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VECTOR BUNDLES WITH HOLOMORPHIC CONNECTION
OVER A PROJECTIVE MANIFOLD WITH TANGENT BUNDLE

OF NONNEGATIVE DEGREE

INDRANIL BISWAS

(Communicated by Ron Donagi)

Abstract. For a projective manifold whose tangent bundle is of nonnegative
degree, a vector bundle on it with a holomorphic connection actually admits a
compatible flat holomorphic connection, if the manifold satisfies certain con-
ditions. The conditions in question are on the Harder-Narasimhan filtration
of the tangent bundle, and on the Neron-Severi group.

1. Introduction

Let E be a holomorphic vector bundle over a connected complex projective
manifold M . Assume that E admits a holomorphic connection. Then a natural
question to ask is whether E admits a flat holomorphic connection. Since all the
rational Chern classes (of degree at least one) of a holomorphic vector bundle with a
holomorphic connection vanish, there is no topological obstruction for the existence
of a flat connection.

In this paper we consider this question for M satisfying the condition that the
degree of the tangent bundle TM is nonnegative with respect to some polarization
on M .

Let

0 = V0 ⊂ V1 ⊂ V2 ⊂ . . . ⊂ Vl ⊂ Vl+1 = TM

be the Harder-Narasimhan filtration of the tangent bundle TM with respect to a
polarization L on M .

In Theorem 2.4 we prove the following (degree of a coherent sheaf on M is
computed using L):

Theorem A. Assume that the degree of the tangent bundle deg TM ≥ 0. Let E
be a holomorphic vector bundle on M equipped with a holomorphic connection.

(1) If deg (TM/Vl) ≥ 0 then the holomorphic vector bundle E admits a compatible
flat connection. (This inequality condition is satisfied if, for example, TM is
semistable, since deg TM ≥ 0.)
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(2) Consider the case where TM is not semistable. Assume that the maximal
semistable subsheaf of TM , namely V1, is locally free. If the rank of the Neron-
Severi group, NS(M), of M is 1, i.e.,

H1,1(M) ∩H2(M, Q) = Q ,

then E admits a compatible flat connection.

Under the assumptions either in part (1) or in part (2) of Theorem A, the vector
bundle E turns out to be semistable with respect to L [Remark 2.12].

Generalizing the above question one may ask whether a holomorphic fiber bundle
admitting a holomorphic connection actually admits a flat holomorphic connection.
S. Murakami produced an example of a holomorphic fiber bundle over an abelian
variety, with an abelian variety as fiber, such that the fiber bundle admits a holo-
morphic connection, but it does not admit any flat holomorphic connection [M1],
[M2], [M3]. However part (1) of Theorem A implies that any holomorphic vector
bundle over a projective manifold with trivial canonical line bundle, which admits
a holomorphic connection, actually admits a flat holomorphic connection. Indeed,
by a theorem of Yau [Ya] the tangent bundle of such a variety is semistable.

On the other hand, using a method of [Bi2], Theorem A can easily be generalized
to principal G-bundles, where the structure group G is a connected affine algebraic
reductive group over C. The example of Murakami shows that it is essential for G
to be noncompact.

2. Criteria for the existence of a flat connection

Let M/C be a connected smooth projective variety of complex dimension d. We
will denote by TM (resp. Ω1

M ) the holomorphic tangent bundle (resp. cotangent
bundle) of M .

For a holomorphic vector bundle V , the corresponding coherent analytic sheaf
given by its local holomorphic sections will also be denoted by V . The basic facts
about holomorphic structures used here can be found in [Ko].

