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We present a novel computational technique intended for the robust and adaptable control of a multifunctional prosthetic hand
using multichannel surface electromyography. 	e initial processing of the input data was oriented towards extracting relevant
time domain features of the EMG signal. Following the feature calculation, a piecewise modeling of the multidimensional EMG
feature dynamics using vector autoregressive models was performed. 	e next step included the implementation of hierarchical
hidden semi-Markov models to capture transitions between piecewise segments of movements and between di
erent movements.
Lastly, inversion of themodel using an approximate Bayesian inference scheme served as the classi�er.	e e
ectiveness of the novel
algorithms was assessed versus methods commonly used for real-time classi�cation of EMGs in a prosthesis control application.
	e obtained results show that using hidden semi-Markov models as the top layer, instead of the hiddenMarkov models, ranks top
in all the relevant metrics among the tested combinations. 	e choice of the presented methodology for the control of prosthetic
hand is also supported by the equal or lower computational complexity required, compared to other algorithms, which enables the
implementation on low-power microcontrollers, and the ability to adapt to user preferences of executing individual movements
during activities of daily living.

1. Introduction

	e methods for estimating the intention of an amputee
to control the movement of a prosthetic hand o�en relies
on the interpretation/decoding of the electrical activity of
muscles (electromyograms, EMG) recorded on the skin-
surface of the residual limb [1, 2]. Even though information
regarding the muscle activity could be obtained in various
ways, commercially available prosthetic hands commonly use
only a few surface EMG channels. Furthermore, the classi�-
cation algorithms implemented in such prostheses generally
comprise only calculation of an amplitude based EMG feature
(e.g., root mean square) that is thresholded to obtain binary
control of a single hand function [3]. Even in the case of mul-
tifunction prostheses with a plurality of independent joints,

the same control paradigm is still employed where switching
between di
erent grasps can depend on non-EMG inputs [4],
such as smartphone interfaces, speci�cmovementsmeasured
using inertial sensors, object recognition algorithms based on
camera systems [5], or EMG inputs such as cocontractions
(contractions of multiple muscles). Relatively low percentage
of users is capable of fully exploiting the capabilities of
multifunction prosthetic hands.	is suggests that the control
strategies need to be improved in order to achieve an intuitive
link between intention and the resulting arti�cial hand
function.

With the ongoing development of dexterous prosthetic
hands [6–10], the gap between the potential dexterity o
ered
by the new hands and the actual capabilities of human-
machine interfaces is even more evident. In contrast to the
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commercial devices, a variety of EMG recording techniques
[11, 12], signal preprocessing [13], and classi�ers have been
proposed in the academia [14]. One of the approaches for
increasing selectivity and sensitivity of the EMG signals
includes surgical intervention in order to place recording
electrodes on top of or inside targetedmuscles [15].	is tech-
nique was shown to provide superior inputs for any type of
EMG based controller; however, it is limited by need of surgi-
cal intervention and may not be widely accessible. As an
alternative, EMG picked up at the surface of the skin provides
a safe, noninvasive interface, at the cost of selectivity. Consid-
ering that the underlying mechanism of a classi�cation algo-
rithm is to localize the source of the electrical activity (active
muscle), the methodology employed for similar problems
is o�en based on multiple recording sites. 	erefore, using
a multichannel EMG approach provides an interesting per-
spective for improving the performance of surface EMG
controllers. Increasing the number of the input signals also
enables advanced data processing and classi�cation tech-
niques. Indeed, computational methods such as support
vector regression [16], tree-structured neural network [17],
Bayesian inference [18], ICA clustering [19], hidden Markov
models [20], nonnegative matrix factorization [21], and var-
ious pattern recognition approaches [22–25], demonstrated
promising classi�cation results while using multiple discrete
EMG channels or high-density surface EMG electrodes.

As one of the approaches for decoding �nger movements
using only multiple EMG signals, in this study we propose
a novel classi�cation algorithms based on the combination
of EMG feature extraction and piecewise modeling of the
feature temporal dynamics, incorporated in hierarchical hid-
den semi-Markov models (HHSMM) [26–28] and an online
Bayesian classi�er implemented through model inversion.
We developed and assessed two variations of the aforemen-
tionedmethod and included special cases of these algorithms
with reduced computational requirements. In order to assess
our algorithm but also to provide an extensive evaluation of
the impact of di
erent EMG features on the classi�cation
accuracy, we compared its performance with some of the
states of the art classi�ers. 	is work is an extension of the
study presented in [29].

2. Materials and Methods

2.1. Subjects. Five able bodied subjects participated in the
experiment. All the subjects provided informed consent, and
the study was approved by the Regional Ethical Review Board
in Lund, Sweden.

2.2. Protocol. 	e methodology presented in this research
relies on multielectrode EMG signals for movement classi-
�cation. During the measurement procedure, a subject was
comfortably seated with the right hand resting in a neutral
position. 	e subject was asked to perform a movement to
match a hand image shown on the screen in front of him/her.
	e requested movements were �exion/extension of all �ve
�ngers and adduction/abduction of the thumb (12 di
erent
movements). Movement and resting periods between move-
ments were of equal length (5 seconds) and were timed by

a LabVIEW (National Instruments, Austin, TX) custom
application. 	e participant was visually prompted by the
program, which synchronously acquired the EMG signal and
the current cue annotation. Two di
erent datasets (one for
training and one for testing) each consisting of �ve repetitions
of eachmovement, totaling 60movements, and the rest states,
were stored with the intended class information, for o�ine
analysis.

