Vector Bundles on Products of Projective Spaces and Hyperquadrics

Edoardo Ballico and Francesco Malaspina

Abstract

Here we consider the space $\mathbf{P}^{n_{1}} \times \cdots \times \mathbf{P}^{n_{s}} \times \mathcal{Q}_{m_{1}} \times \cdots \times$ $\mathcal{Q}_{m_{q}}$. We introduce a notion of Castelnuovo-Mumford regularity in order to prove two splitting criteria for vector bundles with arbitrary rank.

Keywords: n-Blocks Collections, Vector Bundles, Castelnuovo-Mumford Regularity. MS Classification 2000: 14F05, 14J60.

1. Introduction

A well known result by Horrocks (see [8]) characterizes the vector bundles without intermediate cohomology on a projective space as direct sum of line bundles. This criterion fails on more general varieties. In fact there exist nonsplit vector bundles on X without intermediate cohomology. These bundles are called ACM bundles.

On a quadric hypersurface \mathcal{Q}_{n} there is a theorem that classifies all the ACM bundles (see [11]) as direct sums of line bundles and spinor bundles (up to a twist - for generalities about spinor bundles see [14]).

Ottaviani has generalized Horrocks criterion to quadrics and Grassmanniann giving cohomological splitting conditions for vector bundles (see [13] and [15]).

The starting point of this note is [5] where Laura Costa and Rosa Maria Miró-Roig give a new proof of Horrocks and Ottaviani's criteria by using different techniques. Beilinson's Theorem was stated in 1978 and since then it has become a major tool in classifying vector bundles over projective spaces. Beilinson's spectral sequence was generalized by Kapranov (see [9] and [10]) to hyperquadrics and Grassmannians and by Costa and Miró-Roig (see [5]) to any smooth projective variety of dimension n with an n-block collection.

We specialize on a product X of finitely many projective spaces and smooth quadric hypersurfaces. In [2] and [1] we introduced a notion of CastelnuovoMumford regularity on quadric hypersurfaces and multiprojective spaces. We will give a suitable definition of regularity on such a product X in order to prove splitting criteria for vector bundle with arbitrary rank. Let E be a
vector bundle on X. We will give two criteria which says when E is (up to a twist) a direct sum of \mathcal{O} or the tensor product of pull-backs of spinor bundles on the quadric factors of X (see Theorems 2.14 and 2.15).

We thank the referee for her/his very helpful remarks.

2. Regularity on $\mathbf{P}^{n_{1}} \times \cdots \times \mathbf{P}^{n_{s}} \times \mathcal{Q}_{m_{1}} \times \cdots \times \mathcal{Q}_{m_{q}}$

Let us consider a smooth quadric hypersurface \mathcal{Q}_{n} in \mathbf{P}^{n+1}. We use the unified notation Σ_{*} meaning that for even n both the spinor bundles Σ_{1} and Σ_{2} are considered, and for n odd, the spinor bundle Σ. In [2] we introduced the following definition of regularity on \mathcal{Q}_{n} (cfr [2] Definition 2.1 and Proposition 2.4):

Definition 2.1. A coherent sheaf F on $\mathcal{Q}_{n}(n \geq 2)$ is said to be m-Qregular if

$$
\begin{gathered}
H^{i}(F(m-i))=0 \text { for } i=1, \ldots, n-1 \\
H^{n-1}\left(F(m) \otimes \Sigma_{*}(-n+1)\right)=0 \text { and } H^{n}(F(m-n+1))=0 .
\end{gathered}
$$

We will say Qregular instead of $0-Q r e g u l a r$.
In [1] we introduced the following definition of regularity on $\mathbf{P}^{n_{1}} \times \cdots \times \mathbf{P}^{n_{s}}$ (cfr [1] Definition 4.1):
Definition 2.2. A coherent sheaf F on $\mathbf{P}^{n_{1}} \times \cdots \times \mathbf{P}^{n_{s}}$ is said to be $\left(p_{1}, \ldots, p_{s}\right)$ regular if, for all $i>0$,

$$
H^{i}\left(F\left(p_{1}, \ldots, p_{s}\right) \otimes \mathcal{O}\left(k_{1}, \ldots, k_{s}\right)\right)=0
$$

whenever $k_{1}+\cdots+k_{s}=-i$ and $-n_{j} \leq k_{j} \leq 0$ for any $j=1, \ldots, s$.
Now we want to introduce a notion of regularity on

$$
\mathbf{P}^{n_{1}} \times \cdots \times \mathbf{P}^{n_{s}} \times \mathcal{Q}_{m_{1}} \times \cdots \times \mathcal{Q}_{m_{q}}
$$

We recall the definition of n-block collection:
Definition 2.3. An exceptional collection $\left(F_{0}, F_{1}, \ldots, F_{m}\right)$ of objects of \mathcal{D} (see [5] Definition 2.1.) is a block if $E x t_{\mathcal{D}}^{i}\left(F_{j}, F_{k}\right)=0$ for any i and $j \neq k$.

An n-block collection of type $\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}\right)$ of objects of \mathcal{D} is an exceptional collection

$$
\left(\mathcal{E}_{0}, \mathcal{E}_{1}, \ldots, \mathcal{E}_{m}\right)=\left(E_{1}^{0}, \ldots, E_{\alpha_{0}}^{0}, E_{1}^{1}, \ldots, E_{\alpha_{1}}^{1}, \ldots, E_{1}^{n}, \ldots, E_{\alpha_{n}}^{n}\right)
$$

such that all the subcollections $\mathcal{E}_{i}=\left(E_{1}^{i}, \ldots, E_{\alpha_{i}}^{i}\right)$ are blocks.
Example 2.4. $\left(\mathcal{O}_{\mathbf{P}^{n}}(-n), \mathcal{O}_{\mathbf{P}^{n}}(-n+1), \ldots, \mathcal{O}_{\mathbf{P}^{n}}\right)$ is an n-block collection of type $(1,1, \ldots, 1)$ on \mathbf{P}^{n} (see [5] Example 2.3.(1)).

Example 2.5. Let us consider a smooth quadric hypersurface \mathcal{Q}_{n} in \mathbf{P}^{n+1}.

$$
\left(\mathcal{E}_{0}, \mathcal{O}(-n+1), \ldots, \mathcal{O}(-1), \mathcal{O}\right)
$$

where $\mathcal{E}_{0}=\left(\Sigma_{*}(-n)\right)$, is an n-block collection of type $(1,1, \ldots, 1)$ if n is odd, and of type $(2,1, \ldots, 1)$ if n is even (see [5] Example 3.4.(2)).

