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Abstract. We put forward the study of a new primitive that we call
Vector Commitment (VC, for short). Informally, VCs allow to commit
to an ordered sequence of q values (m1, . . . ,mq) in such a way that one
can later open the commitment at specific positions (e.g., prove that mi

is the i-th committed message). For security, Vector Commitments are
required to satisfy a notion that we call position binding which states
that an adversary should not be able to open a commitment to two dif-
ferent values at the same position. Moreover, what makes our primitive
interesting is that we require VCs to be concise, i.e. the size of the com-
mitment string and of its openings has to be independent of the vector
length.
We show two realizations of VCs based on standard and well established
assumptions, such as RSA, and Computational Diffie-Hellman (in bilin-
ear groups). Next, we turn our attention to applications and we show that
Vector Commitments are useful in a variety of contexts, as they allow
for compact and efficient solutions which significantly improve previous
works either in terms of efficiency of the resulting solutions, or in terms
of ”quality” of the underlying assumption, or both. These applications
include: Verifiable Databases with Efficient Updates, Updatable Zero-
Knowledge Databases, and Universal Dynamic Accumulators.

1 Introduction

Commitment schemes are one of the most important primitives in cryptogra-
phy. Informally, they can be seen as the digital equivalent of a sealed envelope:
whenever a party S wants to commit to a message m, she puts m in the enve-
lope. At a later moment, S opens the envelope to publicly reveal the message
she committed to. In their most basic form commitment schemes are expected
to meet two requirements. A commitment should be hiding, meaning with this
that it should not reveal information about the committed message, and binding
which means that the committing mechanism should not allow S to change her
mind about m. More precisely, this means that the commitment comes with
an opening procedure that can be efficiently verified, i.e. one should be able to
efficiently check that the opened message is the one S originally committed to.

? Work done while at NYU supported by NSF grant CNS-1017471.
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Thus, a commitment scheme typically involves two phases: a committing one,
where a sender S creates a commitment C on some messages m, using some
appropriate algorithm and a decommitting stage, where S reveals m and should
”convince” a receiver R that C contains m. A commitment scheme is said to be
non-interactive if each phase requires only one messages from S to R.

Commitment schemes turned out to be extremely useful in cryptography
and have been used as a building block to realize highly non-trivial protocols
and primitives. Because of this, the basic properties discussed above have often
turned out to be insufficient for realizing the desired functionalities. This led
researchers to investigate more complex notions realizing additional properties
and features. Here we discuss a couple of these extensions, those more closely
related to the results presented in this paper.

Trapdoor commitment schemes (also known as chameleon commitments) have
a public key and a (matching) secret key (also known as the trapdoor). Knowl-
edge of the trapdoor allows to completely destroy the binding property. On the
other hand, the scheme remains binding for those who know only the public key.
A special case of trapdoor commitments are (trapdoor) Mercurial commitments,
a notion formalized by Chase et al. in [12]. Here the binding property is further
relaxed to allow for two different decommitting procedures: a hard and a soft
one. In the committing phase one can decide as whether to create a hard com-
mitment or a soft one. A hard commitment is like a standard one: it is created
to a specific message m, and it can be opened only to m. Instead, a soft com-
mitment is initially created to “no message”, and it can later be soft-opened (or
teased) to any m, but it cannot be hard-opened.

Our Contributions. In this paper we introduce a new and simple, yet powerful
notion of commitment, that we call Vector Commitment (VC, for short). Infor-
mally, VCs allow to commit to an ordered sequence of q values (i.e. a vector),
rather than to single messages. This is done in a way such that it is later possible
to open the commitment w.r.t. specific positions (e.g., to prove that mi is the
i-th committed message). More precisely, vector commitments are required to
satisfy what we call position binding. Position binding states that an adversary
should not be able to open a commitment to two different values at the same
position. While this property, by itself, would be trivial to realize using standard
commitment schemes, what makes our design interesting is that we require VCs
to be concise, i.e., the size of the commitment string as well as the size of each
opening have to be independent of the vector length.

Vector commitments can also be required to be hiding, in the sense that
one should not be able to distinguish whether a commitment was created to a
vector (m1, . . . ,mq) or to (m′1, . . . ,m

′
q), even after seeing some openings. We,

however, notice that hiding is not a crucial property in the realization of vector
commitments. Therefore, in our constructions we will not focus on it. While this
might be surprising at first, we motivate it as follows. First, all the applications
of VCs described in this paper do not require such a property. Second, hiding
VCs can be easily obtained by composing a non-hiding VC with a standard
commitment scheme (see Section 2 for more details).
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Additionally, Vector Commitments need to be updatable. Very roughly, this
means that they come equipped with two algorithms to update the commitment
and the corresponding openings. The first algorithm allows the committer, who
created a commitment Com and wants to update it by changing the i-th message
from mi to m′i, to obtain a (modified) Com′ containing the updated message. The
second algorithm allows holders of an opening for a message at position j w.r.t.
Com to update their proof so as to become valid w.r.t. the new Com′.

Next, we turn our attention to the problem of realizing vector commitments.
Our technical contributions are two realizations of VCs from standard and well
established assumptions, namely RSA and Computational Diffie-Hellman (over
bilinear groups)3.

Finally, we confirm the power of this new primitive by showing several ap-
plications (see below) in which our notion of Vector Commitment allows for
compact and efficient solutions, which significantly improve previous works ei-
ther in terms of efficiency of the resulting solutions, or in terms of “quality” of
the underlying assumption, or both.