2.3. EMG Recording. 	e dataset used in this paper was
previously recorded and used in the publication by Huang
et al. [30]. 	e EMG signals were acquired using a modi�ed
version of the ampli�cation and acquisition system [31] and
a LabVIEW program. 	e system acquired 16 channels of
EMG, sampled at 1.6 kHz per channel and with a band-pass
�lter between 0.5Hz and 800Hz with 16-bit resolution and a
gain of 56 dB per channel. 	e Red Dot Ag/AgCl (3MHealth
Care, Germany) electrodes that were used in the study were
placed on the forearmof the participants as shown in Figure 1.
For the 16 channel recordings, twelve electrodes were placed
on the super�cial �exor muscles on the volar side of the
forearm and four electrodes were placed on the super�cial
extensormuscles on the dorsal side of the forearm. Electrodes
were placed in order to cover as many independent muscles
as possible. A sample of recorded EMG signals is provided in
Figure 2.

2.4. Feature Extraction. A set of commonly used EMG fea-
tures in the time domain was selected as an additional com-
parison criterion in this study. 	e choice of time domain
features, versus spectral or time-frequency domain features,
is in line with the tendency of deriving a control chain that
could be implemented in an embedded system with limited
processing power/speed. Among the relatively high num-
ber of reported features, we chose three-amplitude-related
and three-frequency-related time-based EMG features. We
implemented functions for the following EMG features as
reported in [13, 32, 33].

2.4.1. Mean Absolute Value. Mean Absolute Value (MAV)
is the favored EMG feature in many myoelectric control
applications. It is calculated within a moving average window
of the recti�ed EMG signal:

MAV = 1�
�∑
�=1

���������� , (1)

where� denotes window length and �� the �th EMG sample
within current window.

2.4.2. Root Mean Square. Root Mean Square (RMS) calcula-
tion is, similar to MAV, also windowed function:

RMS = √ 1�
�∑
�=1
�2�. (2)
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Figure 1: Measurement setup as in [25]. 16 monopolar channels were positioned in accordance with underlying hand muscles. 	e set of
targeted muscles was chosen based on hand movements performed during the measurement protocol.

100 200 300 400

Time (s)

Channel 7

Channel 2 Channel 14

Channel 15

0.5 Ｇ６

(a)

12 16 20 24 28 32 36 40 44 48 52 56 60 64

Time (s)

0
2
4
6
8

10
12

C
la

ss
 #

Ｇ６0.5

(b)

Figure 2: (a) shows sample EMG channels (2, 7, 15, and 15). (b) shows only channel 7 raw EMG signal (blue) with the visual cues/classes (red).
	is �gure is an example of the latencies between visual cue and the EMG onset. 	is is also noticeable for the movement endings which are
delayed with respect to the visual cue. Another important piece of information presented in this �gure is similarity between EMGwaveforms
for the same movements (i.e., class 12).
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In the case of the signal with mean value close to zero, such
as surface EMG (sEMG) recorded with relatively large tran-
scutaneous electrodes, the RMS becomes standard deviation
of the input time series.

2.4.3. Variance. Variance (VAR) in the case of sEMG signal
could be simpli�ed enabling fast implementation in an
embedded system. 	e resulting formula is the following:

Var = 1� − 1
�∑
�=1
�2�. (3)

2.4.4. Slope Sign Change. Slope Sign Change (SSC) is a time
domain method used to estimate frequency feature if the
EMG signal. 	e calculation of the SSC relies on counting
changes between positive and negative slope among three
consecutive samples. To limit SSC calculation only to periods
with EMG activity, the threshold function is imposed in the
feature extraction method:

SSC = �−1∑
�=2
� [(�� − ��−1) × (�� − ��+1)]

� (�) = {{{
1, if � ≥ threshold

0, otherwise.

(4)

2.4.5. Zero Crossing. Zero Crossing (ZC) is the function that
counts the number of consecutive EMG samples that change
sign within the sliding window. Similar to SSC calculation,
the threshold function is imposed to remove calculation of
the ZC during periods without pronounced EMG activity:

ZC = �−1∑
�=2

[sgn (�� × ��+1) × � [�� − ��+1]]
� (�) = {{{

1, if � ≥ threshold

0, otherwise.

(5)

2.4.6.WillisonAmplitude. Willison amplitude (WA) is amea-
sure related to superimposed action potentials that make the
EMG signal.	eWA is the number of consecutive di
erences
between consecutive samples that exceed set threshold:

WA = �−1∑
�=1
� [������ − ��+1����]

� (�) = {{{
1, if � ≥ threshold

0, otherwise.

(6)

To produce comparable input conditions, the sliding window
for all feature calculations was the same (250ms width and
25ms overlapping).

