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Introduction. On vector bundles over oriented 4-dimensional Rieman-
nian manifolds, the notion of self-dual and anti-self-dual connections plays
an important role in the geometry of 4-dimensional Yang-Mills theory
(see Atiyah, Hitchin and Singer [A-H-S]).

On the other hand, in his differential-geometric study of stable holo-
morphic vector bundles, Kobayashi [K] introduced the concept of Einstein-
Hermitian vector bundles over Kidhler manifolds. Let E be a vector
bundle over a quaternionic Kahler manifold M, and p: Z — M the corre-
sponding twistor space defined by Salamon [S1]. Now the purpose of the
present paper is to give a quaternionic Kahler analogue of self-dual and
anti-self-dual connections, and then to construct a natural correspondence
between E’s with such connections and the set of Einstein-Hermitian
vector bundles over Z. «

Let H be the skew field of quaternions. Then the Sp(n)-Sp(1)-module
AH" is a direct sum N, @ N, @ L, of its irreducible submodules N,, N;,’,
L,, where N, (resp. L,) is the submodule of the elements fixed by Sp(n)
(resp. Sp(1)) and for » = 1, we have N,’ = {0}. Hence, the vector bundle
A*T*M is written as a direct sum A; D A, P B, of its holonomy-invariant
subbundles in such a way that A:;, A., B, correspond respectively to N,

s’y L,, Now, a connection for E is called an Aj-connection (resp. B,-
connection) if the corresponding curvature is an End(E)-valued Aj;-form
(resp. B,-form). Then we have:

THEOREM (0.1). All A-connections and also all B,-connections are
Yang-Mills connections.

Furthermore, for E with a B,-connection we can associate an E-valued
elliptic complex (cf. (3.2)) similar to those of Salamon [S2]. Such com-
plexes allow us to analyze the space of infinitesimal deformations of B,-
connections (see Theorem (3.5)).

For our quaternionic Kahler manifold M, a pair (E, D;) of a vector
bundle E over M and a B,-connection D, on E is called a Hermitian pair
on M if D, is a Hermitian connection on E. On the other hand, a pair
(F, D;) of a holomorphic vector bundle over Z and a Hermitian (1, 0)-
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connection D, on F' is called an excellent pair on Z if the following
conditions are satisfied:

(a) F with the corresponding Hermitian metric h, restricts to a flat
bundle on each fibre of p: Z— M. (Hence the real structure z: Z—Z
(cf. Nitta and Takeuchi [N-T]) naturally lifts to a bundle automorphism
" FF— F.)

(b) Let o: F — F* be the bundle map defined by F,3f+ o(f)c F¥%,
(ze€ Z), where o(f)(g) := hy(g, '(f)) for each ge F.,. Then ¢ is an anti-
holomorphic bundle automorphism. We then have the following general-
ization of a result of Penrose’s type (ef. Atiyah, Hitchin and Singer
[A-H-S]; see also Salamon [S2], Berard-Bergery and Ochiai [B-O]):

THEOREM (0.2). Let 57 (resp. S7) be the set of all Hermitian pairs
(resp. all excellent pairs) on M (resp. Z). Then

57 5 (E, D) — (p*E, p*D,) € 57
defines a bijective correspondence between 57 and SF.

In particular, if M has positive scalar curvature, then every excellent
pair (F, D;) on Z is a Ricei-flat Einstein-Hermitian vector bundle.

Finally, I would like to express my sincere gratitude to Professors
H. Ozeki and M. Takeuchi for valuable suggestions. Special thanks are
due also to Professors I. Enoki and T. Mabuchi for constant encourage-
ment.

1. Notation, convention and preliminaries. In this section, we give
a quick review of the basic facts on quaternionic K#hler manifolds (for
more details see Salamon [S1], Nitta and Takeuchi [N-T]).

(1.1) Let H™ denote the standard Sp(m)-module H™ (=C*") of com-
plex dimension 2m, where H= R + iR + jR + kR (=C + jC). Spim) =
{Se GL{(m, H)|S-'S = I} is imbedded in GL{2m, C) by

A, —B
Sp(m)s A + jB— ( _) € GL(2m, C)
B, A .
where A, Be GL(m, C). Then the multiplication on H™ by j from the
right naturally induces a Sp(m)-equivariant anti-linear map j'*: H™ — H'™
with (") = —id. We now define a non-degenerate skew-symmetric
bilinear form @™ on H™ by

@™, 1) 1= —Ch, VR (b, K e H"),

where ¢, > is the standard Hermitian inner product on C* (=H™). This
o™ can be regarded as an Sp(m)-invariant bilinear form on H'™ such
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that
(1.1.1) o™ ("™h, 7K = (@™, 1))~ (h, B € H™) .