Moreover we can have several n-block collections:

$$
\sigma_{j}=\left(\mathcal{O}(j), \ldots, \mathcal{O}(n-1), \mathcal{E}_{n-j}, \mathcal{O}(n+1), \ldots, \mathcal{O}(n-j-1)\right)
$$

where $\mathcal{E}_{n-j}=\left(\Sigma_{*}(n-1)\right.$) and $1 \leq j \leq n$ (see [6] Proposition 4.4).
We need the following notation:

Notation. Let X, Y be two smooth projective varieties of dimension n and m. Let $\left(\mathcal{G}_{0}, \ldots, \mathcal{G}_{n}\right), \mathcal{G}_{i}=\left(G_{0}^{i}, \ldots, G_{\alpha_{i}}^{i}\right)$ be a n-block collection for X and $\left(\mathcal{E}_{0}, \ldots, \mathcal{E}_{m}\right), \mathcal{E}_{j}=\left(E_{0}^{j}, \ldots, E_{\beta_{j}}^{j}\right)$ a m-block collection for Y (see [5]).

We denote by $\mathcal{G}_{i} \boxtimes \mathcal{E}_{j}$ the set of all the bundles $G_{k}^{i} \boxtimes E_{m}^{j}$ on $X \times Y$ such that $G_{k}^{i} \in \mathcal{G}_{i}$ and $E_{m}^{j} \in \mathcal{E}_{j}$.

For any $0 \leq k \leq n+m$, we define $\mathcal{F}_{k}=\mathcal{G}_{i} \boxtimes \mathcal{E}_{j}$ where $i+j=k$.
Let us consider first $X=\mathbf{P}^{n} \times \mathcal{Q}_{m}$.
Definition 2.6. On \mathbf{P}^{n} we consider the n-block collection:

$$
\left(\mathcal{E}_{0}, \ldots \mathcal{E}_{n}\right)=(\mathcal{O}(-n), \mathcal{O}(-n+1), \ldots, \mathcal{O})
$$

and on \mathcal{Q}_{m} we consider the m-block collection:

$$
\left(\mathcal{G}_{0}, \ldots \mathcal{G}_{m}\right)=\left(\mathcal{O}(-m+1), \mathcal{G}_{1}, \ldots, \mathcal{O}\right)
$$

where $\mathcal{G}_{1}=\left(\Sigma_{*}(-m+1)\right)$.
A coherent sheaf F on X is said to be $\left(p, p^{\prime}\right)$-regular if, for all $i>0$,

$$
H^{i}\left(F\left(p, p^{\prime}\right) \otimes \mathcal{E}_{n-j} \boxtimes \mathcal{G}_{m-k}\right)=0
$$

whenever $j+k=i,-n \leq-j \leq 0$ and $-m \leq-k \leq 0$.
Remark 2.7. If $m=2$ Definition 2.6 coincides with Definition 2.2 on $\mathbf{P}^{n} \times$ $\mathbf{P}^{1} \times \mathbf{P}^{1}$. In fact the 2-block collection on \mathcal{Q}_{2} is

$$
\left(\mathcal{O}(-1),\left\{\Sigma_{1}(-1), \Sigma_{2}(-1)\right\}, \mathcal{O}\right)=(\mathcal{O}(-1,-1),\{\mathcal{O}(-1,0), \mathcal{O}(0,-1)\}, \mathcal{O})
$$

In particular when $n=0, F$ is regular if

$$
H^{2}(F(-1,-1))=H^{1}(F(0,-1))=H^{1}(F(-1,0))=0
$$

This definition is not equivalent to the definition of Qregularity on \mathcal{Q}_{2} but it is a good definition of regularity. In fact, let F be a regular coherent sheaf. Since $H^{1}(F(-1,0))=0$ from the exact sequence

$$
0 \rightarrow \mathcal{O}(-1,0) \rightarrow \mathcal{O}^{2} \rightarrow \mathcal{O}(1,0) \rightarrow 0
$$

tensored by F we see that $H^{0}(F(1,0))$ is spanned by

$$
H^{0}(F) \otimes H^{0}(\mathcal{O}(1,0))
$$

Moreover if we tensor the above sequence by $F(-1,-1)$, we have $H^{2}(F(-2,-1))=0$. From the sequences

$$
0 \rightarrow F(-2,0) \rightarrow F^{2}(-1,0) \rightarrow F \rightarrow 0
$$

and

$$
0 \rightarrow F(-1,-1) \rightarrow F^{2}(0,-1) \rightarrow F(1,-1) \rightarrow 0
$$

we see that $H^{1}(F)=H^{1}(F(1,-1))=0$ and then $F(1,0)$ is regular.
Remark 2.8. If $m=0$ we can identify X with \mathbf{P}^{n} and the sheaf $F\left(k, k^{\prime}\right)$ with $F(k)$. Under this identification F is $\left(p, p^{\prime}\right)$-regular in the sense of Definition 2.6, if and only if F is p-regular in the sense of Castelnuovo-Mumford.

In fact, let $i>0, H^{i}\left(F\left(p, p^{\prime}\right) \otimes \mathcal{E}_{n-j} \boxtimes \mathcal{G}_{m-k}\right)=H^{i}(F(p-j))=0$ whenever $j+k=i,-n \leq-j \leq 0$ and $-m \leq-k \leq 0$ if and only if $H^{i}(F(p-j))=0$ whenever $-i \leq-j \leq 0$ if and only if $H^{i}(F(p-i))=0$.

Lemma 2.9. (1) Let H be a generic hyperplane of \mathbf{P}^{n}. If F is a regular coherent sheaf on $X=\mathbf{P}^{n} \times \mathcal{Q}_{m}$, then $F_{\mid L_{1}}$ is regular on $L_{1}=H \times \mathcal{Q}_{m}$.
(2) Let H^{\prime} be a generic hyperplane of \mathcal{Q}_{m}. If F is a regular coherent sheaf on $X=\mathbf{P}^{n} \times \mathcal{Q}_{m}$, then $F_{L_{2}}$ is regular on $L_{2}=\mathbf{P}^{n} \times H^{\prime}$.

