structure of strong-interaction matter. Here, the
basic features of quantum chromodynamics (QCD)—
dynamical chiral symmetry breaking and confinement—
play a decisive role, as it is expected that at high

temperatures and baryon densities chiral symmetry gets
restored, and that quarks and gluons are liberated as
confinement disappears. For overviews on heavy-ion mea-
surements, astrophysical observations, and theoretical stud-
ies, see e.g., the reviews [1–12] and references therein.
To determine the electroweak response of compressed

and hot nuclear matter, a realistic theoretical description of
the in-medium ρ and a1 spectral functions is required. Both
are parity, as well as chiral partners, of the global chiral
SUð2ÞL × SUð2ÞR symmetry of QCD for Nf ¼ 2 light
quark flavors. Its realization therefore plays an important
role for their in-medium properties. However, a consistent
description that incorporates this (approximate) chiral
symmetry and its spontaneous breaking as well as the
effects from critical fluctuations, most notably from a
critical endpoint of a possible phase transition inside a
dense nuclear environment, is still missing.
In this work we therefore present a new setup for the

calculation of vector and axial-vector meson spectral
functions in dense nuclear matter. Our approach is based
on the functional renormalization group (FRG) which
represents a nonperturbative framework that is capable of
including both quantum and thermal fluctuations [13–20].
Most notably this includes order-parameter fluctuations due
to the dynamics of collective excitations which are not
accessible in mean-field approximations. This makes the
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FRG particularly well suited to study the critical behavior of
the corresponding correlations. Moreover, as with other
functional methods, the FRG is not hampered by the
fermion sign problem encountered in lattice QCD [21] at
finite baryon density. While the region of finite temperature
at low net-baryon density, for baryon chemical potentials μB
less than about twice the temperature T where lattice QCD
results are available, it is important to benchmark effective
theories and approximations, including the unavoidable
truncations in functional methods. The FRG can therefore
then be applied with some confidence also in the dense
region of the phase diagram of strong-interaction matter,
with μB of the order of the nucleonmass at temperatures that
are at least an order of magnitude lower than that. In
addition, the necessary truncations can be made to preserve
the global symmetry structure and its breaking patterns as
described by the underlying effective theory.
To construct an effective low-energy description for

nuclear matter that is consistent with chiral symmetry and
its breaking pattern, the notion of parity-partners in the
bosonic sector has to be extended to massive fermions. This
is accomplished in the parity-doublet model (PDM), or
mirror-baryonmodel [22–24]. The PDMdescribes nucleons
along with their parity partners and can account for a finite
nucleon mass in a chirally-invariant fashion. It is motivated
by the assumption that a large fraction ofmass of the nucleon
in QCD is generated by the gluonic contribution to the scale
anomaly [25], and not through dynamical chiral symmetry
breaking. The PDM also provides a natural description for
the parity-doubling structure of the low-lying baryons
observed in recent lattice-QCD calculations [26,27]. The
mean-field phase diagram [28–39] is known to consist of
two distinct first-order phase transitions; the usual nuclear
liquid-gas transition together with a second, chiral transition
at higher chemical potentials. In particular, the existence of
this chiral transition inside the dense nuclear-matter phase
was confirmed including fluctuationswithin the FRG in [40]
to be a robust prediction of the PDM. Just like ρ and a1, the
nucleon Nð938Þ and its parity partner, commonly assigned
to the 1=2− N�ð1535Þ resonance become (almost) degen-
erate at this transition, with a common and chirally invariant
finite baryon massm0;N from the scale anomaly. This model
thus serves as a suitable effective theory to describe a chiral
phase transition inside nuclear matter entirely in terms of
hadronic degrees of freedom.
Experimentally testable predictions from this scenario

could range from an enhanced production of η mesons in
heavy-ion collisions at low-beam energies, when a popula-
tion imbalance between N and N� is created in such a
transition, to an enhanced dilepton signal from critical
fluctuations when the trajectory in the phase diagram of
the expanding system comes close to the associated chiral
critical endpoint. We will focus on the latter here, and
calculate as a first step towards obtaining the electromag-
netic spectral function and the thermal dilepton rates [41],

the in-medium spectral function of the ρvectormeson and its
chiral partner, the a1 axial-vector meson in nuclear matter
within this PDM setting.
For the calculation of the spectral functions we use the

analytically-continued FRG (aFRG) framework developed
in [42–44]. The aFRGmethod avoids the need for numerical
reconstruction schemes, see for example [45–53], and it is
thermodynamically consistent in that the thermodynamic
grand potential and the spectral functions are calculated on
the same footing. The aFRG method has been successfully
applied in different situations; for example, to calculate in-
medium spectral functions of pions and the scalar σ meson
[43,44,54], the quark spectral function [55,56] as well as
vector- and axial-vector meson spectral functions at finite
temperature and density in extended linear-sigma models
with quarks [57,58], together with the corresponding
electromagnetic spectral function and thermal dilepton rates
[41] inside quark matter.
In this paper we use the PDM as our effective theory

describing the two isodoublets of N and N� as parity
partners with chiral representations in the mirror assign-
ment and chirally invariant mass term. These interact via
chirally invariant Yukawa couplings with pions and the
scalar σ meson as well as ρ and a1 mesons as the respective
chiral partners in the (pseudo)scalar and the (axial-)vector
meson channels. The formalism to describe the fluctuations
of massive vector and axial-vector mesons in an effective
theory based on (anti)selfdual field strengths is taken from
[58]. Compared to the precursor study in [57], the inclusion
of fluctuating vector and axial-vector mesons in the aFRG
flows allows us to account for important additional con-
tributions to their spectral functions such as, e.g., the three-
body resonance decay a1 → ρπ → 3π.
Our work represents a first step towards a realistic

description of vector and axial-vector mesons in nuclear
matter. While the former are particularly relevant for
the interpretation of dilepton spectra in heavy-ion colli-
sions, both are needed to determine the neutrino emissiv-
ities in proto-neutron stars and binary neutron-star mergers.
The in-medium spectral functions provide access to real-
time quantities such as pole masses and decay widths but
also to other observables such as pertinent transport
coefficients. Moreover, since our FRG treatment is
thermodynamically consistent and symmetry preserving,
the in-medium modifications of the spectral functions
can be stringently connected to the restoration of chiral
symmetry.
The remainder of this paper is organized as follows. In

Sec. II the theoretical setup as well as results for the phase
diagram and the Euclidean (screening) masses are pre-
sented. In Sec. III we discuss results for the real-time two-
point functions and the in-medium spectral functions of
the ρ and the a1 meson. We close with a summary and
outlook in Sec. IV. Further details are deferred to an
Appendix.
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II. THE PARITY-DOUBLET MODEL WITH
VECTOR AND AXIAL-VECTOR MESONS

A. The effective average action

The question of how to describe baryons within effective
models incorporating the principle of chiral symmetry has a
long history. Here, important work was done by Walecka
who introduced a hadronic model consisting of nucleons,
scalarmesons, and vectormesons [59], and byLee andWick
who reformulated the model of Walecka as a chirally
invariant version [60]. The latter model is often called the
chiral Walecka model and basically corresponds to the
quark-meson model with nucleons instead of quark fields.
The problem here is that the baryonic degrees of freedom
become essentially massless in the chirally restored phase

(Lee-Wickmatter) as in thesemodels theirmass, in the chiral
limit, is entirely generated by spontaneous chiral symmetry
breaking. The occurrence of a Lee-Wick phase is circum-
vented by including the parity partners of the nucleons in a
chirally invariant way, leading to parity-doublet models.
For an FRG treatment of the PDM we need an ansatz for

the corresponding effective average action Γk, the central
object in the FRG approach formulated by Wetterich [61],
where k is the renormalization-group scale. In this work we
will use the following ansatz for the effective average action
of the PDM, extended by vector and axial-vector mesons,
thus combining the FRG framework for the PDM presented
in [40] and the strategy to include massive spin-1 (axial-)
vector mesons presented in [58],