Let Sp(n)-Spl) = Sp(n)xSp(1)/Z,., Then H™ Q. HY is naturally a
Sp(n) - Sp(1)-module of complex dimension 4n with a real structure
H» Qc HY2a—aec H™ Q; H" defined by

(1.1.2) Q) =" Qi (heH™ K eHY).

We consider the corresponding real form (H™ @ H")r of H™ ®, H™.
Then the symmetrie bilinear form o™ @ w" € S*(H™)* @ (H™)*) induces
an inner product ¢, ) on (H™ Q¢ H")z.

(1.2) Recall that a 4n-dimensional Riemannian manifold (M, g,) is
called a quaternionic Kiahler manifold, if its linear holonomy group is
contained in Sp(n)-Sp(l) (<SO@n)) with the additional condition for
n =1 that g, is a self-dual Einstein metric. Throughout this paper, we
fiz once for all a gquaternionic Kiahler manifold (M, g,). By the well-
known reduction theorem (see, for instance, Kobayashi and Nomizu [K-N]),
the frame bundle of the tangent bundle TM is reduced to a principal
Sp(n)-Sp(l)-bundle P. Then TM can be regarded as the vector bundle

(1.2.1) PXspimy-so0(H™ Qc H)r

associated to the Sp(n)-Sp(1)-module (H™ @ H")z. The inner product
{,) on (H™ Q¢ H")z induces a Riemannian metric ¢ on TM, which
coincides with g, up to constant multiple. Without loss of generality,
we may assume g = g,.

(1.8) Let Sp(n) act trivially on C*. Then the standard Sp(1l)-action
on C*® naturally induces an Sp(n)x Sp(1)-action (resp. Sp(n).Sp(1)-action)
on C? (resp. P'C). Associated to these actions, we have:

D:V(:=PXgpimxspC) = M
(resp. p: Z(:=PXgpiy.son P'CYy — M) ,

which is a “locally defined” vector bundle (resp. a globally defined fibre
bundle). Here, the bundle Z is nothing but P(V) :=V — {zero section}/C*,
and is called the twistor space of M (see Salamon [S1; p. 147]). Then Z
is a complex manifold with a natural real structure z as follows:

(1.8.1) By the connection on V induced from that of P, we have a
decomposition of T(V — {zero section}) into the subbundles S* and S*
corresponding respectively to horizontal and vertical distributions. Let
y be an arbitrary point of V — {zero section}, and put z:= H(y). Via
the projection 5, the fibre (S*), of S* over y is regarded as the tangent
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space T,M at x. Then by the identification of H™ ®. H" with (T,M)°
(ef. (1.2.1)), the space H™ ® Cy defines a C-linear subspace of (T,M)S,
denoted also by H™ ® Cy. Furthermore, let (H™ & Cy) be the sub-
space of (T*M)¢ corresponding to H™ & Cy via the natural isomorphism
(TFM)© = (T,M)¢ induced by g,. Now we define the complex structure
of T,V by specifying the subspace ALY’ of (1, 0)-forms in (TF¥V)C as
follows:
AP = (AP B (A

where (ALY 1= p*((H™ ® Cy)’), and (AL")” is the subspace of (1, 0)-forms
in T,C* by the identification of V, with C®. Then this induces a complex
structure on Z.

(1.3.2) The map j*: HY — H" naturally defines an antilinear bundle
automorphism 7: V — V, which induces a real structure r on Z.

(1.3.3) Recall that M always has a constant scalar curvature (denoted
by t). Let g, be the Fubini-Study metric for PC (=(C + jC — {0})/C*).
If ¢ = 0, then for some nonzero real constant c,,

9z:= P gy + C9r

defines a pseudo-Kzhlerian metric on Z, i.e., the eorresponding (1, 1)-form
on Z is a nondegenerate d-closed (1, 1)-form.

2. Aj-connections and B,-connections. We shall here give funda-
mental properties of the Aj-connections and B,-connections defined in the
Introduction.

(2.1) Let (H™)* be the dual Sp(m)-module of H'™. Then in view
of AN HYY* = Cw", we have

AZ((H(M)* ®C (H(l))*) — (/\Z(H(n))* ®C SZ(H(I))*) @ (SZ(H(W,)*) ®C Cw(l)) .