Proof. (1) We follow the proof of [7] Lemma 2.6. We get this exact cohomology sequence:

$$
\begin{aligned}
H^{i}\left(F(-j, 0) \otimes \mathcal{O} \boxtimes \mathcal{G}_{m-k}\right) \rightarrow H^{i}\left(F_{\mid L_{1}}\right. & \left.(-j, 0) \otimes \mathcal{O} \boxtimes \mathcal{G}_{m-k}\right) \rightarrow \\
& \rightarrow H^{i+1}\left(F(-j-1,0) \otimes \mathcal{O} \boxtimes \mathcal{G}_{m-k}\right) .
\end{aligned}
$$

If $j+k=i,-n \leq-j \leq 0$ and $-m \leq-k \leq 0$, we have also $-n-1 \leq-j-1 \leq 0$, so the first and the third groups vanish by hypothesis. Then also the middle group vanishes and $F_{\mid L_{1}}$ is regular.
(2) We have to deal also with the spinor bundles. First assume m even, say $m=2 l$. We have $\Sigma_{1_{\mid \mathcal{Q}_{m-1}}} \cong \Sigma_{2_{\mid} \mathcal{Q}_{m-1}} \cong \Sigma$. Let $k=m-1$ and $j=m-1-i$ ($i \geq m-i$). Let us consider the exact sequences

$$
\begin{aligned}
0 \rightarrow \mathcal{O}(-j) \boxtimes \Sigma_{1}(-m) \rightarrow \mathcal{O}(-j) \boxtimes \mathcal{O}(-m & +1)^{2^{l}} \rightarrow \\
& \rightarrow \mathcal{O}(-j) \boxtimes \Sigma_{2}(-m+1) \rightarrow 0
\end{aligned}
$$

tensored by F.
Since $H^{i}\left(F \otimes \mathcal{O}(-j) \boxtimes \Sigma_{2}(-m+1)\right)=H^{i}\left(F \otimes \mathcal{E}_{n-j} \boxtimes \mathcal{G}_{1}\right)=0$ and $H^{i+1}(F(-j,-m+1))=H^{i+1}\left(F \otimes \mathcal{E}_{n-j} \boxtimes \mathcal{G}_{0}\right)=0$, we also have $H^{i+1}(F \otimes$ $\left.\mathcal{O}(-j) \boxtimes \Sigma_{1}(-m)\right)=0$.

From the exact sequences

$$
\begin{aligned}
0 \rightarrow \mathcal{O}(-j) \boxtimes \Sigma_{1}(-m+1) \rightarrow \mathcal{O}(-j) \boxtimes & \Sigma_{1}(-m+2) \rightarrow \\
& \rightarrow \mathcal{O}(-j) \boxtimes \Sigma_{1_{\mid} \mathcal{Q}_{m-1}}(-m+2) \rightarrow 0
\end{aligned}
$$

tensored by F, we get

$$
\begin{aligned}
H^{i}\left(F(-j, 0) \boxtimes \Sigma_{1}(-m+1)\right) \rightarrow H^{i}(F(-j, 0) & \left.\boxtimes \Sigma_{1_{\mid} \mathcal{Q}_{m-1}}(-m+1)\right) \rightarrow \\
& \rightarrow H^{i+1}\left(F(-j, 0) \boxtimes \Sigma_{1}(-m)\right)
\end{aligned}
$$

If $i \geq m-1$ and $j=m-1-i$, the first and the third groups vanish by hypothesis. Then also the middle group vanishes. In the same way we can show that also $H^{i}\left(F(-j, 0) \boxtimes \Sigma_{2_{\mid \mathcal{Q}_{m-1}}}(-m+1)\right)=0$.

Assume now m odd, say $m=2 l+1$. We have $\Sigma_{\mid \mathcal{Q}_{m-1}} \cong \Sigma_{1} \oplus \Sigma_{2}$. We can consider the exact sequences

$$
\begin{aligned}
0 \rightarrow \mathcal{O}(-j) \boxtimes \Sigma(-m) \rightarrow \mathcal{O}(-j) \boxtimes \mathcal{O}(-m+1)^{2^{l+1}} & \rightarrow \\
& \rightarrow \mathcal{O}(-j) \boxtimes \Sigma(-m+1) \rightarrow 0
\end{aligned}
$$

tensored by F. Then we argue as above.
All the others vanishing in Definition 2.6 can be proved as in (1) and we can conclude that $F_{\mid L_{2}}$ is regular.

Proposition 2.10. Let F be a regular coherent sheaf on $X=\mathbf{P}^{n} \times \mathcal{Q}_{m}$ then

1. $F\left(p, p^{\prime}\right)$ is regular for $p, p^{\prime} \geq 0$.
2. $H^{0}\left(F\left(k, k^{\prime}\right)\right)$ is spanned by

$$
H^{0}\left(F\left(k-1, k^{\prime}\right)\right) \otimes H^{0}(\mathcal{O}(1,0))
$$

if $k-1, k^{\prime} \geq 0$; and it is spanned by

$$
H^{0}\left(F\left(k, k^{\prime}-1\right)\right) \otimes H^{0}(\mathcal{O}(0,1))
$$

if $k, k^{\prime}-1 \geq 0$ and $m>2$.
Proof. (1) We want to prove part (1) by induction. Let F be a regular coherent sheaf, we want show that also $F(1,0)$ is regular. We follow the proof of [7] Proposition 2.7.

Consider the exact cohomology sequence:

$$
\begin{aligned}
H^{i}\left(F(-j, 0) \otimes \mathcal{O} \boxtimes \mathcal{G}_{m-k}\right) \rightarrow H^{i}(F(& \left.-j+1,0) \otimes \mathcal{O} \boxtimes \mathcal{G}_{m-k}\right) \rightarrow \\
& \rightarrow H^{i}\left(F_{\mid L_{1}}(-j+1,0) \otimes \mathcal{O} \boxtimes \mathcal{G}_{m-k}\right)
\end{aligned}
$$

If $j+k=i,-n \leq-j \leq 0$ and $-m \leq-k \leq 0$, the first group vanishes because F is regular and the third group vanishes by the inductive hypothesis. Then also the middle group vanishes. A symmetric argument shows the vanishing for $F(0,1)$. We only have to check the vanishing involving the spinor bundles. We have the sequences

$$
\begin{aligned}
H^{i}\left(F(-j, 0) \boxtimes \Sigma_{*}(-m+1)\right) \rightarrow H^{i} & \left(F(-j, 1) \boxtimes \Sigma_{*}(-m+1)\right) \rightarrow \\
& \rightarrow H^{i}\left(F(-j, 1) \boxtimes \Sigma_{* \mid \mathcal{Q}_{m-1}}(-m+1)\right)
\end{aligned}
$$

If $k=m-1$ and $j=m-1-i(i \geq m-i)$, the first group vanishes because F is regular and the third group vanishes by the inductive hypothesis. Then also the middle group vanishes.
(2) We will follow the proof of [7] Proposition 2.8.