In the case of SSC, ZC, and WA calculations, thresholds
were set based on the estimated white noise level during
recording. As each recording session started with a rest
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Figure 3: Example of the extracted features calculated from the
EMG signal recorded on a single channel. 	e �gure reveals that
MAV and RMS features, in this case, almost overlap, but other fea-
tures contain complementary information regarding EMG signal.

period, it was convenient to use �rst 0.5 s to calculate thresh-
olds that are used throughout the same recording. A sample
of calculated features is shown in Figure 3.

All feature extraction calculations were conducted using
MATLAB, with moving window size of 250ms and a dis-
placement of 25ms.

2.5. Classi�cation Algorithm. Here, we will extend our pre-
vious work [29] in which we derived Bayesian online
classi�er using vector autoregressive hierarchical hidden
Markov models (VARHHMM), with a classi�er based on
vector autoregressive hierarchical hidden semi-Markovmod-
els (VARHHSMM) [26–28]. 	e �owchart for the classi�er’s
components is shown in Figure 4. 	e basic presumption of
this approach is that the feature dynamics in time domain
during a movement could be estimated by a number of
VAR(1) segments de�ned via a unique set of parameters. A
movement denotes a �nger movement represented in the
EMG feature space.

From the basic �owchart, it can be noted that the main
di
erence between the two algorithms is in the top layer
of the hierarchy. In the case of the VARHHMM, this layer
only takes signal likelihood as the input to for the layer
that identi�es the current movement. In the case of the
VARHHSMM, the current movement label will also depend
on the expected duration of individual movements when
identifying the active moment label. In what follows, we will
refer to these two classi�ers as hierarchical hidden Markov
model (HMM) and hierarchical hidden semi-Markov model
(HSMM), where we dropped the VAR and hierarchical labels
for readability.

We assumed here that the selected time domain EMG
features could be represented by a number of segments. To
accommodate signal dynamics in real-time and enable cre-
ating a classi�er suitable for embedded implementation, we
de�ned individual segments as vector autoregressive (VAR)
models of the �rst-order VAR(1). Using the VAR process
for approximating the dynamics of a segment of an EMG
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Figure 4: VARHHMM �owchart. At the hierarchically higher
HMM layer, the two algorithms are split before the Bayesian infer-
ence layer. While one algorithm for HMM (orange path) is the
same as the HMM for segments, the other algorithm is based on
hidden semi-Markov model (HSMM) paradigm that incorporates
movement duration as a free parameter.

time series allows for e�cient prediction of feature dynam-
ics and implicitly accounts for the noise presented in the
recorded EMG signals. Formally, the VAR(1) process is
de�ned as

�→� � = �→� (�,�) + �(�,�)1 �→� �−1 + �→� (�,�)� , (7)

where �→� � is the latest acquired signal feature in vector form,�→� (�,�) is the mean value of the signal, � denotes the segment

within the �th �nger movement, �(�,�)1 is the transition

matrix of the VAR(1) model, and
�→� (�,�)� is the random normal

variable with zero mean. Note that the dynamics within each
segment � and movement � are completely de�ned by the

following set of parameters (�→� (�,�), �(�,�)1 , Σ(�,�)), where Σ(�,�)
denotes covariance of

�→� (�,�)� .
Based on predicted and measured sample vectors we

can calculate which of the possible (�tted) VAR(1) models
provides the best description of the recorded time series. 	e
transition between individual segments (between di
erent
VAR(1) models) is considered as stochastic; thus, in our real-
ization it is modeled as a HMM (as in [26]). 	e transitions
between segments of a single movement are constrained by
additional hidden states which de�ne the currently active
movement. For this reason, we introduced another HMM
chain that acts as the second level of the hierarchy.	e transi-
tions between possible VAR(1) models of a single movement
and di
erent movements are de�ned through the transition
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Figure 5: HSMM movement models. M1–M3 denote di
erent
dynamic movements. 	e HSMM algorithm uses distributions of
individual movements durations to constrain transitions between
them.

matrices for each HMM chain. 	e transition matrices on
both levels of the hierarchy are estimated during the training
procedure that relies on Viterbi expectation maximization
algorithm [34].

By applying an approximate Bayesian inference proce-
dure to the hierarchically arranged HMM and the emission
distributions de�ned with VAR(1) models, we can classify
each of the measured data points in a time series. 	e
Bayesian inference for real-time signal classi�cation relies on
estimating the posterior probability for each movement. 	e
posterior probability is calculated by combining expectations
over movement probabilities with the evidence provided
by the emission distributions (observation likelihoods). 	e
expectations (predictions) are estimated using the posterior
distribution at previous time sample and the transitionmatri-
ces of movements and associated segments. Using the values
of the posterior probability �(�� = � | ��:0) at the latest
acquired signal �� and the current movement �� = �, we
can classify the current sample as

�� = argmax
�

� (�� = � | ��:0) , (8)

where �� is the classi�cation label obtained by our algorithm.
	e HSMM algorithm is similar to the HMM algorithm

with the only di
erence being that each movement includes
a sequence of durations associated with it. 	is approach
increases the number of free parameters with an additional
vector comprising prior duration probabilities of individual
movements. In other words, the probability of switching
between movements is also in�uenced by the model of
movement duration. An illustration of a speci�c realization
of the movement switching sequence of the HSMM is shown
in Figure 5.

	e implementation of the HSHMM algorithm relies on
a timer, or counter (Cnt) in the case of equidistant sampl-
ing. Upon entering a state/movement, the counter is set to
prede�ned value related to that particular state duration and
with every new sample is decremented. When the counter
reaches 0, the state/movement is free to change. Upon switch-
ing to a new state, the counter is reset to zero.	is additional
condition is de�ned as
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� (�� = � | ��−1 = �, Cnt = �)
= {{{

� (�, �) if � > 0 (remain in the movement)
Υ�,� if � = 0 (free to change movement) ,

(9)

where�� denotes movement at time sample ! and Υ denotes
transition matrix between movements.