Furthermore, the Sp(n)-module AXH™)* is written as a direct sum
Cow™ + ANH™)* of its submodules, where AYH™)* is the orthogonal
complement of Co'™ in AYH™)*. Hence,

(2.1.1) A ((H™)* Qe (H")*) = N D N, @D Li

where N,¢:= Co'™ Q¢S H™)*, N,'¢:= A¥H™)* ® SHYH")* and Lf{:=
SHH™)* ®; Cw'?. Note that the Sp(n)-Sp(l)-modules N,¢, N;'¢, L¢ re-
spectively admit real forms N;, N,’, L, fixed by the real structure
induced from the one in (1.1.2). We have the identification H™ &)
HY = (H™)* Q¢ (HY)* by the metric {,) (ef. (1.1)). Together with
H™ ®¢; H" = H" ®; C, the above (2.1.1) induces the decomposition of its
real form:
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N'H =N, @GN, B L, ,

which is nothing but the decomposition in the Introduction now for our
principal Sp(n)-Sp(1)-bundle P, the bundle T*M is regarded as the vector
bundle associated to the Sp(n)-Sp(l)-module ((H™)* Q¢ (HV*)x = H".
Hence, A*T*M is a direct sum A; P A P B, of its subbundles A4;, 4;, B,
corresponding respectively to the Sp(n)-S»(l)-modules N,, N,’, L, (ef.
Introduction).

(2.2) Fix an arbitrary point z of M. Note that each point z on the
fibre Z, defines an almost complex structure J, on TFM (ef. (1.8.1)). We
then have the corresponding space A“(T*M,dJ,) of (1, 1)-forms of
(T*M, J,). Choose a point y(s£0) of V such that its natural image
(denoted by [y]) is z. In view of (1.3.1), the space A“(T¥M,J,) in
AYT*M)¢ is associated to the C-linear subspace (H™ @, Cy) A (H™ @
Cy)")~ in the Sp(n)-Sp(l)-module (H™ Q¢ H")* A (H™ Q@ HV)*., Since
j™ preserves H™, we have (cf. (1.1.2)):

(H” @c Cy) A (H” ®c Cy)) = (H™ @c Cy) A (H® ®cC3y)

= (A'H® ®: Cly @™y + iy @) @ (SH™ R, Cy A §¥y)) .
The space C(y A jVy) (where y APy =iy — iy Q@%)/2) in
HY ®; H" corresponds to Cw™ in (H")* Q¢ (HY)* via the natural iso-
morphism HY ®¢; HY = (H")* ®¢ (H")* induced by the nondegenerate
bilinear form w". Furthermore,
N, Cly ® 3%y + iy @ y) = {0},

where N, always denotes the intersection taken over all y in V, — {0}.
Thus,

N,H™ ® Cyy A (H” Q@ Cy) = S(H™)* ®c Co® = L, (cf. Introduction),
and we obtain:
LEMMA (2.8). The fibre (B,), of B, over x is given by
(Boe = Ny APNTEM, Jy)

We next give a typical example of an Ai;-connection and also a B,
connection.

ExaAMPLE (2.4). If n = 2, the induced connection on the locally defined
vector bundle

Vi= PXspmxsp HY  (resp. Wi= PXgpmwspwH™)

is an Aj-connection (resp. B,-connection). See Salamon [S1; p. 150] for
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related computations of curvatures.

Recall that a connection V is called a Yang-Mills connection if the
corresponding curvature R' satisfies d"+R" = 0. We shall finally show:

THEOREM (2.5). All Ai-connections and also all B,-connections are
Yang-Mills connections.

COROLLARY (2.6). The Riemannian connection on TM is a Yang-
Mills connection.

Proor or (2.6). By (1.2), (2.4) and (2.5), we obtain (2.6).

PrOOF OF (2.5). Fix an arbitrary point z, of M. It then suffices to
show (d"*R")(x,) = 0. We may take a local section s to P over a neigh-
bourhood U of x, such that the corresponding differential at the point
%, transforms the tangent space T, M to a horizontal space at s(x,) in the
tangent space T,,,P. Let (u! ---, u*") be the local frame of T*"M,
associated to s. Then all ecovariant derivatives of #s (1 <1 < 4n) at
the point %, is zero. Moreover in terms of the frame (u', ..., u*), we
can identify T*M,, with UxR* (UxH"). Note that V on E naturally
induces a connection (denoted by the same V) on End(F).