Γk ¼
Z

d4x

�
N̄1ð∂ − μBγ0 þ hs;1ðσ þ iτ⃗ · π⃗γ5Þ þ hv;1ðγμτ⃗ · ρ⃗μ þ γμγ

5τ⃗ · a⃗1;μÞÞN1

þ N̄2ð∂ − μBγ0 þ hs;2ðσ − iτ⃗ · π⃗γ5Þ þ hv;2ðγμτ⃗ · ρ⃗μ − γμγ
5τ⃗ · a⃗1;μÞN2 þm0;NðN̄1γ

5N2 − N̄2γ
5N1Þ

þ Ukðϕ2Þ − cσ þ 1

2
ðDμϕÞ†Dμϕ −

1

4
tr∂μρμν∂σρσν þ

m2
v

8
trρμνρμν

�
: ð1Þ

The nucleon fieldsN1 andN2 are defined to have opposite
parity and respectively represent the isodoublet of nucleons,
ðp; nÞ, and their parity partners, to which we assign the
N�ð1535Þ. The chirally-invariant bare nucleonmass is given
by m0;N ; μB denotes the baryon chemical potential, and the
h’s label the various Yukawa couplings betweenmesons and
baryons. In this work we choose the scalar and vector-
couplings to be the same, i.e., hs;1 ¼ hv;1 and hs;2 ¼ hv;2, as
also done in [57,58]. The scalar and pseudoscalar meson
fields are combined in ϕ2 ¼ σ2 þ π⃗2 with ϕ ¼ ðσ; π⃗ÞT .
Ukðϕ2Þ is the Oð4Þ symmetric effective potential, and the
term cσ provides the explicit chiral-symmetry breaking that
arises from the small but finite current masses of the light
quarks in perturbative QCD. In principle, the effective
potential and hence the thermodynamic grand potential
can depend on all field combinations allowed by symmetry.
The guiding principle here is to include fluctuations due to
collective excitations such as those of order-parameter fields
as in Landau-Ginzburg-Wilson effective theories. Because
neither the ρ nor the a1 meson are expected to develop
nonvanishing expectation values in symmetric nuclear
matter, their fluctuations are not included in the effective
potential, at this level. This ansatz represents the leading
order in a derivative expansion, also called local potential
approximation (LPA) [62,63].
To describe the dynamics of massive vector and axial-

vector fields and their couplings in an effective theory [58],
right- and left-handed vector mesons are first introduced as
(anti)selfdual field strengths ρ̃�μν ¼ �ρ�μν which transform
according to the (1,0) and (0,1) representations of the

Euclidean Oð4Þ replacing the proper orthochronous
Lorentz group for massive spin-1 particles, with ð1; 0Þ ↔
ð0; 1Þ under parity,

ρμν ¼ ρþμν þ ρ−μν ¼ ρ⃗þμν · T⃗R þ ρ⃗−μν · T⃗L: ð2Þ

Here, T⃗R and T⃗L denote the soð4Þ Lie algebra matrices, see
Appendix for explicit expressions and conventions of the
generators of the chiral SUð2ÞL × SUð2ÞR in the adjoint
representation.1

The isotriplet vector ρ⃗μ and axial-vector a⃗1μ fields with
common mass mv are then obtained from these field
strengths as

ρ⃗μ ¼
1

2mv
trð∂σρσμT⃗VÞ; ð3Þ

a⃗1μ ¼
1

2mv
trð∂σρσμT⃗AÞ; ð4Þ

where T⃗V ¼ T⃗R þ T⃗L and T⃗A ¼ T⃗R − T⃗L. These represent
conserved four-vector fields by construction,

∂μρ⃗μ ¼ ∂μa⃗1μ ¼ 0; ð5Þ

1WithSUð2ÞL×SUð2ÞR∼SOð4Þ for allmesonic representations.
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and, in particular, no π − a1 mixing arises because the
direct derivative coupling of the pion ∝ ∂μπ with the
conserved a⃗1μ field vanishes [64].
The interactions of the (axial-)vector fields, combined in

the soð4Þ matrix Vμ ¼ ρ⃗μT⃗V þ a⃗1μT⃗A, with the SOð4Þ
vector of scalar and pseudoscalar σ and π⃗ mesons are
determined from minimal coupling with Dμ ¼ ∂μ þ igVμ,
(see Appendix).

B. Flow of the effective potential and numerical
implementation

The ansatz for the effective average action Γk formulated
in Eq. (1) is now used in the Wetterich equation [61] which
defines the ‘flow’ of Γk and is given by

∂kΓk ¼
1

2
STr½∂kRkðΓð2Þ

k þ RkÞ−1�; ð6Þ

where Rk is a regulator function that suppresses momentum

modes with momenta smaller than k, Γð2Þ
k is the second

functional derivative with respect to the fields, and the
supertrace runs over all internal indices, over bosonic and
fermionic field space, in momentum space including an
integration over internal momenta or thermal Matsubara

sums as well as the fermionic minus signs and factors of
two. At the ultraviolet (UV) scale k ¼ Λ, Γk is essentially
given by the bare action. By solving the Wetterich equation
and lowering the scale k the effects of quantum and thermal
fluctuations are gradually included until the full effective
action Γ ¼ Γk¼0 is obtained in the limit k → 0.
The regulator function Rk has to be chosen appropriately

for different types of fields [65]. In this work we use three-
dimensional regulator functions that only regulate spatial
momenta but not the energy components, at the expense of
slightly breaking the EuclideanOð4Þ symmetry [42]. While
in principle four-dimensional regulator functions can also
be used [66,67], the three-dimensional regulators allow us
to analytically perform the integration over the internal
energy component, or the corresponding Matsubara sum at
finite temperature, as included in the supertrace of Eq. (6).
This in turn allows us to apply the aFRG analytic
continuation procedure as necessary for the calculation
of the real-time two-point functions and spectral functions
in the following. Explicit expressions for the different
regulator functions are given in Appendix.
When inserting the ansatz (1) into the Wetterich equa-

tion (6), one obtains the flow equation for the effective
potential,

∂kUk ¼
k4

12π2

�
1þ 2nBðEσ;kÞ

Eσ;k
þ 3ð1þ 2nBðEπ;kÞÞ

Eπ;k
þ 4Nf

EN1;kEN2;k
½−ðEN1;k þ EN2;kÞ þ EN2;knFðEN1;k − μBÞ

þ EN1;knFðEN2;k − μBÞ þ EN2;knFðEN1;k þ μBÞ þ EN1;knFðEN2;k þ μBÞ�
�
: ð7Þ

Therein, we introduced the number of flavors Nf ¼ 2, the
bosonic and fermionic occupation numbers, nB and nF, as
given explicitly in Appendix, and the scale-dependent
particle energies for the sigma meson, the pion, as well
as for the nucleon and its party partner. The effective
quasiparticle energies are defined as

Eα;k ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

α;k

q
; α ∈ fπ; σ; N1; N2g; ð8Þ

with the effective masses of the pion and the sigma meson
given by

m2
π;k ¼ 2U0

k; ð9Þ

m2
σ;k ¼ 2U0

k þ 4U00
kϕ

2
0; ð10Þ

where primes denote derivatives with respect to the chirally
invariant ϕ2 ≡ σ2 þ π⃗2, and ϕ2