We consider the following diagram:

$$
\begin{array}{ccc}
H^{0}\left(F\left(k-1, k^{\prime}\right)\right) \otimes H^{0}(\mathcal{O}(1,0)) & \xrightarrow{\mu} & H^{0}\left(F\left(k, k^{\prime}\right)\right) \\
\downarrow \sigma & \downarrow \nu \\
H^{0}\left(F_{\mid L_{1}}\left(k-1, k^{\prime}\right)\right) \otimes H^{0}\left(\mathcal{O}_{L_{1}}(1,0)\right) & \xrightarrow{\tau} & H^{0}\left(F_{\mid L_{1}}\left(k, k^{\prime}\right)\right)
\end{array}
$$

Note that σ is surjective if $k-1, k^{\prime} \geq 0$ because $H^{1}\left(F\left(k-2, k^{\prime}\right)\right)=0$ by regularity.

Moreover also τ is surjective by (2) for $F_{\mid L_{1}}$.
Since both σ and τ are surjective, we can see as in [12] page 100 that μ is also surjective.

In order to prove that $H^{0}\left(F\left(k, k^{\prime}\right)\right)$ is spanned by $H^{0}\left(F\left(k, k^{\prime}-1\right)\right) \otimes$ $H^{0}(\mathcal{O}(0,1))$ if $k, k^{\prime}-1 \geq 0$, we can use a symmetric argument since for $m>2$ the spinor bundles are not involved in the proof.

REmARK 2.11. If F is a regular coherent sheaf on $X=\mathbf{P}^{n} \times \mathcal{Q}_{m}(m>2)$ then it is globally generated.

In fact by the above proposition we have the following surjections:

$$
\begin{aligned}
H^{0}(F) \otimes H^{0}(\mathcal{O}(1,0)) \otimes H^{0}(\mathcal{O}(0,1)) \rightarrow & \\
& \rightarrow H^{0}(F(1,0)) \otimes H^{0}(\mathcal{O}(0,1)) \rightarrow H^{0}(F(1,1))
\end{aligned}
$$

and so the map

$$
H^{0}(F) \otimes H^{0}(\mathcal{O}(1,1)) \rightarrow H^{0}(F(1,1))
$$

is a surjection.
Moreover we can consider a sufficiently large twist l such that $F(l, l)$ is globally generated. The commutativity of the diagram

$$
\begin{array}{cccc}
H^{0}(F) \otimes H^{0}(\mathcal{O}(l, l)) \otimes \mathcal{O} & \rightarrow & H^{0}(F(l, l)) \otimes \mathcal{O} \\
\downarrow & & \downarrow \\
H^{0}(F) \otimes \mathcal{O}(l, l) & & \rightarrow & F(l, l)
\end{array}
$$

yields the surjectivity of $H^{0}(F) \otimes \mathcal{O}(l, l) \rightarrow F(l, l)$, which implies that F is generated by its sections.

If $m=2$, then F is globally generated by Remark 2.7 and [1] Remark 2.6.
Now we generalize Definition 2.6:
DEFINITION 2.12. Let us consider $X=\mathbf{P}^{n_{1}} \times \cdots \times \mathbf{P}^{n_{s}} \times \mathcal{Q}_{m_{1}} \times \cdots \times \mathcal{Q}_{m_{q}}$.
On $\mathbf{P}^{n_{j}}$ (where $j=1, \ldots, s$) we consider the n_{j}-block collections:

$$
\left(\mathcal{E}_{0}^{j}, \ldots \mathcal{E}_{n}^{j}\right)=\left(\mathcal{O}\left(-n_{j}\right), \mathcal{O}\left(-n_{j}+1\right), \ldots, \mathcal{O}\right)
$$

and on $\mathcal{Q}_{m_{l}}($ where $l=1, \ldots, q)$ we consider the m_{q}-block collections:

$$
\left(\mathcal{G}_{0}^{l}, \ldots \mathcal{G}_{m}^{l}\right)=\left(\mathcal{O}\left(-m_{l}+1\right), \mathcal{G}_{1}^{l}, \ldots, \mathcal{O}\right)
$$

where $\mathcal{G}_{1}^{l}=\left(\Sigma_{*}\left(-m_{l}+1\right)\right)$.
A coherent sheaf F on X is said to be $\left(p_{1}, \ldots, p_{s+q}\right)$-regular if, for all $i>0$,

$$
H^{i}\left(F\left(p_{1}, \ldots, p_{s+q}\right) \otimes \mathcal{E}_{n_{1}-k_{1}}^{1} \boxtimes \cdots \boxtimes \mathcal{E}_{n_{s}-k_{s}}^{s} \boxtimes \mathcal{G}_{m_{1}-h_{1}}^{1} \boxtimes \cdots \boxtimes \mathcal{G}_{m_{q}-h_{q}}^{q}\right)=0
$$

whenever $k_{1}+\cdots+k_{s}+h_{1}+\cdots+h_{q}=i,-n_{j} \leq-k_{j} \leq 0$ for any $j=1, \ldots, s$ and $-m_{l} \leq-h_{l} \leq 0$ for any $l=1, \ldots, q$.
REMARK 2.13. As above can be proved (by using exactly the same arguments) that, if F is regular then is globally generated and $F\left(k_{1}, \ldots, k_{s+q}\right)$ is regular when $k_{1}, \ldots, k_{s+q} \geq 0$.

We use our notion of regularity in order to proving some splitting criterion on $X=\mathbf{P}^{n_{1}} \times \cdots \times \mathbf{P}^{n_{s}} \times \mathcal{Q}_{m_{1}} \times \cdots \times \mathcal{Q}_{m_{q}}$.
TheOrem 2.14. Let E be a rank r vector bundle on $X=\mathbf{P}^{n_{1}} \times \cdots \times \mathbf{P}^{n_{s}} \times$ $\mathcal{Q}_{m_{1}} \times \cdots \times \mathcal{Q}_{m_{q}}\left(m_{1}, \ldots, m_{q}>2\right)$.

Set $d=n_{1}+\cdots+n_{s}+m_{1}+\cdots+m_{q}$.
Then the following conditions are equivalent:

1. for any $i=1, \ldots, d-1$ and for any integer t,

$$
\left.H^{i}\left(E(t, \ldots, t) \otimes \mathcal{E}_{n_{1}-k_{1}}^{1} \boxtimes \cdots \boxtimes \mathcal{E}_{n_{s}-k_{s}}^{s} \boxtimes \mathcal{G}_{m_{1}-h_{1}}^{1} \boxtimes \cdots \boxtimes \mathcal{G}_{m_{q}-h_{q}}^{q}\right)\right)
$$

vanishes whenever $k_{1}+\cdots+k_{s}+h_{1}+\cdots+h_{q}=i,-n_{j} \leq-k_{j} \leq 0$ for any $j=1, \ldots, s$ and $-m_{l} \leq-h_{l} \leq 0$ for any $l=1, \ldots, q$.
2. There are r integer t_{1}, \ldots, t_{r} such that $E \cong \bigoplus_{i=1}^{r} \mathcal{O}\left(t_{i}, \ldots, t_{i}\right)$.