(i) We first assume that V is an A;-connection on E. Recall that
the rank 3 subbundle A; of A*T*M corresponds to the Sp(n)-Sp(1)-sub-
module N, of A*H", where N, is the irreducible submodule of the elements
fixed by Sp(n) (ef. Introduction). Let I, J and K be

n-~1

I = kz“(u:ik+1 A wtFE gt A u4k+4) ,
=0
n—1

J = kz:(uucﬂ A wHEE gt A u4k+2) ,
=0

n—1
— 4k+1 4k+4 4k+2 4k+3
K k%(u A w4yt TE A ¥
Then it is easy to check that A, is spanned by the sections I, J and K.
Therefore, the curvature form RY is written on U as
R=aQRI+bRJ+cRK,

where a, b and ¢ are smooth sections to End(F) over U. Let (u, ---, u,,)
be the base for TM,, dual to (u', ---, u*") defined by u‘(u;) = d,;. Then
by the first Bianchi identity,

0 = d'(R")(z.)
= SV @) A Ko + (VD) A Je) + (Vou'la) A K@),
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where V, denotes V,,,,. Consequently,
Va=Vb=Ve=0, for 1£1Z4n if n=2.
Therefore, (d"+«R")(x,) = 0.

(ii) We next assume that V is a B,connection on F. Since the
vector subbundle B, (of rank »(2n 4 1)) of A*T*M corresponds to the
irreducible Sp(n)-Sp(l)-submodule L, of the elements in AZH" fixed by
Sp(1), the subbundle B, is spanned by

IstuKa’quyqu’qu, qu! (Oésén—l; O§p<Q§n—1)'
where

I' — u4s+1 /\ u4a+2 _ u4s+3 /\ u4s+4 ,

J‘ — u4a+1 /\ u4s+3 — u4s+4 /\ u4s+2 ,

K — u4s+1 /\ u4c+4 . u4s+2 /\ u48+3 s

D . — ’uf”“ /\ u4q+1 + u4p+2 /\ u4q+2 + u412+3 /\ u4q+3 + u4p+4 /\ u4q+4

» ’
" — u41’+1 /\ u4q+2 — u4ﬁ+2 /\ u4q+l _ u4p+3 /\ u4q+4 + u4p+4 /\ u4q+3
b4 )
va — u4p+1 /\ u4q+3 + u4p+2 /\ u4q+4 — u4p+3 /\ u4q+1 _ u4p+4 /\ u4q+2 ,

G — u4p+1 /\ u4q+4 — u4p+2 /\ u4q+3 + u4p+3 /\ u4q+2 . u4p+4 /\ u4q+1
pe .

o &

Let V be a B,-connection on E. Then over U, the curvature form R" ‘is
written in the form

RP= 5 (.QL+5.Q®J +kQK,)

0<szn—1

+ 2 (@, @ Dy + 6,, K, + foe @ Fog + 950 ® Gyy) »

0sp<gsn—1
where 1,, j,, k,, Qppr €nyr foo and g,, are smooth sections to End(E) over
U. In view of the first Bianchi identity d"R’ = 0, we have
_V48+31:s + V4a+2ja + V4s+1ka =0,
V4a+1,is - V4s+4js + V4s+3ks =0 '
V4s+47:s + V4s+1js - V4s+2ks = 0 ’
V4s+2is + V4s+3j8 =+ V4a+4ks =0,
for s with0 < s < n — 1. Furthermore, if [ is either p or ¢, the identity
d'R* = 0 implies ‘
(=1YPV il — Varelps — Vaisfoe — Varuds, =
(—1)5(”V4l+ldpq - V4l+3epq + V4l+2qu + V4l+1gpq =

0,
0,
0,
0

’

(—1)5(”V4l+2dpq + V4l+1epq - V4l+4qu + V4l+3gpq
(—1)””V4;+3dw + V4l+4epq + V4l+1qu - V4l+2gpq -
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for all p, ¢ with 0 < p < qg=<n —1, where ¢(p):=0 and e(¢):= 1.
Then a straightforward computation shows that (d'+«R")(x,) = 0, as
required.

3. Deformations of B,-connections. In this section, we shall give
an elliptic complex whose first cohomology group canonieally contains the
space of infinitesimal deformations of B,-connections on M (see Salamon
[S2] for a similar complex).