In the case of HSMM, the duration of a movement is
provided in form of a prior distribution. As the measurement
protocol was executed in automated manner, all performed
movements are of the same duration (∼5 s) with some
variability related to subject’s reaction times to a visual cue. In
order to simulatemore realistic end-user scenario, we de�ned
prior distribution to have a duration range with 2-second
variability (5 ± 1 s). As the simplest scenario derived a priori,
the imposed distribution was de�ned as uniform within
the whole range. To estimate in�uence of the range of the
imposed distribution, the accuracy score was also calculated
for ranges from 5 ± 0.05 s to 5 ± 5 s.

As the number of segments per movement is the free
parameter of both algorithms, it was of speci�c interest to
evaluate performance of the classi�cation with respect to a
movement division by the automated optimization proce-
dure. Speci�cally, the case of a single segment per movement
was analyzed independently. 	e rationale for this lies in the
extracted features dynamics in the time domain. When visu-
alizing the recorded signals, a movement in a feature space
reassembles a step response of a dynamic system, with a rela-
tively short transient compared to the constant part. When
ignoring the noise part of the vector autoregressive model
(see above) we can rewrite the update equation as

�→� � = �→� �−1 + #1 (�→% − �→� �−1) , (10)

where the current sample �� is a function of previous sample
and the distance of the previous value from the terminal value�→% in the ! → ∞ limit. 	e constant matrix #1 de�nes the
rate of change along each dimension of the recorded signal.
	is form of the basic VAR representation is convenient for
illustrating the signal trajectory a�er the onset of amovement
(see Figure 6). 	e advantages of using single segments
per movements area signi�cantly shorter optimization time
(explained in the following section) and a simpli�ed real-
time processing implementation as the lower HMM layer is
removed.

2.6. Optimization. 	e estimation of the free parameters of
all models presents the only computationally demanding
procedure of the presented methodology. During the opti-
mization, the free parameters of the VAR models (number
of segments per movement, mean signal values of individual

segments �→� (�,�), covariance matrix Σ(�,�), transition matrix�(�,�)1 , and between segment’s transition matrix Υ(�) which
de�nes the HMM structure) are evaluated using a Viterbi
algorithm coupled with an expectation maximization algo-
rithm (EM) [35].	e�owchart of the optimization procedure
is shown in Figure 7.

0 50 100 150 200 250

Sample #

0

50

100

N
o

rm
al

iz
ed

 M
A

V
 a

m
p

li
tu

d
e

Figure 6: Example of the segment switching with AR(1) model
(a one-dimensional VAR(1) model) with the forced one segment
per movement. Blue line represents MAV feature dynamics when
switching froma rest state to amovement, and the red line represents
example of a single AR segment optimized for that movement.
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Figure 7: Optimization procedure �owchart. 	e main load of the
optimization procedure is division of movements to segments.With
a higher number of segments per movement, the Viterbi algorithm
needs a large number of initial conditions for the model to converge
to the global minimum instead of converging to a local minimum.
	is movement dividing method is not deterministic, resulting in
slightly di
erent models with every optimization run.

	e optimization procedure is an iterative process where
from the initial values of VAR parameters the Viterbi algo-
rithm determines the most likely sequence of segments and
estimates transition matrices. 	e following step includes
reestimation of VAR parameters based on a maximum likeli-
hood calculation and the most likely separation of training
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data suggested by the Viterbi algorithm. 	e procedure
shown in Figure 7 is iterated with the log-likelihood set as the
convergence criterion. When the convergence criterion

reaches a value of 10−10, the iterations are stopped.	e whole
optimization method was based on the implementation of
the Viterbi EM algorithm provided in the pyhsmm-auto-
regressive Python library [36].

Bearing in mind that the optimization method could
converge towards a local optimum, we repeated the whole
optimization procedure for 1000 di
erent initial values of free
parameters and only the solution with the lowest value of
Bayesian Information Criterion (BIC) [37] was kept as �nal.
	is iterative extension of the Viterbi EM algorithm helped
us to improve the convergence of the parameter estimation
to optimal parameters values. 	e Python 3.6 codes for the
parameters optimization and classi�cation simulation are
available upon request sent to the corresponding author.