Proof. (1) $\Rightarrow(2)$. Let us assume that t is an integer such that $E(t, \ldots, t)$ is regular but $E(t-1, \ldots, t-1)$ is not.

By the definition of regularity and (1) we can say that $E(t-1, \ldots, t-1)$ is not regular if and only if

$$
H^{d}\left(E(t-1, \ldots, t-1) \otimes \mathcal{O}\left(-n_{1}, \ldots,-n_{s},-m_{1}+1, \ldots,-m_{q}+1\right)\right) \neq 0
$$

By Serre duality we have that $H^{0}\left(E^{\vee}(-t, \ldots,-t)\right) \neq 0$.
Now since $E(t, \ldots, t)$ is globally generated by Remark 2.11 and $H^{0}\left(E^{\vee}(-t, \ldots,-t)\right) \neq 0$ we can conclude that \mathcal{O} is a direct summand of $E(t, \ldots, t)$.

By iterating these arguments we get (2).
$(2) \Rightarrow(1)$. By Künneth formula for any $i=1, \ldots, m+n-1$ and for any integer t,

$$
\left.H^{i}\left(\mathcal{O}(t, \ldots, t) \otimes \mathcal{E}_{n_{1}-k_{1}}^{1} \boxtimes \cdots \boxtimes \mathcal{E}_{n_{s}-k_{s}}^{s} \boxtimes \mathcal{G}_{m_{1}-h_{1}}^{1} \boxtimes \cdots \boxtimes \mathcal{G}_{m_{q}-h_{q}}^{q}\right)\right)=0
$$

whenever $k_{1}+\cdots+k_{s}+h_{1}+\cdots+h_{q}=i,-n_{j} \leq-k_{j} \leq 0$ for any $j=1, \ldots, s$ and $-m_{l} \leq-h_{l} \leq 0$ for any $l=1, \ldots, q$.

Then \mathcal{O} satisfies all the conditions in (1).
TheOrem 2.15. Let E be a rank r vector bundle on $X=\mathbf{P}^{n_{1}} \times \cdots \times \mathbf{P}^{n_{s}} \times$ $\mathcal{Q}_{m_{1}} \times \cdots \times \mathcal{Q}_{m_{q}}\left(m_{1}, \ldots, m_{q}>2\right)$.

Set $d=n_{1}+\cdots+n_{s}+m_{1}+\cdots+m_{q}$.
Then the following conditions are equivalent:

1. for any $i=1, \ldots, d-1$ and for any integer t,

$$
\left.H^{i}\left(E(t, \ldots, t) \otimes \mathcal{E}_{n_{1}-k_{1}}^{1} \boxtimes \cdots \boxtimes \mathcal{E}_{n_{s}-k_{s}}^{s} \boxtimes \mathcal{G}_{m_{1}-h_{1}}^{1} \boxtimes \cdots \boxtimes \mathcal{G}_{m_{q}-h_{q}}^{q}\right)\right)
$$

vanishes whenever $k_{1}+\cdots+k_{s}+h_{1}+\cdots+h_{q} \leq i,-n_{j} \leq-k_{j} \leq 0$ for any $j=1, \ldots, s$ and $-m_{l} \leq-h_{l} \leq 0$ for any $l=1, \ldots, q$ except when $k_{1}=n_{1}, \ldots, k_{s}=n_{s}$ and $h_{l}=m_{l}-1$ for any $l=1, \ldots, q$.

Moreover

$$
\begin{gathered}
H^{m_{1}-1}\left(E(t, \ldots, t) \otimes \mathcal{O} \boxtimes \cdots \boxtimes \mathcal{O} \boxtimes \mathcal{O}\left(-m_{1}+1\right) \boxtimes \cdots \boxtimes \mathcal{O}\right)=\ldots \\
\cdots=H^{m_{q}-1}\left(E(t, \ldots, t) \otimes \mathcal{O} \boxtimes \cdots \boxtimes \mathcal{O} \boxtimes \mathcal{O} \boxtimes \cdots \boxtimes \mathcal{O}\left(-m_{q}+1\right)\right)=0 .
\end{gathered}
$$

2. E is a direct sum of bundles \mathcal{O} and $\mathcal{O}(0, \ldots, 0) \boxtimes \Sigma_{*} \boxtimes \cdots \boxtimes \Sigma_{*}$ with some twist.

Proof. (1) \Rightarrow (2). First we see the proof when $X=\mathbf{P}^{n} \times \mathcal{Q}_{m}$.
In this case the condition (1) is the following:
for any $i=1, \ldots, m+n-1$ and for any integer t,

$$
H^{i}(E(t, t) \otimes \mathcal{O}(j, k))=0
$$

whenever $j+k=-i,-n \leq k \leq 0$ and $-m \leq j \leq 0(j \neq-m+1)$.
Moreover $H^{k+m-1}\left(E(t, t) \otimes \mathcal{O}(k) \boxtimes \Sigma_{*}(-m+1)\right)=0$ for $-n \leq k<0$ and $H^{m-1}(E(t, t) \otimes \mathcal{O} \boxtimes \mathcal{O}(-m+1))=0$.

Let us assume that t is an integer such that $E(t, t)$ is regular but $E(t-1, t-1)$ is not.

By the definition of regularity and (1) we can say that $E(t-1, t-1)$ is not regular if and only if one of the following conditions is satisfied:
i $H^{d}(E(t-1, t-1) \otimes \mathcal{O}(-n,-m+1)) \neq 0$.
ii $H^{n+m-1}\left(E(t-1, t-1) \otimes \mathcal{O}(-n) \boxtimes \Sigma_{*}(-m+1)\right) \neq 0$.
Let us consider one by one the conditions:
(i) Let $H^{d}(E(t-1, t-1) \otimes \mathcal{O}(-n,-m+1)) \neq 0$, we can conclude that $\mathcal{O}(t, t)$ is a direct summand as in the above theorem.
(ii) Let $H^{n+m-1}\left(E(t, t) \otimes \mathcal{O}(-n-1) \boxtimes \Sigma_{*}(-m)\right) \neq 0$.