(8.1) Let r be an integer with » = 2. By setting Nf:= A"(H™)* Q¢
ST(H™M* (ef. (2.1)), we can express the Sp(n)-Sp(l)-module AT(H™ Q¢ H")*
as a direct sum NF @ L¢, where L is the orthogonal complement of NF
in AT(H™ Q: H")*. As in (2.1), the Sp(n)-Sp(l)-modules NFf and L¢
respectively admit real forms N, and L, fixed by the natural real struc-
ture (cf. (1.1.2)). Since T*M is associated to the Sp(n)-Sp(1)-module
(H™ ®c H)% (see (1.2.1)), the veector bundle ATT*M is a direct sum
A, D B, of its subbundles A,, B, corresponding respectively to N,, L,.
Let n7: ATT*M (=A,@ B,) — A, be the projection to the first factor.
Then we have:

THEOREM (3.2). For « B,-comnection V on E, the following is an
elliptic complex:

3.2.1) 0 —Z(E) AR LEQT*M) 4 E(EQ A,)

d2 dS d2n—1
_)g(E®A3)_—> tee __’g(E®A2n)_)0 y

where d,:= (id ® 7**)od" and for every vector bundle E' on M, we denote
by € (E") the sheaf of germs of C>-sections of E'.

Proor. (i) Fix a section selI'(M, EQR A,) (4 =1) and define a sec-
tion te I'(M, E® B,,,) by
d's=ds+t.
Then from (d7-d")s = (d7d,)s + d't, we obtain
(1d @ 7i10)od od")s = (d,1.0d)s + ((id &Q wir0)od)E .
Since V is a B,-connection, the A,,,-component of (d"-d")s is zero, i.e.,
0 = (diyed))s + ((id @ wian)od™)E .

Write ¢ as t = >, v, @b, locally, where v,, b, is a local section of E,
B,,,, respectively. The S**(V*)-component of b, is zero, and hence the
Si+3(V*)-component of V(v,) A b, is zero. Therefore,

((1d @ 71,)odN)t = 3 v, @ db, -
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Since d is the composite of the Riemannian connection and the alternation
operator, the S***(V*)-component of db, is zero. Thus, (d,;,°d;)s = 0, as
required.

(ii) Secondly, we shall show that (8.1.1) is an elliptic complex. Then
we need to calculate the symbol o(d, u) (we T¥*M — {0}). Fix a point of
M and an element s of E, ® A,,. All computations below are taken at
the point .

o(d;, u)s := (d/dt)(e™d (")) ],=0 = (id @ wr)(® A 8) ,

where ¢ is a locally defined funetion such that dqg, = 4. We next show
that the following sequence is exact for every u:

(3.2.2) ERA_ Y4 YEQ A4, .

Without loss of generality, we may assume
U = el®h1 + (61®h1)_(:e1®h1 + e2®h2) ’

where (e, +--, ¢,,» (vesp. {h, h,>) is a symplectic basis of W* = W (resp.
V*= V), i.e., an orthonormal basis and j™e,;,, = €,;,, (resp. j%h, = h,).
Let se EQ® A, be such that o(d,,,, #)s=0. Note that S*V* = Span(h?-hi*;
0=k =<1), where h¥-hi™* denotes the symmetric component of A’ hi *.
Hence, there are local sections s, -+, s, of EQX A‘W* such that

5= 35 @A
We can now write o(d.s,, 5) = 0 as follows:
0=(>1d Q7)) ® A s) = (1[d Q7 )(e, Dby + 6, @ hy) A 3.8, @ BE-BEF)
- ,?:%((el A 8) @ BEREF + (e, A 8i) @ BE-hETF)

Since the coeflicient of the right-hand side in A%-Ai™* is zero, we have:

(0) e, Ns =0,
(1) e1/\so+eg/\31:O,
(i) 61/\81_1+62/\si:0,
(i+1) 61/\81; =0.

By (0), there exists r,€ A“*W* such that s, = ¢, A 7,. Plugging this into
(1), we obtain e, A (—e, A1, +s,) =0. Hence there exists »,¢ AT W*
such that s, =e, A 7, + ¢, A .. Repeating this process inductively, we
obtain r.€ A“*W* such that s, = e, Ar,_, + e, A7,, 1< k< 4. Now by
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(i + 1), the identity e, A e, A 7, =0 holds. It then follows that there
exists r;e A"*W* such that e, Ar,=e A e A 7ri. Since e, A (r,_, +
e, \r;) =e A 7r,_, we may replace r,_, by r,_, + e, A ri. Therefore,

8§ = e N\ To,

81261A7'0+ez/\7'17

s, =e N1,
Thus,

s = S @M = o, (5 @ AT

i.e., the sequence (3.2.2) is exact, as required.