2.7. Classi�ers Used for Benchmarking. To evaluate the e
ec-
tiveness of our algorithm, we used some of the most com-
monly used classi�cation methods including

(i) Linear Discriminant Analysis (LDA),

(ii) Quadratic Discriminant Analysis (QDA),

(iii) *-nearest neighbors (knn), with - = 15,
(iv) Support Vector Machine with the Error-Correcting

Output Codes (SVM ECOC),

(v) Linear Classi�er with the Error-Correcting Output
Codes (LC ECOC),

(vi) Linear Discriminant Analysis with the Error-
Correcting Output Codes (LDA ECOC),

(vii) Naive Bayes (NB),

(viii) Random Forest (RF),

(ix) Decision Tree (DT).

	e implementation of selected classi�ers was done using��!/ function in the MATLAB 2016b (	e MathWorks Inc.,
Natick, MA). Similar to the VARHHMM algorithms, the
classi�ers were trained on only the training data set and tested
on the test set and no postprocessing of class-annotations was
performed.

3. Results

	e ground truth for classi�cation in this paper is set to be
the visual cue presented to the subject. Although there is
the noticeable latency between the visual cue and the muscle
activity in both movement onset and cessation as shown in
Figure 2, we decided to use this as a reference to provide
the same basis for all of the classi�cation methods. 	is was
done to force classi�ers to adapt to the transient processes
between consecutive states. As expected, this approach results
in lower overall classi�cation accuracy but provides inter-
esting insights into classi�ers performances during dynamic,
continuous changes of input parameters.

	emainmetric for comparing features and performance
of the classi�ers was accuracy. For the accuracy calculation,

each feature sample (one observation every 25ms) was
treated individually. Moreover, as the rest state is directly
involved in active motor driving by prosthesis control, it was
also considered equal to the other movement classes. With
this evaluation paradigm, each classi�cation point was cate-
gorized as a true positive (TP) if the predicted class matches
the visual cue label, or as a false positive (FP) if there is
mismatch between predicted class and the visual cue. 	is
approach generates a large number of data points, which was
in our case approximately 20000 per dataset that could be
used to investigate the performances of various features and
classi�ers.

	e cumulative results for all subjects are presented in
Table 1. As the accuracy results for the subjects do not �t
into normal distribution, the accuracy values presented in the
table are median values among all subjects. 	e di
erences
between classi�er and features are emphasized by ranking
top three features and classi�ers overall but also top three
results for each EMG feature. From Table 1, it could be noted
that HSHMM outperforms other classi�ers for the majority
of tested feature extraction algorithms. It is also interesting
that the HSMMwith only one segment permovement closely
follows performance of the HSMM with multiple segments
per movement. Among feature extraction algorithms, the
MAV features resulted in the best performance across di
er-
ent classi�ers and subjects; RMS andWA lead to slightly lower
results compared to MAV, while using VAR, SSC and ZC
failed to produce similar results. Among classi�ers, only NB
underperformed, while other classi�ers produced mutually
comparable results.

As the average accuracy across all subjects and all
classi�ers was the greatest in the case of MAV feature, the
results obtained using this feature were analyzed in more
detail. Table 2 shows accuracy results for each classi�er and
each subject when the MAV feature was used. 	e results
show that all VARHHMMvariations are top-ranked, with the
HSMM algorithm having the highest median accuracy score.
Although at the top ranks, the di
erence of median values is
not prominent.

With the focus onVARHHMMmethodology, to illustrate
ability to separate individual �nger movements and resting
periods, the confusion matrix is shown in Figure 8. For this
example, we selected the best performing feature method
among all classi�ers (MAV) and the subject with the median
results (Subject 4).	iswas done to analyze inmore detail the
case close to the end-user scenario.	e common indicator of
the classi�cation e
ectiveness is the confusion matrix which
is used to reveal weak points of a classi�er. Figure 8 is showing
the confusion matrix for the HSMM algorithm. It could be
noted that majority of movements (2, 4, 5, 6, 7, 11, 12, and 13)
are classi�ed with just sporadic misclassi�cations. For these
movements, most of the errors are the consequence of the
latency between the visual cue (used as the golden standard
in this paper) and the actual muscle activity of the targeted
movement. 	is e
ect is responsible for the movement-to-
rest and rest-to-movement misclassi�cations. 	e rest class,
except the errors related to delayed transitions, is generally
well classi�ed. 	e movements (3, 8, 9, and 10) have more
samples that are labeled incorrectly as some othermovement.
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Table 1: Classi�er accuracy in % for LDA, QDA, knn (15), SVM ECOC, LC ECOC, LDA ECOC, KNN ECOC, NB, HHMM, HSMM, and
HHMM with only one segment per movement and HSMM with one segment per movement. 	e top ranked classi�ers are marked with ∗
(top ranked), ∗∗ (second ranked), and ∗ ∗ ∗ (third ranked).

LDA QDA KNN
SVM
ECOC

LC
ECOC

LDA
ECOC

KNN
ECOC

NB RF DT HHMM HSMM
HHMM

S1
HSMM

S1

MAV∗ 80.28 81.94 79.10 82.43 78.06 82.02 79.19 69.36 79.37 64.86 83.00∗∗∗ 84.30∗ 82.59 83.35∗∗
RMS∗∗ 80.16 81.40 78.89 82.11∗ 76.92 81.37 79.74 69.81 79.44 63.68 81.58∗∗ 81.52∗∗∗ 69.95 81.16

VAR 71.77 38.12 78.22 79.76∗∗ 70.22 76.23 78.40 51.91 79.44 64.61 78.91∗∗∗ 82.36∗ 42.08 70.85

SSC 74.80 69.29 73.73 75.78∗∗ 75.30∗∗∗ 75.90∗ 73.99 62.56 73.83 62.70 71.41 75.56 71.41 75.56

ZC 74.75 73.03 72.64 75.90∗ 75.68∗∗ 75.42 73.08 60.17 72.34 59.72 74.26 75.44∗∗∗ 74.26 75.44

WA∗∗∗ 79.20 75.54 76.73 79.50 77.96 80.37∗∗∗ 76.92 63.06 77.74 64.93 78.39 84.09∗ 78.39 82.05∗∗
Median 77.00 74.29 77.47 79.63∗∗ 76.30 78.30 77.66 62.81 78.59 64.15 78.65∗∗∗ 81.94∗ 72.83 78.36

Table 2: Classi�er accuracy in % for the di
erent subjects and MAV feature.