Let us consider the following exact sequences tensored by $E(t, t)$:

$$
\begin{aligned}
0 \rightarrow \mathcal{O}(-n-1) \boxtimes \Sigma_{*}(-m) \rightarrow & \mathcal{O}(-n) \boxtimes \Sigma_{*}(-m) \rightarrow \ldots \\
& \cdots \rightarrow \mathcal{O}(1) \boxtimes \Sigma_{*}(-m) \rightarrow \mathcal{O} \boxtimes \Sigma_{*}(-m) \rightarrow 0,
\end{aligned}
$$

by using the vanishing conditions in (1) we can see that there is a surjection from

$$
H^{m-1}\left(E(t, t) \otimes \mathcal{O} \boxtimes \Sigma_{*}(-m)\right)
$$

to

$$
H^{n+m-1}\left(E(t, t) \otimes \mathcal{O}(-n-1) \boxtimes \Sigma_{*}(-m)\right)
$$

Let us consider now the following exact sequence tensored by $E(t, t)$:

$$
\begin{aligned}
& 0 \rightarrow \mathcal{O} \boxtimes \Sigma_{*}(-m) \rightarrow \mathcal{O} \boxtimes \mathcal{O}^{2\left(\left[\frac{m+1}{2}\right]\right)}(-m+1) \rightarrow \ldots \\
& \cdots \rightarrow \mathcal{O} \boxtimes \mathcal{O}^{2\left(\frac{m+1}{2}\right)}(-2) \rightarrow \mathcal{O} \boxtimes \Sigma_{*}(-1) \rightarrow 0 .
\end{aligned}
$$

By using the vanishing conditions in (1) as above (but here we need also the condition $\left.H^{m-1}(E(t, t) \otimes \mathcal{O} \boxtimes \mathcal{O}(-m+1))=0\right)$ we can see that there is a surjection from

$$
H^{0}\left(E(t, t) \otimes \mathcal{O} \boxtimes \Sigma_{*}(-1)\right)
$$

to

$$
H^{m-1}\left(E(t, t) \otimes \mathcal{O} \boxtimes \Sigma_{*}(-m)\right)
$$

and we can conclude that

$$
H^{0}\left(E(t, t) \otimes \mathcal{O} \boxtimes \Sigma_{*}(-1)\right) \neq 0
$$

This means that there exists a non zero map

$$
g: E(t, t) \rightarrow \mathcal{O} \boxtimes \Sigma_{*} .
$$

On the other hand

$$
\begin{aligned}
H^{n+m-1}\left(E(t, t) \otimes \mathcal{O}(-n-1) \boxtimes \Sigma_{*}(-m)\right) & \cong \\
& \cong H^{1}\left(E^{\vee}(-t,-t) \otimes \mathcal{O} \boxtimes \Sigma_{*}(-1)\right) .
\end{aligned}
$$

Let us consider the following exact sequences tensored by $E^{\vee}(-t,-t)$:

$$
0 \rightarrow \mathcal{O} \boxtimes \Sigma_{*}(-1) \rightarrow \mathcal{O} \boxtimes \mathcal{O}^{2^{\left(\left[\frac{m+1}{2}\right]\right)}} \rightarrow \mathcal{O} \boxtimes \Sigma_{*} \rightarrow 0
$$

Since

$$
H^{1}\left(E^{\vee}(-t,-t)\right) \cong H^{n+m-1}(E(t-n-1, t-m))=0
$$

we can conclude that

$$
H^{0}\left(E^{\vee}(-t,-t) \otimes \mathcal{O} \boxtimes \Sigma_{*}\right) \neq 0
$$

This means that there exists a non zero map

$$
f: \mathcal{O} \boxtimes \Sigma_{*} \rightarrow E(t, t)
$$

Then, by arguing as in [1] Theorem 1.2, we see that the composition of the maps f and g is not zero so must be the identity and we have that $\mathcal{O} \boxtimes \Sigma_{*}$ is a direct summand of $E(t, t)$.

On $X=\mathbf{P}^{n_{1}} \times \cdots \times \mathbf{P}^{n_{s}} \times \mathcal{Q}_{m_{1}} \times \cdots \times \mathcal{Q}_{m_{q}}\left(m_{1}, \ldots, m_{q}>2\right)$, Let us assume that t is an integer such that $E(t, \ldots, t)$ is regular but $E(t-1, \ldots, t-1)$ is not.

By the definition of regularity and (1) we can say that $E(t-1, \ldots, t-1)$ is not regular if and only if one of the following conditions is satisfied:
(i) $H^{d}\left(E(t-1, \ldots, t-1) \otimes \mathcal{O}\left(-n_{1}, \ldots,-n_{s},-m_{1}+1, \ldots,-m_{q}+1\right)\right) \neq 0$.
(ii) $H^{n_{1}+\cdots+n_{s}+m_{1}-1+\cdots+m_{q}-1}\left(E(t-1, \ldots, t-1) \otimes \mathcal{O}\left(-n_{1}, \ldots,-n_{s}\right) \boxtimes\right.$ $\left.\Sigma_{*}\left(-m_{1}+1\right) \boxtimes \cdots \boxtimes \Sigma_{*}\left(-m_{q}+1\right)\right) \neq 0$.

Let us consider one by one the conditions:
(i) Let $H^{d}\left(E(t-1, \ldots, t-1) \otimes \mathcal{O}\left(-n_{1}, \ldots,-n_{s},-m_{1}+1, \ldots,-m_{q}+1\right)\right) \neq$ 0 , we can conclude that $\mathcal{O}(t, \ldots, t)$ is a direct summand as in the above theorem.
(ii) Let $H^{n_{1}+\cdots+n_{s}+m_{1}-1+\cdots+m_{q}-1}\left(E(t, \ldots, t) \otimes \mathcal{O}\left(-n_{1}-1, \ldots,-n_{s}\right.\right.$ $\left.-1) \boxtimes \Sigma_{*}\left(-m_{1}\right) \boxtimes \cdots \boxtimes \Sigma_{*}\left(-m_{q}\right)\right) \neq 0$.