A holomorphic connection on a holomorphic vector bundle E over M is a first
order differential operator

D : E −→ Ω1
M ⊗ E(2.1)

satisfying the following Leibniz condition:

D(fs) = fD(s) + df ⊗ s(2.2)

where f is a local holomorphic function on M and s is a local holomorphic section
of E. Extend D as a first order operator

D : Ωp,q
M ⊗ E −→ Ωp+1,q

M ⊗ E

using the Leibniz rule. The curvature of D is defined to be

D2 := D ◦D

which is a holomorphic section of Ω2
M ⊗ EndE (Ωk

M :=
∧kΩ1

M ). The notion of a
holomorphic connection was introduced by M. Atiyah [At].

If ∂E : E −→ Ω0,1
M ⊗ E denotes the first order differential operator defining the

holomorphic structure on E, then the operator

D + ∂E
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is a connection on E in the usual sense. Moreover, the curvature of this connection
is D2; in particular, it is a holomorphic section of Ω2

M ⊗ EndE. Conversely, the
(1, 0) part of a connection on E, such that the (0, 1) part of it is ∂E and its curvature
is a holomorphic section of Ω2

M ⊗ End E, is actually a holomorphic connection.
In particular, if ∇ is a flat connection on a C∞ complex vector bundle M , then

the (0, 1) part of the connection operator defines a holomorphic structure on E and
the (1, 0) part defines a holomorphic connection.

Let L be a polarization on M , or equivalently, L is an ample line bundle on
M . For a coherent sheaf F on M , the degree of F , denoted by deg F , is defined as
follows (d = dimC M):

degF :=
∫

M

c1(F ) ∪ c1(L)d−1.

A torsion-free coherent sheaf F is called semistable if for every (nonzero) coherent
subsheaf V ⊂ F , the following inequality holds:

rankV

deg V
≤ rankF

deg F
.

Moreover, if the strict inequality holds for every proper coherent subsheaf V with
F/V torsion-free, then F is called stable.

The quotient rankF/degF is called the slope of F and is usually denoted by
µ(F ).

Any torsion-free coherent sheaf F admits a unique filtration by coherent sub-
sheaves, known as the Harder-Narasimhan filtration, of the following type ([Ko],
page 174, Theorem 7.15):

0 = F0 ⊂ F1 ⊂ F2 ⊂ . . . ⊂ Fk ⊂ Fk+1 = F

where F1 is the maximal semistable subsheaf of F . The Harder-Narasimhan filtra-
tion is determined by the property that Fi+1/Fi is the maximal semistable subsheaf
of F/Fi. This implies that µ(Fi+1/Fi) < µ(Fi/Fi−1).

Let

0 = V0 ⊂ V1 ⊂ V2 ⊂ . . . ⊂ Vl ⊂ Vl+1 = TM(2.3)

be the Harder-Narasimhan filtration of the tangent bundle TM .
A flat connection on a holomorphic vector bundle E on M is said to be compatible

if the (0, 1) part of the connection is ∂E (equivalently, (local) flat sections are
holomorphic sections). A compatible flat connection is same as a flat holomorphic
connection.

Theorem 2.4. Assume that the degree of the tangent bundle degTM ≥ 0. Let E
be a holomorphic vector bundle on M equipped with a holomorphic connection.

(1) If deg (TM/Vl) ≥ 0 then the holomorphic vector bundle E admits a compatible
flat connection. (This inequality condition is satisfied if, for example, TM is
semistable since deg TM ≥ 0.)

(2) Consider the case where TM is not semistable. Assume that the maximal
semistable subsheaf of TM , namely V1, is locally free. If the rank of the Neron-
Severi group, NS(M), of M is 1, i.e.,

H1,1(M) ∩H2(M, Q) = Q ,

then E admits a compatible flat connection.
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Proof. Assume that deg (TM/Vl) ≥ 0. Then from Lemma 2.1 of [Bi2] (also Remark
3.7(ii) of [Bi1]) we know that the vector bundle E is semistable. To be self-contained
as much as possible we will quickly recall the proof of the semistability of E. Since
E admits a holomorphic connection, Theorem 4 (page 192) of [At] says that all the
(rational) Chern classes, ck(E), where k ≥ 1, of E vanish. In particular degE = 0.
Let W be the maximal semistable subsheaf of E. The key observation is that
W is left invariant by the holomorphic connection operator D on E. Indeed, the
homomorphism