SUB LDA QDA KNN
SVM
ECOC

L
ECOC

LDA
ECOC

KNN
ECOC

NB RF DT HMM HSMM
HMM
S1

HSMM
S1

1 82.07 86.39 79.10 82.43 80.60 82.65 79.19 65.97 79.65 69.70 87.50 91.18 86.70 90.94

2 80.28 81.94 79.96 84.83 80.85 83.55 80.45 69.36 83.01 65.68 83.51 85.61 83.51 85.42

3 79.69 56.82 77.19 81.26 72.77 80.31 77.98 63.79 79.48 57.75 76.28 75.76 71.51 73.43

4 81.64 82.31 82.95 82.83 77.92 82.02 83.12 75.33 80.56 70.08 83.00 84.30 82.59 83.35

5 80.21 66.88 78.54 80.97 78.06 78.45 78.78 70.25 74.62 63.94 77.20 82.96 62.86 78.39

Median 80.28 81.94 79.10 82.43 78.06 82.02 79.19 69.36 79.65 65.68 83.00 84.30 82.59 83.35

Rank 8 7 11 5 12 6 10 13 9 14 3 1 4 2
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Figure 8: Confusion matrix, HSMM, MAV, Subject 4. 	ere are
around 800 observations per movement and 10100 in the rest class.
	e algorithm underperformed when discriminating classes 3, 8,
9, and 10, with class 9 being most problematic as the majority of
observations were misclassi�ed as class 3.

	ese errors, if consistent, could signi�cantly impede con-
trol of a prosthesis. 	us, to examine the behavior of the
VARHHMM implementations in a real-time application, the
classi�cation outputs were further analyzed.

Figure 9 contains some of themost severe examples of the
misclassi�cation errors produced by the HSMM algorithm.

Figure 9(c) is an illustration of the proper movement classi-
�cation where only errors occur during transition between
rest and themovement. Compared to this sample, Figure 9(a)
depicts an error of the labeling and keeping the incorrect
movement active almost from the beginning of the move-
ment onset, Figure 9(b) depicts misclassi�cation at the mid-
dle of themovement period, and Figure 9(d) depicts the inde-
cisiveness of the algorithm to label samples at the transient
period. Out of these examples, the most severe in terms of
real-time application is the �rst case that could lead to the
execution of the false actuation.	e other cases are relatively
easy to correct using a state machine and/or majority voting
algorithm that prevents situations that are less likely to occur
by the user’s intent.

Other metrics that were implemented to calculate clas-
si�er behavior in the real-time are motion selection (MS)
and motion completion (MC) times. 	e calculation of MS
and MC is derived from the papers of Li et al. and Ortiz-
Catalan et al. [38, 39]. MSwas computed as the delay between
cue onset and the �rst correctly classi�ed sample. Due to the
di
erence in features frequency, the condition for theMCwas
slightlymodi�ed compared to other papers. In our algorithm,
a new EMG feature was produced every 25ms, while in [38]
every 100ms, so instead of 10 correct classi�cations, wewaited
for 40 correct classi�cations until the MC condition was
ful�lled. 	is change was done in order to have comparable
results with the relevant publications. 	e same metric for
MS and MC was employed for all subjects and all features.
Figure 10 is showing MS and MC times mean values across
features and classi�ers. It could be noted that HSMM has
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Figure 9: Sample classi�cations of the HSHMM. MAV (feature with the highest accuracies across all classi�ers) and Subject 4 (median
results).
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Figure 10: Motion selection (MS) and motion completion (MC) time. Mean values for MS time ranged from 0.25 s (HSMM-RMS) to 0.6 s
(HHMM S1-ZC) and for MC time ranged from 1.3 s (HSMM-RMS) to 1.8 s (DT-SSC).

the lowest delay between cue and the �rst correctly classi�ed
sample, indicating that the method has a relatively low
detection threshold compared to the other classi�ers. It is
also clear that the HSMM works the best with amplitude
based features (MAV, RMS, and WA). Another interesting

outcome is thatHSMMwith only one segment permovement
achieves similar results as HSMMwithmultiple segments per
movement when fed with MAV or RMS features of the EMG
signal. On the other hand, the regular HHMM performed
slightly worse on average than the best classi�ers, such as
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Figure 11: Optimization of the parameters. 	e chart shows that
there is no clear advantage of using high number of segments per
movement as in lot of cases even one segment is enough to achieve
the highest classi�cation accuracy. 	e same conclusion could be
made for the number of AR samples as having only one previous
sample available for making prediction could lead to high accuracy.