0 ¼ σ20 is the global mini-
mum of the effective potential in the IR. The masses of the
nucleon and its party partner are defined by the eigenvalues
of the mass matrix

M ¼
�

hs;1σ01 m0;Nγ5

−m0;Nγ5 hs;2σ01

�
; ð11Þ

and are given explicitly by

m2
N1

¼ 1

2

�
þðhs;1 − hs;2Þσ0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2

0;N þ σ20ðhs;1 þ hs;2Þ2
q �

;

ð12Þ

m2
N2

¼ 1

2

�
−ðhs;1 − hs;2Þσ0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2

0;N þ σ20ðhs;1 þ hs;2Þ2
q �

:

ð13Þ

As expected, for σ0 → 0 the two masses become degenerate
and reduce to the bare mass m0;N , while for m0;N ¼ 0 the
model reduces to a sum of two independent fermion-meson
models with masses for the nucleon and its parity partner
given by hs;1σ and hs;2σ. In this case the fermion masses are
generated by spontaneous chiral symmetry breaking as in
the Lee-Wick model [60].
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Note that the flow equation for the effective potential,
Eq. (7), does not depend on quantities related to vector
mesons. This is because, for isospin-symmetric matter with
an equal number of protons and neutrons, the isovector ρ
and a1 mesons are not expected to develop nonvanishing
expectation values and are therefore not included in the
ansatz for the effective potential. The isoscalar ω vector
meson, in principle, contributes to the effective potential
(see e.g., [40,68]) but has not been included here. The
inclusion of the ω meson as a dynamical field with finite
expectation value inside nuclear matter, and fluctuations
contributing to effective potential and thermodynamics will
be deferred to future work.
It remains to specify the UV initial conditions and the

parameters used to solve the flow equation for the effective
potential. At the UV scale Λ we choose the effective
potential to be of the form

UΛðϕ2Þ ¼ b1ϕ2 þ b2ðϕ2Þ2 þ b3ðϕ2Þ3; ð14Þ

and then solve the flow equation numerically using the so-
called “grid method” (see for example [69]). This method is
based on a discretization of the field ϕ in σ-direction while
the pion field is set to its expectation value hπ⃗i ¼ 0.
Derivatives of the potential in the field direction, as needed
in the flow equation, are then obtained by a finite-difference
scheme. We have checked explicitly that this numerical
setup gives the same results as other approaches like finite-
element or finite-volume methods (see also [70,71]).
The numerical values for the parameters used for the

effective potential, the bare nucleon mass, and the Yukawa
couplings are summarized in Table I. These are chosen such
as to reproduce phenomenologically reasonable values for
the pion decay constant and the particle masses in the
vacuum at k → 0, where the pion decay constant fπ is
identified with the value of the sigma field at the global
minimum of the effective potential. The resulting values for
fπ , the pion massmπ, the sigma massmσ, the nucleon mass
mN1

, and the mass of its parity partnermN2
are also given in

Table I. For the UV cutoff we use Λ ¼ 1000 MeV and for
the IR scale kIR ¼ 40 MeV.
As usual in OðNÞ-Yukawa models, the symmetry break-

ing is generated from the fermionic fluctuations, where the
fermionic minus sign acts like a negative index of refraction
to drive the expectation value of the scalar order-parameter
field away from its symmetric minimum. Although the
fermionic fluctuations arise here from baryons with a

sizable bare mass ofm0;N ¼ 800 MeV, a UV cutoff of Λ ¼
1 GeV turns out to be just large enough to generate the right
amount of symmetry breaking starting from an effective
potential with only the symmetric minimum for our choice
of UV parameters. This mechanism of dynamical chiral
symmetry breaking by the baryonic fluctuations is dem-
onstrated in Fig. 1. Starting from the UV cutoff Λ the mass
of the nucleons first decreases while that of the 1=2−

baryons increases. Incidentally, the chiral symmetry break-
ing scale at kχ ∼ 850 MeV here coincides with the scale
mN2

∼ k at which the heavier 1=2− baryons decouple.
The nucleon mass starts increasing at this point so that
the fermionic fluctuations eventually cease to dominate the
flow. A second scale around k ∼ 600 MeV then emerges
below which the mesonic fluctuations eventually dominate.
They tend to be symmetry restoring and this explains why
the breaking pattern is not monotonically increasing with
the flow towards the infrared, where it levels at the desired
physical values as it would in a purely mesonic model.
The fact that this can be achieved in this way, with no

clear separation of scales between the initial fermion mass
of m0;N ¼ 0.8 GeV and the UV cutoff scale Λ ¼ 1 GeV
might be surprising at first. It is reassuring for our effective

TABLE I. Parameters used for the effective potential at the UV cutoff Λ ¼ 1 GeV, the bare nucleon mass and the Yukawa couplings,
as well as the resulting values for pion decay constant and Euclidean particle mass parameters in the IR.

b1 [Λ2] b2 b3 [Λ−2] c [Λ3]
m0;N

[MeV] hs;1¼hv;1 hs;2¼hv;2
fπ ≡ σ0
[MeV]

mπ

[MeV]
mσ

[MeV]
mN1

[MeV]
mN2

[MeV]

0.395189 −4.66855 52.3117 1.74303 × 10−3 800 6.94073 13.3493 92.8 137 474 938 1533

0 200 400 600 800 1000
0

500

1000

1500

T=0 MeV, µB=0 MeV

m
as

se
s

[M
eV

]

k [MeV]

a1
N1
N2

FIG. 1. RG-scale dependence of the Euclidean particle masses
in the vacuum. We observe strong effects from spontaneous chiral
symmetry breaking between RG scales of k ≈ 900 MeV and
k ≈ 600 MeV. The scale-dependent masses shown here serve as
input for the calculation of the ρ and a1 spectral functions and
determine the locations of the thresholds corresponding to the
various decay channels.
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hadronic theory which would otherwise start to lose
credibility, if either considerably higher UV cutoff scales
were needed or the fermionic fluctuations were irrelevant in
the first place.

C. Phase diagram

In order to obtain the phase diagram of the PDM for the
specified parameters we solve the flow equation for the
effective potential at different combinations of temperature
and baryon chemical potential, and plot the chiral order
parameter, i.e., the value of σ0ðμB; TÞ at the global mini-
mum of the effective potential in the IR. The resulting
phase diagram in the regime of high chemical potentials
and comparatively low temperatures, as is relevant for
nuclear matter, is shown in Fig. 2.
As is also found in [40], we observe two distinct phase

transitions. The phase transition at lower chemical poten-
tials represents the liquid-gas transition of nuclear matter
while the second phase transition at higher chemical
potentials inside dense nuclear matter can, in the chiral
limit, be identified as the chiral phase transition. Both
phase transitions consist of a first-order line at low
temperatures connected to a critical endpoint (CEP).
With our current parameters these CEPs are located
at (μB ≈ 896 MeV, T ≈ 10 MeV) and (μB ≈ 925 MeV,
T ≈ 33 MeV), respectively.
The position and the strength of the liquid-gas transition

strongly depends on the bare nucleon massm0;N . The larger
the value of m0;N the more the location of the discontinuity
moves towards a larger μB while at the same time the
strength of the transition gets weaker resulting in a larger

in-medium condensate and hence a smaller nucleon sigma
term. Obtaining phenomenologically acceptable values for
the binding energy per nucleon, the nuclear saturation
density, and the correct in-medium condensate all at the
same time is known not to be possible within the present
FRG setup [40]. This will require the proper inclusion of
fluctuating ω mesons which we defer to a future study. For
our first qualitative study here, we chose m0;N ¼ 800 MeV
as a reasonable compromise (as concluded in [40]).
At the mean-field level, the inclusion of the ω meson in