W −→ Ω1
M ⊗ E

W
(2.5)

induced by D is OM -linear (a simple consequence of the Leibniz identity (2.2)). The
Harder-Narasimhan filtration of a tensor product is simply the tensor product of
the corresponding Harder-Narasimhan filtrations. Applying this to Ω1

M ⊗ (E/W ),
since the degree of any subsheaf of Ω1

M is nonpositive (this is equivalent to the
assertion that the degree of a quotient sheaf of TM is nonnegative, which, in turn,
is warranted by the assumption that deg (TM/Vl) ≥ 0), the slope of the maximal
semistable subsheaf of Ω1

M ⊗ (E/W ) is less than or equal to µ(E/W ). Finally from
the general properties of Harder-Narasimhan filtrations we have µ(W ) > µ(E/W ).
If the image of the homomorphism in (2.5) is nonzero then the slope of the image
is simultaneously at least µ(W ) (recall that W is semistable) and as well as it
is at most the slope of the maximal semistable subsheaf of Ω1

M ⊗ (E/W ). This
contradicts the earlier observation that the slope of the maximal semistable subsheaf
of Ω1

M ⊗ (E/W ) is strictly less than µ(W ). Thus the homomorphism in (2.5)
must be the zero homomorphism. In other words, W has an induced holomorphic
connection. This implies that W is locally free of degree zero. So W cannot be a
proper subsheaf of E. In other words, E must be semistable.

Since E is semistable with vanishing first and second Chern classes, the Corollary
3.10 (page 40) of [Si] implies that E admits a flat connection compatible with its
holomorphic structure.

To prove part (2) of Theorem 2.4 we assume that TM is not semistable. The
maximal semistable subsheaf of TM , namely V1 (in (2.3)), is assumed to be locally
free.

Our first step will be to prove that V1 is closed under the Lie bracket operation
on TM . Towards this goal consider the homomorphism

Γ : V1 ⊗ V1 −→ T

V1
(2.6)

defined by composing the Lie bracket operation with the natural projection of TM

onto TM/V1. Since the Lie bracket satisfies the Leibniz identity, namely

[fv, w] = f [v, w] − 〈df, w〉v ,

where 〈−,−〉 denotes the obvious contraction, the map Γ is actually OM -linear,
i.e., Γ is a homomorphism of vector bundles.

Now we are given that µ(V1) > µ(TM ) ≥ 0. So

µ(V1 ⊗ V1) = 2µ(V1) > µ(V1) > µ(V2/V1) ,(2.7)

the last inequality being a general property of Harder-Narasimhan filtrations. The
image of the homomorphism Γ is simultaneously a quotient of V1 ⊗ V1 as well as a
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subsheaf of TM/V1. But V2/V1, by definition, is the maximal semistable subsheaf
of TM/V1. So if Γ 6= 0 then

µ(V1 ⊗ V1) ≤ µ(image Γ) ≤ µ(V2/V1).

The first inequality is a consequence of the fact that V1⊗V1 is semistable. (A tensor
product of semistable vector bundles is again semistable [MR], Remark 6.6 (iii).)
This contradicts the inequality (2.7) unless imageΓ = 0. But Γ = 0 is equivalent to
V1 being closed under the Lie bracket operation. In other words, V1 is a nonsingular
holomorphic foliation on M .