Let us consider the following exact sequences tensored by $E(t, \ldots, t)$:

$$
\begin{gathered}
0 \rightarrow \mathcal{O}\left(-n_{1}-1, \ldots,-n_{s}-1\right) \boxtimes \Sigma_{*}\left(-m_{1}\right) \boxtimes \cdots \boxtimes \Sigma_{*}\left(-m_{q}\right) \rightarrow \ldots \\
\quad \cdots \rightarrow \mathcal{O}\left(0,-n_{2}-1, \ldots,-n_{s}-1\right) \boxtimes \Sigma_{*}\left(-m_{1}\right) \boxtimes \cdots \boxtimes \Sigma_{*}\left(-m_{q}\right) \rightarrow 0, \\
0 \rightarrow \mathcal{O}\left(0,-n_{2}-1, \ldots,-n_{s}-1\right) \boxtimes \Sigma_{*}\left(-m_{1}\right) \boxtimes \cdots \boxtimes \Sigma_{*}\left(-m_{q}\right) \rightarrow \ldots \\
\cdots \rightarrow \mathcal{O}\left(0,0,-n_{3}-1, \ldots,-n_{s}-1\right) \boxtimes \Sigma_{*}\left(-m_{1}\right) \boxtimes \cdots \boxtimes \Sigma_{*}\left(-m_{q}\right) \rightarrow 0, \\
\ldots \\
0 \rightarrow \mathcal{O}\left(0, \ldots, 0,-n_{s}-1\right) \boxtimes \Sigma_{*}\left(-m_{1}\right) \boxtimes \cdots \boxtimes \Sigma_{*}\left(-m_{q}\right) \rightarrow \ldots \\
\cdots \rightarrow \mathcal{O}(0, \ldots, 0) \boxtimes \Sigma_{*}\left(-m_{1}\right) \boxtimes \cdots \boxtimes \Sigma_{*}\left(-m_{q}\right) \rightarrow 0 .
\end{gathered}
$$

Since all the bundles in the above sequences are

$$
\mathcal{E}_{n_{1}-k_{1}}^{1} \boxtimes \cdots \boxtimes \mathcal{E}_{n_{s}-k_{s}}^{s} \boxtimes \mathcal{G}_{m_{1}-h_{1}}^{1} \boxtimes \cdots \boxtimes \mathcal{G}_{m_{q}-h_{q}}^{q}
$$

with decreasing indexes, by using the vanishing conditions in (1) we can see that there is a surjection from

$$
H^{m_{1}-1+\cdots+m_{q}-1}\left(E(t, \ldots, t) \otimes \mathcal{O}(0, \ldots, 0) \boxtimes \Sigma_{*}\left(-m_{1}\right) \boxtimes \cdots \boxtimes \Sigma_{*}\left(-m_{q}\right)\right)
$$

to

$$
\begin{aligned}
& H^{n_{1}+\cdots+n_{s}+m_{1}-1+\cdots+m_{q}-1}(E(t, \ldots, t) \otimes \\
& \left.\qquad \mathcal{O}\left(-n_{1}-1, \ldots,-n_{s}-1\right) \boxtimes \Sigma_{*}\left(-m_{1}\right) \boxtimes \cdots \boxtimes \Sigma_{*}\left(-m_{q}\right)\right) .
\end{aligned}
$$

Let us consider now the following exact sequences on $\mathcal{Q}_{m_{1}} \times \cdots \times \mathcal{Q}_{m_{q}}$ for any integer p :

$$
\begin{aligned}
0 \rightarrow \Sigma_{*}\left(-m_{1}\right) \boxtimes \cdots \boxtimes \Sigma_{*}(p-1) \rightarrow \Sigma_{*}\left(-m_{1}\right) & \boxtimes \cdots \boxtimes \mathcal{O}(p)^{2^{\left(\left[\frac{m_{q}+1}{2}\right]\right)}} \rightarrow \\
& \rightarrow \Sigma_{*}\left(-m_{1}\right) \boxtimes \cdots \boxtimes \Sigma_{*}(p) \rightarrow 0 .
\end{aligned}
$$

We get the long exact sequence

$$
\begin{aligned}
& 0 \rightarrow \Sigma_{*}\left(-m_{1}\right) \boxtimes \cdots \boxtimes \Sigma_{*}\left(-m_{q}\right) \rightarrow \Sigma_{*}\left(-m_{1}\right) \boxtimes \ldots \\
& \quad \cdots \boxtimes \mathcal{O}\left(-m_{q}+1\right)^{2^{\left(\left[\frac{m_{q}+1}{2}\right]\right)}} \rightarrow \cdots \rightarrow \boxtimes \Sigma_{*}\left(-m_{1}\right) \boxtimes \cdots \boxtimes \Sigma_{*}(-1) \rightarrow 0 .
\end{aligned}
$$

In the same way we can get

$$
\begin{gathered}
0 \rightarrow \Sigma_{*}\left(-m_{1}\right) \boxtimes \cdots \boxtimes \Sigma_{*}\left(-m_{q-1}\right) \boxtimes \Sigma_{*}(-1) \rightarrow \Sigma_{*}\left(-m_{1}\right) \boxtimes \ldots \\
\cdots \boxtimes \mathcal{O}\left(-m_{q-1}+1\right)^{2^{\left(\left[\frac{m_{q-1}+1}{2}\right]\right)} \boxtimes \Sigma_{*}(-1) \rightarrow \ldots} \\
\cdots \rightarrow \boxtimes \Sigma_{*}\left(-m_{1}\right) \boxtimes \cdots \boxtimes \Sigma_{*}(-1) \boxtimes \Sigma_{*}(-1) \rightarrow 0, \\
\cdots \\
0 \rightarrow \Sigma_{*}\left(-m_{1}\right) \boxtimes \Sigma_{*}(-1) \boxtimes \cdots \boxtimes \Sigma_{*}(-1) \rightarrow \\
\rightarrow \mathcal{O}\left(-m_{1}+1\right)^{2^{\left(\left[\frac{m_{1}+1}{2}\right]\right)} \boxtimes \Sigma_{*}(-1) \boxtimes \cdots \boxtimes \Sigma_{*}(-1) \rightarrow \ldots} \\
\cdots \rightarrow \Sigma_{*}(-1) \boxtimes \cdots \boxtimes \Sigma_{*}(-1) \rightarrow 0 .
\end{gathered}
$$

Then on $\mathbf{P}^{n_{1}} \times \cdots \times \mathbf{P}^{n_{s}} \times \mathcal{Q}_{m_{1}} \times \cdots \times \mathcal{Q}_{m_{q}}$ we can obtain the following exact sequence tensored by $E(t, \ldots, t)$:

$$
\begin{aligned}
0 \rightarrow \mathcal{O}(0, \ldots, 0) \boxtimes \Sigma_{*}\left(-m_{1}\right) \boxtimes & \cdots \boxtimes \Sigma_{*}\left(-m_{q}\right) \rightarrow \ldots \\
\cdots & \rightarrow \mathcal{O}(0, \ldots, 0) \boxtimes \Sigma_{*}(-1) \boxtimes \cdots \boxtimes \Sigma_{*}(-1) \rightarrow 0 .
\end{aligned}
$$