the effective action is known to result in a simple shift of the
chemical potential, and is hence effective in adjusting the
binding energy per nucleon essentially without influencing
the strength of the nuclear liquid-gas transition. That the
same mechanism, from a mean-field gap equation for the ω
meson, does not work within the FRG framework for the
order parameter fluctuations used here, was shown in [40].
The present effective theory framework for fluctuating
vector mesons from [58] can in principle be extended to
also include the repulsive contributions from fluctuating ω
mesons in the flow for the effective potential and hence the
thermodynamic grand potential to improve this situation.
This requires further technical developments, however, and
is therefore left for future work. Another issue is the slope
of the first-order lines at low temperatures. As pointed out
in [72], from a Clausius-Clapeyron relation, a positive
slope dTc=dμc of the first-order line implies a negative
jump in the entropy density when going from the gaseous to
the liquid phase. While this by itself is not necessarily
unphysical at finite temperature, when the magnitude of the
jump gets too large it leads to negative entropy densities on
the liquid side of the transition line which is then certainly
unphysical. The inclusion of a scale-dependent gap equa-
tion for a mean-field description of the ω meson was
recently shown to be able to remedy the analogous
unphysical effect in the quark-meson model [68]. It might
therefore be reasonable to expect that it will also be affected
when the ω-meson fluctuations are properly included
within our FRG framework for a more realistic description
of the thermodynamics of nuclear matter from the PDM in
the future, as discussed above.

D. Vector and axial-vector meson
propagators and masses

We now turn to the calculation of the Euclidean vector-
meson masses, which will use the scale-dependent effective
potential as input. In Ref. [58] it was shown that the vector-
meson part of the effective action in Eq. (1),

Lρ
0 ¼ −

1

4
trð∂μρμνÞ∂σρσν þ

m2
v

8
trρμνρμν; ð15Þ

with Eqs. (3) and (4) corresponds to tree-level two-point
functions for free (axial-)vector mesons with mass mv of
the form,

FIG. 2. Phase diagram of the parity doublet model represented
as a contour plot of σ0ðμB; TÞ with darker colors indicating
smaller values, as shown in the legend bar. We observe two
distinct first-order phase transitions at low temperatures which
end in a critical point at (μB ≈ 896 MeV, T ≈ 10 MeV) and at
(μB ≈ 925 MeV, T ≈ 33 MeV), respectively.
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Γð2Þ
μν ðpÞ ¼ −

m2
v

p4
ðp2 þm2

vÞðp2δμν − pμpνÞ: ð16Þ

It was furthermore explicitly verified that this form, upon
analytic continuation in the interacting theory, correctly
describes that of the corresponding single-particle contri-
butions to the spectral representations of the propagators of
massive (axial-)vector fields which are related to the
analogous current-current correlation functions by cur-
rent-field identities [58].
For the inclusion of (axial-)vector fluctuations of this

form within the FRG we also follow the strategy of
Ref. [58] and temporarily add artificial longitudinal terms
in order to be able to invert the correlation functions. This
then leads to an ansatz for the scale-dependent (axial-)
vector propagators which reads as follows:

Dμν;kðpÞ≡ ðΓð2Þ
k ðpÞ þ RkðpÞÞ−1μν

¼ −p2

m2
0;k

1

ðp2ð1þ rðyÞÞ þm2
v;kÞ

ΠT
μνðpÞ ð17Þ

þ−p2

m2
0;k

1

ðp2ð1þ rðyÞÞþξΛ
2

k2 m
2
v;kÞ

ΠL
μνðpÞ; ð18Þ

with a regulator shape function rðyÞ and y ¼ p2=k2 as
defined in Appendix, the transverse and longitudinal
projection operators,

ΠT
μνðpÞ ¼ δμν − pμpν=p2; ð19Þ

ΠL
μνðpÞ ¼ δμν − ΠT

μνðpÞ ¼ pμpν=p2; ð20Þ

and a scale-dependent mass parameter m2
0;k ≡ Z−1

k m2
v;k

which differs from the running vector-meson pole mass
mv;k in that it includes an equally scale-dependent wave-
function renormalization factor Zk. At the UV cutoff, we
start with ZΛ ¼ 1 and typically m0;Λ ¼ mv;Λ ≈ Λ, i.e., the
common pole mass of the transverse vector and axial-vector
fluctuations starts out at an initial value of the same order as
Λ in the UV. The UV mass of the corresponding longi-
tudinal fluctuations, ξm2

v;Λ, is of the same order. The
dimensionless parameter ξ can be introduced to further
suppress these initial longitudinal fluctuations; here we
choose ξ ¼ 10. Because of the additional factor of Λ2=k2

this longitudinal mass then quickly increases with lowering
k and the unphysical longitudinal fluctuations decouple.
Varying the parameter ξ, one furthermore verifies that the
results are in fact completely independent of these minute
longitudinal fluctuations, which strictly speaking violate
the current conservation laws and require modified Ward
identities at finite k. In the limit k → 0 the propagators
become purely transverse again, and thus fulfill the usual
Ward identity

pμD
μν
k→0 ¼ 0: ð21Þ

For further details, see Ref. [58]. Explicit expressions for
the transverse and longitudinal regulators are given in
Appendix.
In order to calculate the masses of the (axial-)vector

mesons we first need to solve the flow equation for the
scale-dependent vector mass mv;k, from which we obtain
the ρ and a1 masses as

m2
ρ;k ¼ m2

k;v; ð22Þ

m2
a1;k

¼ m2
k;v þ g2ϕ2

0: ð23Þ
The flow of the vector mass mv;k can be obtained from the
flow equation for m0;k by observing that the flow of the
product of m2

v;k and m2
0;k vanishes,

∂kðm2
v;k ·m

2
0;kÞ ¼ lim

p→0
Tr½p2ΠT

μνðpÞ∂kðΓð2Þ
ρ;kðpÞÞ� ¼ 0: ð24Þ

We thus get

∂km2
v;k ¼ −

m2
v;k

m2
0;k

∂km2
0;k; ð25Þ

with the flow of m0;k given by

∂km2
0;k ¼ −lim

p→0

∂
∂jp⃗j2 Tr½p

2ΠT
μνðpÞ∂kðΓð2Þ

ρ;kðpÞÞ� ¼ 0: ð26Þ

The required flow equations for the two-point functions
can be obtained by taking two functional derivatives of the
Wetterich equation with respect to the appropriate fields
which leads to the general structure

∂kΓ
ð2Þ
k ðpÞ ¼ STrfð∂kRkÞDkðqÞΓð3Þ

k Dkðqþ pÞΓð3Þ
k DkðqÞg

−
1

2
STrfð∂kRkÞDkðqÞΓð4Þ

k DkðqÞg; ð27Þ

where explicit expressions for the three- and four-point
vertices are given in Appendix. The resulting flow equation
for the ρ and the a1 two-point function is represented
diagrammatically in Fig. 3. Here, we take all loops into
account that have up to one internal vector meson, as also
done in [58]. This in particular gives rise to the process
a1 → ρþ π which is important to describe the a1 spectral
function. We also note that in the following we will only be
dealing with the transverse two-point function which can be
obtained from the corresponding flow equation,