DEFINITION (3.3). Let & be the set of all B,-connections on E with
holonomy groups contained in a compact semisimple Lie group G. Assume
that € # @ and let Ve%”. Then the frame bundle Q@ of E can be
regarded as a principal G-bundle. Put G,:=QX,G and g,:= @ Xaa 8,
where 4 is the group conjugation and Ad: G — GL(g) is the adjoint re-
presentation of G. Now, a C™-section to G, over M is called a gauge
transformation of Q. Let & be the set of all gauge transformations of
Q. Then & naturally acts on & (see Atiyah-Hitchin-Singer [A-H-S]).
We call _#Z(:=%/%) the moduli space of the B,-connections on F with
holonomy groups in G.

(8.4) Let Ve be irreducible in the sense that g, admits no non-
zero parallel section over M. Fix a smooth one-parameter family V*
(|t| < e) of connections in & such that V' = V. Put S = (d/dt)Vi|=. We
write the curvature form R" of V' as

R = R" + tdVS + higher order terms in ¢,

where V' is the connection on g, naturally induced by V. Since R"is a
go-valued B,form, the corresponding derivative d"'S at ¢ = 0 also satisfies

(([d @ 7*)ed™)S = 0.

Let f* (Jt| < ¢) be a one-parameter family of gauge transformations such
that f° =id. Then,

%—(f%m:o = V'(f),

where f:= (d/dt)(f"),=» Since fY(V)e& fqr all ¢, the same argument as
above shows that the g,-valued 1-form V'(f) satisfies
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((id @ 7%)ed")(V'(f) = 0 .
For each A € I'(g,), there exists a one-parameter family f* = exp({A) such

that (d/dt)f*|,., = A. Then together with (8.2), we immediately obtain
the following:

THEOREM (8.5). Assume that & + O and let Ve & be irreducible.
Then the space of infinitesimal (essential) deformations at V of connections
in &, that is, the tangent space of _# at V is a linear subspace of the
first cohomology group of the elliptic complex

’ d!
0 — £(ge) > #(g, @ T*M) S (g, ® A,)
dg’n—-l

dl ds
- g(gQ®A3)_—) e/ g(gQ®A2n)_)0 ’
where d;:= (id @ 7**")ed" .

4. Einstein-Hermitian connections associated with B,-connections.
In this section we shall prove Theorem (0.2) (see the Introduction) which
clarifies the relationship between B,-connections and the corresponding
Einstein-Hermitian connections.

Proor or (0.2). (i) Let (E, D;) be a Hermitian pair. Then by the
definition of B,-connections, the curvature form corresponding to the
connection D, is an End(F)-valued B,-form, and by Lemma (2.3) the
curvature form corresponding to the connection p*D, on p*E is an
End(p*E)-valued (1, 1)-form. Hence the connection p*D; induces naturally
an integrable complex structure on p*E as follows: Put l:= rank(E)
and denote by ¢: p*E — Z the natural projection. Let (s, ---, ) (resp.
(¥, ++-,¥")) be a loeal unitary frame for p*E (resp. the dual frame
corresponding to (s;, -+, s)). Then the vector subbundle A“T*(p*E) of
type (1, 0) in the complexification T*(p*E)¢ of the cotangent bundle
T*(p*E) is defined as the direct sum of the pull-back ¢*(AYT*Z) and
the space spanned by {dy’ + .-, ¥'¢*6;, 1 <5 <1}, where (4,;) is the
connection matrix for p*D, with respect to the frame (s, ---, s;) (i.e.,
(p*Dy)s; = Dii_,8,0,;). Now, we may take the frame (s, ---, s) as the
pull-back (p*t, ---, p*t,) of a local unitary frame (¢, ---, ¢;) on E. Then
the 1-forms 6, 1=4, j=<1, are written as p*y; where (¢;) denotes
the connection matrix for D, with respect to the frame (¢, ---, f;). Let
q": (p*E)* — Z be the projection naturally induced from ¢: p*E — Z. Since
the real structure z: Z-— Z is antiholomorphic (ef. Nitta and Takeuchi
[N-T]), and since the mapping ¢'co: p*E — Z is equal to roq, the mapping
o p*E — (p*E)* is clearly an antiholomorphic bundle automorphism by
the definition of the complex structures on p*E and (p*E)*.
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(i) We next fix an arbitrary excellent pair (F, Dy) on Z. Then by
the condition (a) in the definition of excellent pair (see the Introduction),
we can choose an open cover {U,} of M, and a local unitary frame
(f&, o, f) (r=rank of F) of F|,_,y, such that each restriction