If E is semistable we may complete the proof of Theorem 2.4 by repeating the
use of the Corollary 3.10 of [Si] as done in the proof of part (1) of Theorem 2.4. So
we may, and we will, assume that E is not semistable. Let

0 = W0 ⊂ W1 ⊂ W2 ⊂ . . . ⊂ Wm ⊂ Wm+1 = E

be the Harder-Narasimhan filtration of E.
Our next step will be to show that the sheaf W1 has an induced holomorphic

partial connection along the foliation V1. In other words, we want to show that the
operator D in (2.1) induces an operator

D′ : W1 −→ V ∗
1 ⊗W1(2.8)

which satisfies the Leibniz condition (2.2); df in (2.2) is realized as a section of V ∗
1

in (2.8) by using the natural projection of Ω1
M onto V ∗

1 . The notion of a partial
connection was introduced by R. Bott.

To construct D′ first note that, by projecting Ω1
M onto V ∗

1 , the operator D in
(2.1) induces an operator

D1 : W1 −→ V ∗
1 ⊗ E.(2.9)

Now projecting E onto E/W1, the operator D1 in (2.9) induces an operator

D2 : W1 −→ V ∗
1 ⊗

E

W1
.

The Leibniz identity (2.2) implies that D2 is OM -linear; i.e., the order of the dif-
ferential operator D2 is zero. In other words, D2 is a homomorphism of vector
bundles.

We will show that D2 = 0 by following the steps of the argument for Γ = 0 (in
(2.6)).

If D2 6= 0 then µ(image (D2)) ≥ µ(W1), since image (D2) is a quotient of the
semistable sheaf W1. On the other hand, since

image (D2) ⊆ V ∗
1 ⊗

E

W1
,

we conclude that the slope of image (D2) is at most the slope of the maximal
semistable subsheaf of V ∗

1 ⊗ (E/W1).
Thus if D2 6= 0, then µ(W1) is less than or equal to the slope of the maximal

semistable subsheaf of V ∗
1 ⊗ (E/W1).

On the other hand, since V ∗
1 is semistable with strictly negative slope, the slope

of the maximal semistable subsheaf of V ∗
1 ⊗(E/W1) is strictly less than the slope of

the maximal semistable subsheaf of E/W1 – which in turn is strictly less than the
slope of W1. Thus the slope of the maximal semistable subsheaf of V ∗

1 ⊗ (E/W1) is
strictly less than µ(W1). This contradicts the inequality obtained in the previous
paragraph. So we have D2 = 0.
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Since D2 = 0, the differential operator D1 in (2.9) induces a first order differential
operator D′ as in (2.8). Clearly D′ satisfies the Leibniz identity, as D satisfies it.

The operator D′ maps (local) holomorphic sections of W1 to holomorphic sections
of V ∗

1 ⊗ W1. So D′ is a partial connection on W1 along V1 ⊕ T 0,1
M in the sense of

[BB] (Sections 2 and 3); T 0,1
M is the anti-holomorphic tangent bundle.

However, unfortunately, W1 is not necessarily locally free. (A coherent sheaf
equipped with a holomorphic connection must be locally free, but D′ is only a
partial connection.) To circumvent the problems caused by such a possibility of
not being locally free, we will consider the determinant line bundle

d(W1) := detW1 =
∧r

W1

where r is the rank of W1. The details of the construction of the determinant
bundle of a torsion-free coherent sheaf can be found in Chapter 5, §6 of [Ko]. We
note that the determinant bundle of a torsion-free sheaf is locally free of rank one,
i.e., it is a line bundle.

The partial connection D′ induces a partial connection on d(W1), which we will
also denote by D′. More precisely, for a local section of d(W1)

s := s1 ∧ s2 ∧ . . . ∧ sr ∈ Γ(U, d(W1))

the action of D′ on it is defined as follows:

D′(s) :=
r∑

j=1

s1 ∧ . . . ∧D′(sj) ∧ . . . ∧ sr.

It is straight-forward to check that the operator D′ defined above satisfies the
Leibniz identity. Thus D′ is a partial holomorphic connection on d(W1) along V1.