∂kΓ
ð2Þ;T
k ðpÞ ¼ 1

3
ΠT

μνðpÞTrf∂kΓ
ð2Þ
μν;kðpÞg: ð28Þ

The flow equations for m0;k and mv;k are then solved
using the scale-dependent effective potential and its
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derivatives at the IR minimum, σ0;IR, as input. As initial
conditions we usemv;Λ ¼ m0;Λ ¼ 1081 MeV and g ¼ 8.78
for the dimensionless coupling of (axial-)vector to (pseudo)
scalar mesons (in their covariant derivative). These param-
eters are chosen such as to obtain phenomenological values
for the ρ and the a1 pole mass, as discussed in the
following.
Our results for the flow of the Euclidean masses of the

pion, the sigma meson, the ρ, and the a1, as well as for the
nucleon and its parity partner in the vacuum are shown in
Fig. 1. Here we evaluate the masses at the scale-dependent
minimum of the potential and not at the fixed IR minimum
in order to show the effects of chiral symmetry breaking
more clearly. Starting at the UV scale where chiral
symmetry is restored, the masses of the chiral partners
π − σ, ρ − a1, and N1 − N2 are degenerate. Taking fluctu-
ations into account by lowering the scale k, we observe the

effects of chiral symmetry breaking with the masses
splitting up. At the IR scale these Euclidean mass param-
eters then arrive at the values for (pseudo)scalar mesons and
nucleons listed in Table I, together with mρ ≈ 840 MeV
and ma1 ≈ 1170 MeV for the vector and axial-vector
mesons. Note that these mass parameters do not represent
the physical masses of the ρ and the a1 which are in turn
given by the pole masses obtained from their aFRG flows
and result with these parameters to be mp

ρ ≈ 775 MeV and
mp

a1 ≈ 1230 MeV, see below.
We now turn to the dependence of the Euclidean particle

masses on temperature and chemical potential. In Fig. 4 we
show these masses at temperatures of T ¼ 10 MeV and
T ¼ 33 MeV, i.e., at the temperatures of the two CEPs, as a
function of baryon chemical potential μB. We find that the
masses are almost constant for a wide range of chemical
potentials at these low temperatures, as expected from the
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FIG. 4. Euclidean particle masses as a function of baryon-chemical potential, μB, at fixed temperatures of T ¼ 10 MeV (left) and
T ¼ 33 MeV (right). Left: We observe the effects of the liquid-gas CEP at μB ≈ 896 MeV, where the sigma mass decreases rapidly,
followed by the discontinuities generated by the first-order phase transition at higher chemical potentials. Right: The liquid-gas CEP still
affects the behavior of the masses in a crossover from low to high density at μB ≈ 890 MeV while the chiral CEP gives rise to strong
modifications at μB ≈ 925 MeV. At both temperatures chiral symmetry is restored to a large extent for chemical potentials beyond the
second phase transition, giving rise to degenerate masses of chiral partners.

FIG. 3. Flow equations of the ρ and the a1 two-point function in diagrammatic form. Dashed (solid) lines represent bosonic
(fermionic) propagators while crossed circles indicate regulator insertions, cf. Eq. (27).
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Silver Blaze property [73]. Very close to the CEP at μB ≈
896 MeV and T ≈ 10 MeV, however, we observe drastic
changes in the masses. In particular the sigma mass
strongly decreases at this second-order phase transition.
In principle, the sigma meson should become exactly
massless here, since it is connected to the critical long-
range correlations in the density fluctuations.
At T ¼ 10 MeV and chemical potentials larger than the

critical value of the liquid-gas CEP, one then encounters the
discontinuous behavior generated by a first-order transi-
tion. At even lower temperatures this second, chiral, phase
transition is stronger than the nuclear liquid-gas transition,
in that the chiral condensate and the masses change by a
larger amount, cf. also Fig. 2. We also note that chiral
symmetry becomes almost completely restored here, as
evident from the fact that the masses of the chiral partners
become almost degenerate. At T ≈ 33 MeV we only see
smooth changes of the masses at chemical potentials near
μB ≈ 896 MeV while near the second CEP at μB ≈
925 MeV we again observe strong but continuous changes,
as expected. These masses and their scale-dependence will
serve as input for the calculation of the vector-meson
spectral functions discussed in the following.

III. VECTOR AND AXIAL-VECTOR MESON
SPECTRAL FUNCTIONS IN NUCLEAR MATTER

A. Analytic continuation and real-time
two-point functions

So far, we have been working in Euclidean space-time.
In order to calculate real-time quantities like retarded two-
point functions and spectral functions we will now perform
an analytical continuation of the flow equations for the two-
point functions from imaginary to real energies using the
previously introduced analytically-continued FRG (aFRG)
technique [42–44]. This technique utilizes the fact that the
FRG flow equations always have a one-loop structure and
that therefore the well-known analytic continuation pro-
cedure for one-loop calculations can be applied, (see
e.g., [74,75]).
To be more specific, the flow equations for the two-point

functions, cf. Eq. (27) are analytically continued from
imaginary to real energies by first using the periodicity of
the bosonic and fermionic occupation numbers, which
result from the Matsubara summation over the loop
energy, with respect to the discrete external Euclidean
energy p0, i.e.,

nB;FðEþ ip0Þ → nB;FðEÞ: ð29Þ

In a second step, the Euclidean energy p0 is replaced by a
continuous real frequency ω in the usual way,

Γð2Þ;Rðω; p⃗Þ ¼ −lim
ϵ→0

Γð2Þ;Eðp0 ¼ −iðωþ iϵÞ; p⃗Þ; ð30Þ

where we use a small but finite value of ϵ ¼ 0.1 MeV in our
numerical implementation.
The resulting flow equations for the retarded two-point

functions are then solved using the scale-dependent effec-
tive potential as well as the flow of the massesmv;k andm0;k
evaluated at the IR minimum σ0;IR as input. The initial
values of the retarded two-point functions are given by

Γð2Þ;R
ρ;Λ ðωÞ ¼ m2

0;Λ

�
1þ m2

ρ;Λ

ðϵ − iωÞ2
�
; ð31Þ

Γð2Þ;R
a1;Λ ðωÞ ¼ m2

0;Λ

�
1þ m2

a1;Λ

ðϵ − iωÞ2
�
: ð32Þ

This initial shape will change as fluctuations are included
by solving the flow equations. In particular, the two-point
functions will show sudden changes and thresholds induced
by the different processes possible in our setup. The ones
representing a decay of an off-shell meson into two on-shell
particles can occur even in the vacuum while the processes
involving an additional particle in the initial state are only
possible at finite temperature and/or density when a thermal
medium of such particles is available. We note that the
usual kinematic constraint for a decay process like ρ� →
π þ π is given by ω ≥ 2mπ while for a thermal capture
process like a�1 þ π → σ we must have ω ≤ mσ −mπ .
For an off-shell rho-meson ρ� with energies ω up to

2 GeV the relevant processes here are

ρ� → π þ π;

ρ� → a1 þ π; ρ� þ π → a1;

ρ� → N þ N̄; ρ� þ N1 → N2: ð33Þ

Note that ρ� þ a1 → π is in principle also possible, at very
large values of the baryon chemical potential, when
eventually mπ > ma1, cf. Fig. 4. Other processes either
require higher energies or involve antibaryons in the heat
bath which are exponentially suppressed. For the a1 meson
we have, analogously,

a�1 → π þ σ; a�1 þ π → σ;

a�1 → ρþ π; a�1 þ π → ρ;

a�1 → a1 þ σ; a�1 þ σ → a1;

a�1 → N þ N̄; a�1 þ N1 → N2: ð34Þ

where again also the more exotic processes a�1 þ ρ → π and
a�1 þ a1 → σ are possible in those regions of the phase
diagram at very large μB where the (pseudo)scalar masses
increase beyond those of the (axial-)vectors. More impor-
tantly, however, when the sigma mass drops below the pion
mass, we can also have
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a�1 þ σ → π: ð35Þ