(from1a ** s fAp1m) Over px) (xe U,) forms a holomorphic frame for
F\,-1,. When U,NU,.# @, the transition matrix for F in terms of the
frames (f%, ---, fH, (ff, -+, f¥) is holomorphic (and hence constant) along

each fibre p(x) (x€ U;NU,). Hence there exists a Hermitian vector
bundle £ on M such that, including metrics, we have p*E =F. In
particular, we obtain a local unitary frame (fi% .--, f;%) for E,, such that
(p*f1%, + -+, p*f/*) coincides with the previous (f% ---, f5 over »p %(U,). Fix
an arbitrary A. If there is no fear of confusion, we shall omit the suffix
» and denote U, (fZ, +--, f3, -+ simply by U, (f, ---, f.), - -+, respective-
ly. Let (w;;) be the connection matrix of D, with respect to the frame
(fi +*<, fo)y ie., Dpf; =37 fiw;. Furthermore, we choose a local

symplectic basis (e, -, ¢,,) (resp. (h, h,)) for W*, (resp. V*;,) (see
Section 3). Now, since D, is a Hermitian connection, we have:
(1) Wy +w;=0, for 154, j<7r.

Then the construction of D, is reduced to showing that there exist 1-
forms w;; 1 =1, j=<7) on U satisfying w,; = p*wi;. In fact, once we
can find such 1-forms wj;, they define a Hermitian connection on E, such
that the corresponding curvature form is pulled back by p to an End(F)-
valued (1, 1)-form on Z, which together with Lemma (2.3) implies that
our connection on E is a B,-connection. Recall that, for each z e U, the
frame (f -1y ** %5 frip~twy) fOr F,-1,, is trivial. Hence,

(2) a)i,-(v)=0, 1§i;j§7‘,

for every vector v tangent to p~'(z) (=P'C). Since (¢, Qh, e, R hy ++-,
e, @by, €, by) is a frame for T*MC, = W*; ® V*;, there exist by (2)
C~-functions af;, b, 1 <4, 1< r, 1 <k < 2n) on p™Y(U) such that

n
(3) W5 = é(afjp*(ek Qb)) + bip* (e, Qh), 154, j=r.

For every form 7 on Z,;, we denote by 7 the pull-back of 5 to (V — {zero
section}),y;. Then by (8), we have:

ﬁii = d@,; -+ é @, A @,;
= 35 d(@p*(e, @ ) + d(bsp*(e, @ ) + X B \ By .

Fix an arbitrary point z on U. Choosing an appropriate (e, *+-, e,,) (resp.
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(hy, b)), we may assume that (V7e¢,)(x)=0, k=1, 2,---, 2n (resp. (V*"*h,)(x)
=0, 4=1,2), where V" (resp. V"") denotes the connection of V*
(resp. W*) canonically induced by that of P (ef. Example (2.4)). Then,
on p~(x),

Z{d(du) A B*e, @ hy) + d(B%) A $*(e. @ ko)) + E @, N @, .

Recall that the complex structure on the twistor space Z (=(V — {zero
section})/C*) is induced by the complex structure on V — {zero section}
(see Section 1). Since R,; is of type (1, 1), we have:

(4) Z{a(@ D A (B, @ )™ + 3(bl) A (5*(e, ® hy))™)

7
+ ti_‘{w,%’“ AN@OF"=0 on p™(z);

&n _ "N — A ~
(5) SWB@E) A B*(6 @ ) + 3(B5) A (B*(er @ b))
F 38 A G =0 on p i),
t=1

where for every 1-forms { on (V — {zero section}),y, ™ (resp. ") always
denotes the (1, 0)-component (resp. (0, 1)-component) of {. Let (2%, 2°) be
the local triviality for V,, corresponding to (h, h,). Then, by the def-
inition of the complex structure of (V — {zero section}), we obtain from
(4) and (5) the following:

() B {(Dade + Larde) A @00 @) + 750 @)

+ (Lbrdz + L Bdet) A TEPH e @ ) + 2D @ h)}
oz 07

=0 on P 7x);
(5)  E{(Zandz + Latdz) A (-AED @@ h) ~ P @ b))
+ (Zbaz + Lbidz) A 2@ (0. ® h) — 7D @ )

=0 on P Yx).