We may extend the partial connection D′ to an actual connection on d(W1)
following [BB]. Fix a Kähler metric, say H , on M . Let∇′ be a hermitian connection
on d(W1); the (0, 1) part of ∇′ is assumed to be ∂d(W1). For any v ∈ T 1,0

M let
v = v1 ⊕ v2 be the decomposition as T 1,0

M = V1 ⊕ V ⊥
1 using the metric H . For

v′ ∈ T 0,1
M and a smooth section φ of d(W1) define:

∇v⊕v′φ := 〈D′φ, v1〉 + ∇′v2
φ + 〈∂d(W1)φ, v′〉.

Clearly ∇ is a connection in the usual sense whose (0, 1) part coincides with ∂d(W1),
and it is an extension of the partial connection D′.

Let

I ⊆ Ω1,1
M ⊕ Ω0,2

M

be the degree 2 component of the ideal, in the exterior algebra
∧ (

Ω1,0
M ⊕ Ω0,1

M

)
,

generated by the subspace of Ω0,1
M that annihilates V1.

The following simple lemma will be useful:

Lemma 2.10. The curvature ∇2, which is a smooth 2-form on M , is actually a
section of I ⊕ Ω2,0

M .

The proof of Lemma 2.10 is a simple computation. It is actually a straight-
forward extension of (3.33), page 295 of [BB] to partial holomorphic connections
(extension from partial flat connections). All we need to observe is that the cur-
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vature of ∇′ is of type (1, 1) (since ∇′ is assumed to be hermitian) and that the
curvature of the partial connection D′ is a holomorphic section of

∧2V ∗
1 . Since

the restriction of ∇ to a leaf of the foliation V1 coincides with D′ + ∂d(W1), the
restriction of ∇2 to a leaf is a section of

∧2
V ∗

1 . It is easy to see that this implies
Lemma 2.10.

Continuing with the proof of Theorem 2.4, our next step will be to establish a
lemma on vanishing of characteristic classes of d(W1), analogous to the Proposition
(3.27), page 295, of [BB].

Lemma 2.11. Let q be an integer with q > dim M−dimV1. Then c1(d(W1))q = 0.

Proof of Lemma 2.11. The characteristic class c1(d(W1))q ∈ Hq,q(M), and it is
represented by the differential form (∇2/2π

√−1)q. Since the space of forms on M
admits Hodge decomposition, to prove Lemma 2.11 it is enough to show that the
differential form (∇2)q is a section of the vector bundle⊕

j>q

Ωj,2q−j
M .

But Lemma 2.10 implies that (∇2)q is indeed of the above type. To see this first
note that by Lemma 2.10, both the (1, 1) and the (0, 2) part of ∇2 is contained in
the ideal generated by the subspace of Ω0,1

M that annihilates V1. But the dimension
of this annihilator is dim M − dim V1. So the component of (∇2)q in⊕

j≤q

Ωj,2q−j
M

vanishes identically. This completes the proof of the lemma.

To complete the proof of Theorem 2.4 we first note that the given condition that
the rank of the Neron-Severi group, NS(M), is 1 implies that if (ω)j = 0, where
ω ∈ NS(M)⊗Z Q (= H2(M, Q)∩H1,1(M)) and 1 ≤ j ≤ dimC M , then ω = 0. This
is simply because ω is a (possibly zero) rational multiple of the hyperplane class,
and the j-th power of the hyperplane class is nonzero. Substituting c1(d(W1)) for
ω and using Lemma 2.11 we get that c1(d(W1)) = 0. Thus we have

deg W1 = deg d(W1) = 0.

But W1 is the maximal semistable subsheaf of E and deg E = 0. This contradicts
the assumptions that E is not semistable and that W1 is the maximal semistable
subsheaf of E. We already noted that if E is semistable then the Corollary 3.10
(page 40) of [Si] completes the proof of the theorem. This completes the proof of
Theorem 2.4.

Remark 2.12. The proof of Theorem 2.4 shows that under the assumptions in either
part 1 or part 2 of the statement of Theorem 2.4, the vector bundle E is actually
semistable.
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