This occurs only in the critical regions close to both CEPs,
and it might hence serve as a potential signature of the
existence of the chiral CEP, in particular.
In Fig. 5 we show the IR result for the real parts of the ρ

and the a1 two-point functions in the vacuum. We use the
zero crossings of these functions as an approximation for
the pole masses of the respective resonances, which we fix
to the phenomenological values of mp

ρ ≈ 775 MeV and
mp

a1 ≈ 1230 MeV, cf. [76], by adjusting the parameters to
the values listed in Table I and in Sec. II D. We also observe
the effects from different vacuum decay processes which
give rise to sudden changes in the two-point functions.
In Fig. 6 we show the imaginary parts of the ρ and the a1

two-point functions in the vacuum, as well as at T ¼
33 MeV and μB ¼ 890 MeV as a representative example
for medium effects in a region where both endpoints might
have an influence at the same time, that of the nuclear
liquid-gas transition, here as a crossover from low to high
density, as well as the chiral CEP approached at this
temperature for higher μB.
The imaginary part of the ρ-meson two-point function in

the vacuum is practically zero below the lowest decay
threshold which is determined by the process ρ� → π þ π
and is located at ω ≈ 280 MeV.
In particular for the nucleon-(anti)nucleon threshold, but

also in ρ� → a1 þ π, we observe the effects of the finite
value for ϵwhich produces small imaginary parts and hence
results in nonzero values of the spectral function even

below the thresholds. We note that the flow equations for
the imaginary parts of the retarded two-point functions can
in principle also be solved for ϵ ¼ 0 exactly, see e.g., [57].
Here, however, we have used a finite value of ϵ in order to
keep the numerical results consistent with the ones for the
real parts, where the limit ϵ → 0 is not so straightforward to
take numerically with the principal value prescriptions that
are involved there. Moreover, a small value for ϵ has the
additional benefit of mimicking a phenomenological two
particle into two particle scattering continuum at arbitrarily
low energies. At T ¼ 33 MeV and μB ¼ 890 MeV, the
imaginary part shows additional changes due to capture
processes involving particles from the thermal medium, in
particular from ρ� þ π → a1 and ρ� þ N1 → N2.
For the a1 two-point function we observe in principle the

same behavior as for the ρ two-point function, especially
in the vacuum where the lowest threshold starts at
a�1 → π þ σ ≈ 610 MeV. This here represents the σ-reso-
nance contribution to the three-particle decay a1 → 3π
which should of course start somewhat lower, at about
420 MeV, reflecting the smoother onset of the 3π con-
tinuum. To achieve this, one needs to feed the result for σ
two-point function as the broad 2π resonance back into the
aFRG flow equations in a fully selfconsistent calculation in
the future.
At finite T and μB an increased number of processes and

hence more complicated structures arise. In particular, we
also observe a van Hove-like peak at ω ≈ 35 MeV in the
contribution from a�1 þ π → σ which originates from an
approximate saddle point in the difference of the correspond-
ing scale-dependent quasiparticle energies Eσ;k − Eπ;k, see
also [57]. Another interesting effect is visible in the con-
tribution from thea�1 → a1 þ σ processwhere a peaknear the
threshold is forming atω ≈ 1370 MeV. This enhancement is
due to the dropping sigma-meson mass in the crossover
region above the nuclear liquid-gas transition. These struc-
tures, as all the effects visible in the imaginary parts of the
two-point functions, directly translate into the shape of the
spectral functions discussed in the following.

B. Spectral functions

In this section we present our results for the in-medium ρ
and a1 spectral functions in nuclear matter. The spectral
function is generally defined as the discontinuity at the cut
in the propagator along the timelike invariant-momentum
axis and hence given by the imaginary part of the retarded
Greens function GR,

ρðω; p⃗Þ ¼ −
1

π
ImGRðω; p⃗Þ; ð36Þ

which can be expressed in terms of the retarded two-point
function as
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FIG. 5. Real part of the ρ and the a1 two-point functions vs
energy ω, evaluated at σ0;IR in the vacuum, at T ¼ 0 MeV and
μB ¼ 0 MeV. The zero crossings determine the respective pole
masses which we find to bemp

ρ ≈ 775 MeV andmp
a1 ≈ 1230 MeV

in thevacuum. The presence of decay channelsmodify the shape of
the two-point functions, with the strongest effect stemming from
the decay into two nucleons, ρ�; a�1 → N1 þ N̄1.
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ρðω; p⃗Þ ¼ 1

π

ImΓð2Þ;Rðω; p⃗Þ
ðReΓð2Þ;Rðω; p⃗ÞÞ2 þ ðImΓð2Þ;Rðω; p⃗ÞÞ2 : ð37Þ

In this work, we set the external spatial momentum p⃗ ¼ 0
to zero which makes an additional splitting of the spectral
functions into a part transverse and longitudinal to the
medium unnecessary.
In Fig. 7 we show the ρ and the a1 spectral functions in

the vacuum. The ρ spectral function shows a prominent
peak at its pole mass of mp

ρ ≈ 775 MeV and a full width of
Γ ≈ 100 MeV. The only process contributing in this energy
regime is the decay into two pions, ρ� → π þ π. Comparing
to the experimental width of 147.5 MeV for the charged ρ
into two pions [76] our decay width is somewhat small but
of the right order. At higher energies the decay channels
ρ� → a1 þ π and ρ� → N1 þ N̄1 give rise to additional
thresholds at around 1300 MeV and 1880 MeV, cf. Fig. 6.
The a1 spectral function shows a broad maximum between
ω ≈ 1000–1500 MeV where the width is due to the
processes a�1 → σ þ π and a�1 → ρþ π. At higher energies
we observe the a�1 → a1 þ σ threshold while the

FIG. 6. Imaginary part of the ρ (top) and the a1 (bottom) two-point function, evaluated at σ0;IR in the vacuum (left) and at T ¼ 33 MeV
and μB ¼ 890 MeV (right). The contributions from different loops are shown separately, cf. Fig. 3. The decay thresholds are determined
by the corresponding particle masses, cf. Figs. 1 and 4. See text for details.
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FIG. 7. Spectral functions of the ρ and the a1 meson in the
vacuum. The ρ spectral function shows a prominent peak at its
pole mass of mp

ρ ≈ 775 MeV while the a1 spectral function
exhibits a rather broad maximum which is strongly influenced by
the decay a1 → ρþ π, cf. Fig. 6.
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a�1→N1þN̄1 contribution is very small below ω ≈ 2 GeV,
cf. Fig. 6. We note in particular that this is the first time that
the ρ and a1 spectral functions have been obtained within
an aFRG setting without suffering from unphysical decay
thresholds into quark-antiquark pairs. This is one of the
reasons why we are using the hadronic effective theory
which contains nucleons and their parity partners in the
place of the quarks in chiral quark models such as the
Nambu-Jona-Lasinio or quark-meson models, no matter
whether these are enhanced by Polyakov-loop variables to
model confinement or not.
In Fig. 8 we show the ρ and a1 spectral functions at

different temperatures and baryon chemical potentials.
Also, as observed for the two-point functions, the spectral
functions are essentially independent of μB at low temper-
atures until very close to the phase transition. The size of
this ‘critical regime’ is indeed very small, as evident from

the large changes between μB ¼ 895 MeV and the CEP at
μB ¼ 896 MeV at T ¼ 10 MeV. Here, we observe some
effects from the capture processes a�1 þ π → ρ and
a�1 þ N1 → N2 at lower energies as well as an additional
peak structure forming in the a1 spectral function at
ω ≈ 1380 MeV. This effect is due to the process a�1 →
a1 þ σ which is strongly affected by the dropping of the
sigma mass at this second-order phase transition.
At T ¼ 33 MeV the effects from the capture processes