Since both 2i,-1, and 2%-, are holomorphic on p7'(x) = C* — {0}, we
have

Ly + 2By =Lz + by =0 (=12,
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on p~'(x), i.e., both fi(z", 2% := 2'a% + zzg{?j and f,(z, 2% := —z%a% + zll;l‘,- are
holomorphic on C? — {0}. By Hartogs' theorem, both f, and f, extend
further to holomorphic funections on C* Since f(cz', ¢2*) = ¢f (2, 2*) for
all z = (24, 29)eC? and ccC* (1 = 1, 2), there exist constants af;, 8%, 7%,
0% € C independent of z such that
(6) 2'a% + zzgi?j = 2ak; + 2B,
(7) —2%Y + 2 = —2vh + 2%y, 1Zk<2n).
Let I'(Z, F*) (resp. I'(Z, F* ® T*Z¢)) be the space of global C~-sections
over Z to F* (resp. F*® T*Z¢. Let :I'(Z, F*)—1I(Z, F*Q T*Z°)
be the C-linear map sending each seI'(Z, F*) to an element +(s) of
Ir(Z, F* @ T*Z¢) defined by
Y(NX) 1= o((Dp)emm(0o7's)) € FY

for XeT.Z¢ (ze Z).

Then by the condition (b) in the Introduction, this +y defines a Hermitian
(1, 0)-connection on the holomorphic vector bundle F*. The corresponding
connection matrix with respect to the frame (of,, -, af,) for F}-1y, is
written as (7*w,;). By the definition of g, it is easy to check that the
frame (of,, -- -, 6f,) is dual to our previous (f,, -, f,). Hence the unique-
ness of the (1, 0)-connection on the Hermitian vector bundle F™* implies
the equality (*w,;)” = @}, where w}:= —w;;. In view of (1), we have
*w,; = w; and £*0,; = @;. By (8) and po% = P, we obtain:
(8) £*ak = @k and 0%, =04 (1 <k<2n).
Therefore,

— PG + 28y = —7ak + 78 (LZk<2n).
Moreover by (6),
(9) — 2%k + zll;f,- = —2'af; + 2685 (L=k<2n).
Hence by (7) and (9), we obtain:
(10) al;i =% and g5 =645 (1=k<2n).
Now, in view of (6), (7) and (10), we see that
zh, 2\[ay — a
~ =0 1=2kg2n),
(—za zl)(bzf,- — Bi-z-) (=h=zn

where (2, 2%) € C* — {0} (=p~*(x)). Thus, d% = o and b% = g% (1 < k < 2n),
i.e., both af; and b% are constant along p~(x), as required.

REMARK (4.1). In some sense, our Theorem (0.2) completely clarifies
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the following result by Salamon [S2] (see Berard Bergery and Ochiai [B-O]
for another generalization):

For a Hermitian pair (E, Dg) on M, the pull-back (p*E, p*D,) to Z
18 a Hermitian holomorphic vector bundle over Z.

COROLLARY (4.2). Let (F, Dy) be an excellent pair on Z. If the
quaternionic Kahler manifold M has positive scalar curvature, then F
with Dy is a Ricei-flat Einstein Hermitian vector bundle over Z.

Proor. Consider the twistor space p: Z— M. Then the horizontal
component of the Kahler form on Z is a p*A;-form (ef. (1.2), (1.3)). Recall
that the curvature of D, is an End(F')-valued p*B,-form. Hence the
Hermitian vector bundle F' with D, is Ricci-flat.

REMARK (4.8). We have the decomposition of TZ = T*& T*, where
T* (resp. T") is the horizontal (resp. vertical) distribution in terms of
the connection on Z induced by that of P. Since the complex structure
on TZ is a direct sum of complex structures on 7" and T, the holomor-
phic part TZ"® admits the corresponding decomposition TZ*” = T*4
T°%%  where T*%® (resp. T*"*") denotes T**NTZ™" (resp. T*°NTZY"),
Recently, Zandi [Z] obtained the following:

The vector bundle (T, D*) is an Einstein-Hermitian vector bundle,
where D" is the comnection on T*“" obtained as the restriction of the
Riemannian connection on TZ to Th*°,

This result can be regarded as a straightforward consequence of our (4.2).
We denote by L a locally defined (line) subbundle of p* W (ef. (2.4)) such
that, along each fibre p~'(x) = P'C (xe M), it restricts to a universal
bundle over P'C. Let V" (resp. V") denote the connection of V (resp. W)
canonically induced by that of P and V* the restriction of »*V" to L.
Then the vector bundle (7*“% D*) is nothing but (p*W & L* p*V" ®
(vH*), where (L*, (V5)*) is dual to (L, V*) (see Salamon [S1]). Since L*
is a locally defined line bundle and since V" is a B,-connection on W,
Corollary (4.2) clearly implies Zandi’s result.

Added in proof. After the completion of this paper, the author
received a preprint by M.M. Capria and S. M. Salamon entitled “Yang-
Mills fields on quaternionic Kahler spaces”, which gives (i) a result slightly
stronger than (2.6) and (ii) a statement similar to (8.2).
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