LDA, SVM ECOC, L ECOC, and LDA ECOC. Similar to
HSMM, reducing number of segments per movement for the
HHMM does not result in signi�cant drop in performance
related to MS and MC times.

We also analyzed another parameter, namely, the optimal
number of segments per movement that results from the
optimization procedure. For both HHMM and HSMM algo-
rithms, two segments per movement most frequently pro-
duced the highest accuracy score (Figure 11). Another inter-
esting parameter that was optimized and analyzed is the order
of the vector autoregressive process (;) in the HHMM and
HSMMmodels with one segment permovement.	e highest
accuracy was achieved with 3 successive points, but what
was not expected was relatively good accuracy with only one
autoregressive sample (prediction relies only on the previous
observation).

As the performance of HSMM algorithm depends on
the prede�ned distribution of possible movement durations,
analyzing this parameter was of great importance. During the
measurements, the duration of movements was governed by
the visual cues thatwere presented in automatedmanner.	is
way, the resultingmovements have roughly the same duration
of 5 s. To arti�cially introduce expected movement duration
variability, we expanded the uniform duration distribution
around central point of 5 s.With the extension of the expected
movement duration, we evaluated classi�cation accuracy. As
presented in Figure 12, the dependency between classi�cation
accuracy and the range of permitted movement duration
is almost linear in the mid-range. 	is �nding is valuable
for de�ning expected movement duration, while taking into
account the tradeo
 between accuracy and �exibility of the
classi�er to adapt to free movements by a user.
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Figure 12: Dependence of the distribution range to the accuracy
of the HSHMM classi�er. 	e graph is showing that the accuracy
decreases almost linearly with the increase of the movement dura-
tion range.

4. Discussion

In this paper, we presented novel algorithms for classify-
ing features from surface EMG signals. Both of the pro-
posed algorithms (HHMM and HSMM) are variations of
the VARHHMM algorithm which combines vector autore-
gression, hidden Markov models, and Bayesian inference.
	e main focus of the presented results is the comparison
betweendi
erent EMGclassi�ers, including someof themost
commonly used ones and VARHHMM variants. 	e results
presented in Table 1 indicate that theHSMMalgorithmwith a
priori �xedmovement duration outperforms other classi�ers.
It should be also noted that the results of HSMM algorithm
presented in this table are with the ad hoc uniformmovement
durations distribution between 3 s and 5 s. It is envisioned
that, in the prolonged prosthesis use with this control algo-
rithm, the movement duration distribution would be the
parameter updated with each correctly executed movement.
	us, as the time of use increases, the distribution should
become optimal and result in increased movement classi�-
cation accuracy. 	e other derived algorithm (HHMM) was
ranked overall just behind the SVM ECOC, mostly because
of low accuracy when frequency related time-based features
were used as inputs.

	e results also reveal that reducing number of segments
per movement to one does not result in considerable drop
in accuracy scores for the derived algorithms (with the
exception of VAR feature). 	is fact has signi�cant impact
on the possible implementation of the algorithms as the opti-
mization, even in the case of large time series, for example,
tens of minutes, could be executed in a matter of seconds.
As the illustration, optimization of algorithm variants with
free parameter of segments per movement takes up to 10
minutes per movement (Python 3.6 and Intel i7 processor).
Depending on the embedded platform, our estimate is that
optimization with one segment per movement could be still
done in less than a minute. 	e other fact that contributes to
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low processing during optimization and real-time application
is that algorithm does not need high order autoregressive
models. As presented in Figure 11, using even only one pre-
vious sample point could result in the highest accuracy score.

As this study was also aiming at �nding out which feature
extraction method works the best when coupled with the
proposed algorithms and commonly used ones, we carried
out a systematic test that included all features and subjects.
With the EMG signals that we acquired, usingMAV feature as
the �rst step in the classi�cation chain produced the highest
accuracy scores among classi�ers. 	e performance of MAV
was closely matched by RMS, while WA produced the best
results among the frequency related time-based features.

When compared with the reported results of Li et al.
[38], the obtainedMS andMC times calculated with our data
and algorithms show some deviations. 	is is mostly present
in MS values that represent the delay of the �rst properly
classi�ed sample. In the case of Li et al., MS values were
in range 0.16–0.33 s, while in our simulations, only HSMM
with MAV, RMS, and WA achieved similar performance.
	is behavior is the result of the di
erence in the ground
truth choice: Li et al. used actual onset of the EMG activity,
while we selected visual cue onset. With this in mind, it is
expected that theMS times in our case have the superimposed
lag of approximately 200–400ms resulting from the latency
between the cue and the muscle activation. 	at practically
means that the HSMMwould outperform reported classi�ers
if used in similar conditions. 	e same rationale goes for the
MC times. Although classi�ers tested in this study produced
longer MC times on average, if reduced by the visual cue to
muscle activity o
set, the results would show that HSMM
manages to correctly detect 40 samples (which correspond
to 10 samples in paper of Li et al.) faster than the classi�ers
reported by Li et al.