can be observed more clearly, both at μB ¼ 890 MeV and
μB ¼ 915 MeV, e.g., near ω ≈ 500 MeV, mainly due to the
baryonic capture processes ρ�=a�1 þ N1 → N2. Closer to
the chiral CEP, at μB ¼ 915 MeV, we again observe the
formation of an additional peak structure in the a1 spectral
function due to the critical effects entering via the process
a�1 → a1 þ σ. A similar peak structure is also visible in the
ρ spectral function which originates from an additional zero
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FIG. 8. Spectral functions of the ρ and the a1 meson at different temperatures and chemical potentials. The spectral functions show
complicated in-medium modifications due to the various decay and capture processes in the thermal medium. In particular near the CEP
of the nuclear liquid-gas transition (top right) and in a regime approaching the chiral CEP (bottom right) we observe strong
modifications. At T ¼ 10 MeV and μB ¼ 896 MeV one sees the appearance of an additional peak structure in the a1 spectral function at
ω ≈ 1380 MeV which stems from the a�1 → a1 þ σ process, with the σ meson encoding the critical behavior. At higher temperatures of
T ¼ 33 MeV the effects from capture processes become more pronounced, e.g., from the a�1 þ N1 → N2 process at ω ≈ 500 MeV
(bottom left). At higher chemical potential (bottom right) we observe additional peak structures arising, this time also in the ρ spectral
function, as well as a progressing degeneration of the spectral functions due to the restoration of chiral symmetry. See text for details.
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crossing forming in the real part of the two-point function
which is connected to the process ρ� → π þ π. We also
observe that the ρ and the a1 spectral functions become
increasingly degenerate due to the progressing restoration
of chiral symmetry. In fact, one can show analytically that
the flow equations of the ρ and the a1 two-point functions
become degenerate in the limit σ0 → 0.
The most relevant low-energy processes at T ¼ 33 MeV

and μB ¼ 924 MeV, near the chiral CEP, are shown in
Fig. 9 where the different contributions to the imaginary
parts of the ρ and a1 two-point functions are plotted up to
1 GeV (higher energies become increasingly difficult to
compute as manifest in unphysical sign changes that can
occur for higher energies in this critical region). Although
we can clearly identify the potential signature of criticality
in the process a�1 þ σ → π as mentioned above, the strength
of this signal in the a1 two-point function below 100 MeV
turns out to be very weak. The by far dominant low energy
features in both two-point functions here are the contribu-
tions from the nucleon capture processes ρ� þ N1 → N2

and a�1 þ N1 → N2. These baryon-resonance formation
processes give rise to rather strong peaks in the energy
range around ω ≈ 240 MeV where there are no competing
processes otherwise.
Finally, the critical low-energy behavior of the corre-

sponding ρ and a1 spectral functions at μB ¼ 924 MeV and
T ¼ 33 MeV, very close to the chiral CEP, is shown in
Fig. 10.2

Of all contributions to the imaginary parts discussed
above, the most prominent medium modifications of the
critical spectral functions are the baryon-resonance for-
mation processes ρ� þ N1 → N2 and a�1 þ N1 → N2 which
give rise to pronounced low-energy peaks around
ω ≈ 240 MeV, below all other thresholds. The occurrence
of these peaks is a unique prediction of the baryonic mirror
assignment and its observation through enhanced dilepton
pair production in the vicinity the chiral CEP would be an
important confirmation of this picture of mass generation in
QCD. The critical capture process a�1 þ σ → π at even
lower energies turns out by far too weak to be potentially
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FIG. 9. Imaginary part of the ρ (left) and the a1 (right) two-point functions at T ¼ 33 MeV and μB ¼ 924 MeV, close to the chiral CEP.
Here, a particularly small value of ϵ ¼ 0.01 MeV was needed in order to be able to resolve weak low-energy contributions from capture
processes such as the critical a�1 þ σ → π. As before, the separate components are extracted from the different loops shown in Fig. 3.
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FIG. 10. Critical spectral functions of the ρ and the a1 meson at
T ¼ 33 MeV and μB ¼ 924 MeV, close to the chiral CEP. The
most prominent low-energy contributions to both spectral func-
tions arise from baryon-resonance formation ρ=a1 þ N1 → N2

which gives rise to prominent peaks around ω ≈ 240 MeV where
the critical spectral functions have basically no support otherwise.

2The spurious sign changes in the imaginary parts of the two-
point functions near criticality, as mentioned above, lead to
positivity violations in the spectral functions at higher energies,
above 1 GeV. Whether these are related to thermodynamic
instabilities observed in dense regions of the phase diagram with
fluctuations [72] remains to be investigated.
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significant. It is about six orders of magnitude lower than
the baryonic capture process in the a1 spectral function in
Fig. 10. Other than that we observe only a small mass shift
and broadening in the ρ spectral function with considerably
stronger medium modifications near the quasiparticle peak
in the a1, indicating the emerging restoration of chiral
symmetry on the level of the eventually complete degen-
eration of the spectral functions of the chiral partners ρ and
a1 at high density.

IV. SUMMARY AND OUTLOOK

In the work presented here we discuss results on vector
and axial-vector meson spectral functions at finite temper-
ature and baryon-chemical potential, in order to assess the
impact of chiral symmetry restoration in dense, low-
temperature nuclear matter on the redistribution of spectral
strength in both channels. As low-energy effective theory
we use a chiral baryon-meson model, namely a parity-
doublet model, which contains pions, sigma mesons, ρ and
a1 mesons as well as nucleons and their parity partners
chosen to be the N�ð1535Þ. Choosing hadronic degrees of
freedom avoids unphysical quark-antiquark thresholds in
the spectral functions in the confined phase. The vector and
axial-vector mesons are introduced using a novel FRG
formulation for massive vector fields based on (anti-)
selfdual field strengths [58]. In our opinion, this extended
parity-doublet model captures the essential features of mass
generation in QCD, in that hadron masses only partially
result from the spontaneous breaking of chiral symmetry.
On the other hand, the degeneracy in the spectral functions
of parity partners in the restored phase is entirely driven by
the evolution of the chiral condensate. The effects of
thermal and quantum fluctuations are taken into account
by using the FRG approach, which is known to describe
phase transitions and critical phenomena in a way that is
superior to a thermodynamic mean-field description mainly
by including the dynamics of order-parameter fluctuations
due to collective excitations.
Within this theoretical setup we have calculated the

phase diagram for isospin-symmetric nuclear matter as a
function of T and μB as well as the screening masses of the
various hadrons involved. The distinctive feature of the
model is that it exhibits a nuclear liquid-gas phase transition
as well as a chiral phase transition at a higher chemical
potential where the nucleons and their parity partners
become approximately degenerate but remain massive.
Similar to the chiral partners ρ and a1 in the vector-meson
channel, the splitting between nucleons N and their parity
partners N� gradually disappears as chiral symmetry gets
restored at finite density by predominantly the resonance
mass dropping down to their common chirally invariant
mass from the scale anomaly. Near the two first-order phase
transitions as well as at their respective CEPs the Euclidean
mass parameters of mesons and baryons all show the

expected behavior and serve as input for the evaluation
of the spectral functions.
For the calculation of the real-time two-point functions

and the spectral functions we used the so-called aFRG
method, of solving analytically continued FRG flow
equations. Within this method one performs the analytic
continuation from imaginary to real frequencies directly on
the level of the FRG flow equations for the two-point
functions and thus avoids the need for any numerical
reconstruction. Moreover, it is thermodynamically consis-
tent in that the effective potential and the spectral functions
are calculated on the same footing. Using this approach, we
have calculated the ρ and the a1 spectral functions at
different temperatures and baryon-chemical potentials.
In the vacuum, the ρ spectral function shows a prominent