By using the vanishing conditions in (1) as above we can see that there is a surjection from

$$
H^{0}\left(E(t, \ldots, t) \otimes \mathcal{O}(0, \ldots, 0) \boxtimes \Sigma_{*}(-1) \boxtimes \cdots \boxtimes \Sigma_{*}(-1)\right)
$$

to

$$
H^{m_{1}-1+\cdots+m_{q}-1}\left(E(t, \ldots, t) \otimes \mathcal{O}(0, \ldots, 0) \boxtimes \Sigma_{*}\left(-m_{1}\right) \boxtimes \cdots \boxtimes \Sigma_{*}\left(-m_{q}\right)\right)
$$

and we can conclude that

$$
H^{0}\left(E(t, \ldots, t) \otimes \mathcal{O}(0, \ldots, 0) \boxtimes \Sigma_{*}(-1) \boxtimes \cdots \boxtimes \Sigma_{*}(-1)\right) \neq 0
$$

This means that there exists a non zero map

$$
g: E(t, \ldots, t) \rightarrow \mathcal{O}(0, \ldots, 0) \boxtimes \Sigma_{*} \boxtimes \cdots \boxtimes \Sigma_{*} .
$$

On the other hand

$$
\begin{aligned}
& H^{n_{1}+\cdots+n_{s}+m_{1}-1+\cdots+m_{q}-1}\left(E(t, \ldots, t) \otimes \mathcal{O}\left(-n_{1}-1, \ldots,-n_{s}-1\right) \boxtimes\right. \\
& \left.\quad \boxtimes \Sigma_{*}\left(-m_{1}\right) \boxtimes \cdots \boxtimes \Sigma_{*}\left(-m_{q}\right)\right) \cong \\
& \cong H^{q}\left(E^{\vee}(-t, \ldots,-t) \otimes \mathcal{O}(0, \ldots, 0) \boxtimes \Sigma_{*}(-1) \boxtimes \cdots \boxtimes \Sigma_{*}(-1)\right) .
\end{aligned}
$$

Let us consider the following exact sequences tensored by $E^{\vee}(-t, \ldots,-t)$:

$$
\begin{aligned}
0 \rightarrow \mathcal{O}(0, \ldots, 0) \boxtimes \Sigma_{*}(-1) \boxtimes \cdots \boxtimes & \Sigma_{*}(-1) \rightarrow \ldots \\
& \cdots \rightarrow \mathcal{O}(0, \ldots, 0) \boxtimes \Sigma_{*} \boxtimes \cdots \boxtimes \Sigma_{*} \rightarrow 0 .
\end{aligned}
$$

By using the Serre duality and the vanishing conditions in (1) we can conclude that

$$
H^{0}\left(E^{\vee}(-t, \ldots,-t) \otimes \mathcal{O}(0, \ldots, 0) \boxtimes \Sigma_{*} \boxtimes \cdots \boxtimes \Sigma_{*}\right) \neq 0
$$

This means that there exists a non zero map

$$
f: \mathcal{O}(0, \ldots, 0) \boxtimes \Sigma_{*} \boxtimes \cdots \boxtimes \Sigma_{*} \rightarrow E(t, \ldots, t)
$$

Then, by arguing as in [1] Theorem 1.2, we see that the composition of the maps f and g is not zero so must be the identity and we have that $\mathcal{O}(0, \ldots, 0) \boxtimes \Sigma_{*} \boxtimes$ $\cdots \boxtimes \Sigma_{*}$ is a direct summand of $E(t, \ldots, t)$.

By iterating these arguments we get (2).
$(2) \Rightarrow(1)$. We argue as in Theorem 2.14. Since $H^{i}\left(\mathcal{Q}_{n}, \Sigma_{*}(e)\right) \neq 0$ if and only if $i=0$ and $e \geq 0$ or $i=n$ and $e \leq-n-1$, we have that $\mathcal{O}(0, \ldots, 0) \boxtimes$ $\Sigma_{*} \boxtimes \cdots \boxtimes \Sigma_{*}$ and \mathcal{O} satisfy all the conditions in (1).

References

[1] E. Ballico and F. Malaspina, Regularity and cohomological splitting conditions for vector bundles on multiprojectives spaces, preprint (2008).
[2] E. Ballico and F. Malaspina, Qregularity and an extension of the EvansGriffiths criterion to vector bundles on quadrics, J. Pure Appl. Algebra 213 (2009), 194-202.
[3] A.A. BeĬlinson, Coherent sheaves on \mathbf{P}^{n} and problems in linear algebra, Funktsional. Anal. i Prilozhen. 12 (1978), 68-69.
[4] L. Costa and R.M. Miró-Roig, Tilting sheaves on toric varieties, Math. Z. 248 (2004), 849-865.
[5] L. Costa and R.M. Miró-Roig, Cohomological characterization of vector bundles on multiprojective spaces, J. Algebra 294 (2005), 73-96.
[6] L. Costa and R.M. Miró-Roig, Monads and regularity of vector bundles on projective varieties, Michigan Math. J. 55 (2007), 417-436.
[7] J.W. Hoffman and H.H. Wang, Castelnuovo-Mumford regularity in biprojective spaces, Adv. Geom. 4 (2004), 513-536.
[8] G. Horrocks, Vector bundles on the punctured spectrum of a ring, Proc. London Math. Soc. 14 (1964), 689-713.
[9] M.M. Kapranov, Derived category of coherent sheaves on Grassmann manifolds, Izv. Akad. Nauk SSSR Ser. Mat. 48 (1984), 192-202.
[10] M.M. Kapranov, On the derived category of coherent sheaves on some homogeneous spaces, Invent. Math. 92 (1988), 479-508.
[11] H. Knörrer, Cohen-Macaulay modules of hypersurface singularities I, Invent. Math. 88 (1987), 153-164.
[12] D. Mumford, Lectures on curves on an algebraic surface, Princeton University Press, Princeton (1966).
[13] G. Ottaviani, Critères de scindage pour les fibrés vectoriels sur les grassmanniennes et les quadriques, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), 257-260.
[14] G. Ottaviani, Spinor bundles on quadrics, Trans. Amer. Math. Soc. 307 (1988), 301-316.
[15] G. Ottaviani, Some extension of Horrocks criterion to vector bundles on Grassmannians and quadrics, Ann. Mat. Pura Appl. 155 (1989), 317-341.

Authors' addresses:
Edoardo Ballico
Dipartimento di Matematica
Università di Trento
Via Sommarive 14, 38123 Povo, Trento, Italy
E-mail: ballico@science.unitn.it
Francesco Malaspina
Dipartimento di Matematica
Politecnico di Torino
Corso Duca degli Abruzzi 24, 10129 Torino, Italy
E-mail: francesco.malaspina@polito.it