5. Conclusion

	e study performed on our set of multichannel surface
EMG indicates that using MAV feature coupled with HSMM
algorithm leads to movement decoding accuracy higher than
other combinations of features and classi�ers. 	is combina-
tion also guaranties the shortest MS andMC times, in�uenc-
ing a response of a prosthetic hand to a user intent.

	e main advantages inherent to our algorithms com-
pared to the existing methods are the following. (1) Low
computation complexity for the execution of the algorithm:
following the optimization procedure, which is computation-
ally demanding but executed only once per model, the imple-
mentation of our algorithmcomes down to the basic algebraic
operations that could be implemented even on low-end
microcontrollers.	is feature also permits true real-time exe-
cution with the delay only related to EMG feature extraction
and AR depth. Additionally, we tested even faster variations
of developed algorithms that have only one segment per
movement. With the small drop in performances, these
algorithms, especially HSMM with one segment per move-
ment, signi�cantly decreased optimization time and further
decreased execution load. (2) Easy expansion: once opti-
mized, models could be stored, and in the case of introducing

a new movement class, the optimization could be performed
only on the newly added movement class. (3) Noise resilient:
in comparison with some weak classi�ers and threshold
centered rule-based algorithms, the VARHHMM approach
implicitly takes into account possible sources of stochastic
noise.

	emethod proposed in this paper is intended for decod-
ing individual �nger movements for directly controlling
actuated �ngers of a prosthetic hand. Although desirable,
this approach is not common as the prosthesis use during
activities of daily living mostly consists of synergistic move-
ments (grasps).	us, as the alternative control paradigm, the
proposedmethod could be implemented as the statemachine
classi�er-controller. In this approach, the separable classes
might be used to initiate �xed grasps (pinch/power/lateral/
open) as this is what most commercial hands support.
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and D. B. Popovič, “Cognitive vision system for control of
dexterous prosthetic hands: experimental evaluation,” Journal
of NeuroEngineering and Rehabilitation, vol. 7, no. 1, article 42,
2010.

[6] M. Controzzi, F. Clemente, D. Barone, A. Ghionzoli, and C.
Cipriani, “	e SSSA-MyHand: A dexterous lightweight myo-
electric hand prosthesis,” IEEE Transactions on Neural Systems
and Rehabilitation Engineering, vol. 25, no. 5, pp. 459–468, 2017.

[7] Touchbionics, http://www.touchbionics.com/.

[8] bebionic, http://bebionic.com/.

[9] Michelangelo, http://www.ottobockus.com/prosthetics/upper-
limb-prosthetics/solution-overview/michelangelo-prosthetic-
hand/.

http://www.touchbionics.com/
http://www.ottobockus.com/prosthetics/upper-limb-prosthetics/solution-overview/michelangelo-prosthetic-hand/
http://www.ottobockus.com/prosthetics/upper-limb-prosthetics/solution-overview/michelangelo-prosthetic-hand/
http://www.ottobockus.com/prosthetics/upper-limb-prosthetics/solution-overview/michelangelo-prosthetic-hand/


12 Complexity

[10] Vincent hand, http://vincentsystems.de/en/.
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and simultaneous control of arti�cial limbs based on pattern
recognition algorithms,” IEEE Transactions on Neural Systems
and Rehabilitation Engineering, vol. 22, no. 4, pp. 756–764, 2014.

http://vincentsystems.de/en/
https://github.com/mattjj/pyhsmm-autoregressive
https://github.com/mattjj/pyhsmm-autoregressive


Hindawi
www.hindawi.com Volume 2018

Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Problems 
in Engineering

Applied Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Probability and Statistics
Hindawi
www.hindawi.com Volume 2018

Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi
www.hindawi.com Volume 2018

Optimization
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Engineering  
 Mathematics

International Journal of

Hindawi
www.hindawi.com Volume 2018

Operations Research
Advances in

Journal of

Hindawi
www.hindawi.com Volume 2018

Function Spaces
Abstract and 
Applied Analysis
Hindawi
www.hindawi.com Volume 2018

International 

Journal of 

Mathematics and 

Mathematical 

Sciences

Hindawi

www.hindawi.com Volume 2018

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific 
World Journal

Volume 2018

nalysNumerical AnalysisNumerical AnalysisericalNumerical AnalysisNumerical AnalysisericNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical Analysis
Discrete Dynamics in 
Nature and Society

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

Differential Equations
International Journal of

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Decision Sciences
Advances in

Hindawi
www.hindawi.com Volume 2018

Analysis
International Journal of

Hindawi
www.hindawi.com Volume 2018

Stochastic Analysis
International Journal of

Submit your manuscripts at

www.hindawi.com

https://www.hindawi.com/journals/jmath/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/jam/
https://www.hindawi.com/journals/jps/
https://www.hindawi.com/journals/amp/
https://www.hindawi.com/journals/jca/
https://www.hindawi.com/journals/jopti/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/aor/
https://www.hindawi.com/journals/jfs/
https://www.hindawi.com/journals/aaa/
https://www.hindawi.com/journals/ijmms/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ana/
https://www.hindawi.com/journals/ddns/
https://www.hindawi.com/journals/ijde/
https://www.hindawi.com/journals/ads/
https://www.hindawi.com/journals/ijanal/
https://www.hindawi.com/journals/ijsa/
https://www.hindawi.com/
https://www.hindawi.com/