peak whose width is solely determined by the decay into
two pions, as expected. The a1 spectral function, in
contrast, exhibits a very broad peak at higher energies
which is determined by the decay into a pion and a sigma
meson as well as into a rho meson and a pion, representing
the σ and ρ-meson resonance contributions to its three-pion
decay width. For small temperatures and chemical poten-
tials, below the liquid-gas phase transition, the spectral
functions essentially coincide with those in the vacuum, as
expected from the Silver-Blaze property. In the vicinity of
the two critical endpoints, however, we observe significant
changes with additional peaks emerging. Most strikingly
are the modifications near the chiral CEP, were a prominent
low-energy peak around 240 MeV shows up. Its origin can
be traced back to the resonance excitation of the in-medium
N�ð1535Þ in both the vector and axial-vector channel. In
fact, the excitation strength is nearly identical, reflecting the
signature of parity doubling. Preliminary estimates indicate
that this effect, which is strongest in the vicinity of the
chiral CEP and possibly near the first-order boundary of the
chiral phase transition might be observed experimentally in
the vector channel through an increased dilepton yield at
correspondingly low invariant masses measured in heavy-
ion collisions at a few GeV/nucleon with high statistics. Its
detection would yield strong evidence in support of the
parity-doubling scenario as providing the mechanism for
chiral symmetry restoration inside dense nuclear matter.
To arrive at a satisfactory description of dense and warm

nuclear matter and its spectral properties further improve-
ments are called for. One relates to a quantitative descrip-
tion of the nuclear matter. For a phenomenologically
acceptable description of the binding-energy per nucleon,
the nuclear saturation density and the equation of state
(EoS) of symmetric nuclear matter we will have to include
the ω vector meson as a dynamical field in the calculation
of the thermodynamic grand potential. From Walecka-type
mean-field studies it is known that the repulsive nature of
the ω meson is essential for a realistic nuclear matter EoS.
Possible further improvements include taking into account
higher truncation orders in the effective average action or
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using a self-consistent setup where the spectral functions
are back-coupled into flows of effective potential and two-
point functions. In addition, a calculation of the expected
dilepton yields in heavy-ion collisions at a few GeV/
nucleon is left for future work. Other phenomenologically
important extensions will include the EoS of highly
isospin-asymmetric nuclear matter and determination of
neutrino emissivities relevant for binary neutron-star
merger events from the corresponding weak (axial-)vector
spectral functions in warm and dense neutron matter.
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APPENDIX: EXPLICIT EXPRESSIONS

In this appendix we summarize explicit expressions for
various quantities used in this work. We begin with the
regulator functions, for which we use three-dimensional
Litim-type regulators [77], which allow for an analytic
evaluation of Matsubara sums. More explicitly, we employ
the following regulator functions for (pseudo)scalar mes-
ons, (axial-)vector mesons, and nucleons,

Rσ=π;kðpÞ ¼ ðk2 − p⃗2ÞΘðk2 − p⃗2Þ; ðA1Þ

RT;L
ρ=a1;k

ðpÞ ¼ −
m2

0;k

p2
ðk2 − p⃗2ÞΠT;L

μν ðpÞΘðk2 − p⃗2Þ; ðA2Þ

RNðpÞ ¼ −i=⃗pð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2=p⃗2 − 1

q
ÞΘðk2 − p⃗2Þ: ðA3Þ

The corresponding regulator shape function is given by

rðyÞ ¼
�
1

y
− 1

�
θð1 − yÞ; ðA4Þ

with y ¼ p2=k2.
Upon evaluating the (unregulated) Matsubara sums over

internal energies in the various flow equations, we encoun-
ter the bosonic and fermionic occupation number factors
which are given by

nBðEÞ ¼
1

eE=T − 1
; ðA5Þ

nFðEÞ ¼
1

eE=T þ 1
: ðA6Þ

For the four-dimensional adjoint representation of the two-
flavor SUð2ÞL × SUð2ÞR chiral symmetry we use Oð4Þ-
vectors ϕ ¼ ðσ; π⃗ÞT and hermitian generators T⃗L;R,

iTa
L ¼ 1

2

�
0 −e⃗Ta
e⃗a εaij

�
; iTa

R ¼ 1

2

�
0 e⃗Ta

−e⃗a εaij

�
; ðA7Þ

with a; i; j ∈ f1; 2; 3g and ðe⃗aÞi ¼ δai. The corresponding
(axial-)vector martices T⃗V;A ¼ T⃗R � T⃗L are then given by

iTa
V ¼

�
0 0

0 εaij

�
; iTa

A ¼
�

0 e⃗Ta
−e⃗a 0

�
: ðA8Þ

The minimal coupling between (pseudo)scalar and (axial-)
vector mesons is then defined by the covariant derivative
Dμ ¼ ∂μ þ igVμ with the matrix valued vector field

Vμ ¼ ρ⃗μT⃗V þ a⃗1μT⃗A. Explicitly, this leads to

1

2
ðDμϕÞ†Dμϕ ¼ 1

2
ð∂μϕÞT∂μϕþ igð∂μϕÞTVμϕ

þ g2

2
ϕTðVμÞ2ϕ: ðA9Þ

The three-point interactions of order g then yield,

ið∂μϕÞTVμϕ

¼ ðπ⃗ × ρ⃗μÞ · ∂μπ⃗ − σa⃗1μ · ∂μπ⃗ þ a⃗1μ · π⃗∂μσ; ðA10Þ

and the quartic interactions of order g2 become

1

2
ϕTðVμÞ2ϕ ¼ 1

2
ðρ⃗μ × π⃗ − σa⃗1μÞ2 þ

1

2
ða⃗1μ · π⃗Þ2: ðA11Þ

Finally, we list the explicit expressions for the three-and
four-point vertices which can be obtained by taking three
and four functional derivatives of the ansatz for the
effective average action with respect to the various fields,
cf. Eq. (1). From the relevant contributions to the effective
average action listed explicitly above, we obtain the three-
point vertex functions involving vector mesons used in this
work as

Γð3Þ
ρiμπ

jπk
ðqj; qkÞ ¼ igεijkðqkμ − qjμÞ; ðA12Þ

Γð3Þ
σai

1μπ
jðq; qjÞ ¼ igδijðqμ − qjμÞ; ðA13Þ

Γð3Þ
σai

1μa
j
1ν

¼ 2g2σ20δμνδij; ðA14Þ

Γð3Þ
ai
1μρ

j
νπ

k ¼ −g2σ20δμνεijk; ðA15Þ

where all momentum arguments denote the incoming
momenta of the (pseudo)scalar mesons, qμ for the sigma
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meson and qiμ for the isovector pions πi. The four-point
vertices are analogously obtained as

Γð4Þ
ρiμρ

j
νπ

kπl
¼ g2δμνð2δijδkl − δikδjl − δilδjkÞ; ðA16Þ

Γð4Þ
ai
1μa

j
1νπ

kπl
¼ g2δμνðδikδjl þ δilδjkÞ; ðA17Þ

Γð4Þ
σσai

1μa
j
1ν

¼ 2g2δμνδij: ðA18Þ

The three-point couplings of the (axial-)vectors to the two
baryons doublets Nd, d ¼ 1; 2, are readily obtained from
the ansatz for the effective average action and are given by

Γð3Þ
ρiμN̄dNd

¼ ihv;dγμτi; ðA19Þ

Γð3Þ
ai
1μN̄dNd

¼ ihv;dγμγ5τi: ðA20Þ
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