Verifiable Databases with Efficient Updates. Very recently, Benabbas,
Gennaro and Vahlis [3] formalized the notion of Verifiable Databases with Effi-
cient Updates (VDB, for short). This primitive turns out to be extremely useful
to solve the following problem in the context of verifiable outsourcing of storage.
Assume that a client with limited resources wants to store a large database on
a server so that it can later retrieve a database record, and update a record by
assigning a new value to it. For efficiency, it is crucial that the computational
resources invested by the client to perform such operations must not depend on
the size of the database (except for an initial pre-processing phase). On the other
hand, for security, the server should not be able to tamper with any record of
the database without being detected by the client.

For the static case (i.e., the client does not perform any update) simple
solutions can be achieved by using message authentication or signature schemes.
For example, the client first signs each database record before sending it to
the server, and then the server is requested to output the record together with
its valid signature. However, this idea does not work well if the client performs
updates on the database. The problem is that the client should have a mechanism
to revoke the signatures given to the server for the previous values. To solve this
issue, the client could keep track of every change locally, but this is in contrast
with the main goal, i.e., using less resources than those needed to store the
database locally.

Solutions to this problem have been addressed by works on accumulators
[26, 6, 7], authenticated data structures [25, 21, 27, 30], and the recent work on
verifiable computation [3]. Also, other recent works have addressed a slightly dif-
ferent and more practical problem of realizing authenticated remote file systems
[29]. However, as pointed out in [3], previous solutions based on accumulators
and authenticated data structures either rely on non-constant size assumptions

3 Precisely, our construction relies on the Square Computational Diffie-Hellman as-
sumption which however has been shown equivalent to the standard CDH [22, 1].
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(such as q-Strong Diffie-Hellman), or they require expensive operations such as
generation of prime numbers, and re-shuffling procedures. Benabbas et al. pro-
pose a nice solution with efficient query and update time [3]. Their scheme relies
on a constant size assumption in bilinear groups of composite order, but does
not support public verifiability (i.e., only the client owner of the database can
verify the correctness of the proofs provided by the server).

In this work, we show that Vector Commitments can be used to build Ver-
ifiable Databases with efficient updates that allow for public verifiability. More
importantly, if we instantiate this construction with our VC based on CDH,
then we obtain an implementation of Verifiable Databases that relies on a stan-
dard constant-size assumption, and whose efficiency improves over the scheme
of Benabbas et al. as we can use bilinear groups of prime order.

Updatable Zero Knowledge Elementary Databases. Zero Knowledge
Sets allow a party P , called the prover, to commit to a secret set S in a way
such that he can later produce proofs for statements of the form x ∈ S or
x 6∈ S. The required properties are the following. First, any user V (the verifier)
should be able to check the validity of the received proofs without learning
any information on S (not even its size) beyond the mere membership (or non-
membership) of the queried elements. Second, the produced proofs should be
reliable in the sense that no dishonest prover should be able to convince V of
the validity of a false statement. Zero Knowledge Sets (ZKS) were introduced and
constructed by Micali, Rabin and Kilian [23]4. Micali et al.’s construction was
abstracted away by Chase et al. [12], and by Catalano, Dodis and Visconti [8].
The former showed that ZKS can be built from trapdoor mercurial commitments
and collision resistant hash functions, and also that ZKS imply collision-resistant
hash functions. The latter showed generic constructions of (trapdoor) mercurial
commitments from the sole assumptions that one-way functions exist. These
results taken together [12, 8], thus, show that collision-resistant hash functions
are necessary and sufficient to build ZKS in the CRS model. From a practical
perspective, however, none of the above solutions can be considered efficient
enough to be used in practice. A reason is that all of them allow to commit
to a set S ⊂ {0, 1}k by constructing a Merkle tree of depth k, where each
internal node is filled with a mercurial commitment (rather than the hash) of
its two children. A proof that x ∈ {0, 1}k is in the committed set consists of the
openings of all the commitments in the path from the root to the leaf labeled by
x (more details about this construction can be found in [23, 12]). This implies
that proofs have size linear in the height k of the tree. Now, since 2k is an upper
bound for |S|, to guarantee that no information about |S| is revealed, k has to
be chosen so that 2k is much larger than any reasonable set size.

4 More precisely, Micali et al. addressed the problem for the more general case of
elementary databases (EDB), where each key x has associated a value D(x) in the
committed database. In the rest of this paper we will slightly abuse the notation
and use the two acronyms ZKS and ZK-EDB interchangeably to indicate the same
primitive.



Vector Commitments and their Applications 5

Catalano, Fiore and Messina addressed in [10] the problem of building ZKS
with shorter proofs. Their proposed idea was a construction that uses q-ary trees,
instead of binary ones, and suggested an extension of mercurial commitment
(that they called q-Trapdoor Mercurial Commitment) which allows to imple-
ment it. The drawback of the specific realization of qTMC in [10] is that it is
not as efficient as one might want. In particular, while the size of soft openings
is independent of q, hard openings grow linearly in q. This results in an ”unbal-
anced” ZK-EDB construction where proofs of membership are much longer than
proofs of non membership. In a follow-up work, Libert and Yung [19] proposed a
very elegant solution to this problem. Specifically, they managed to construct a
q-mercurial commitment (that they called concise) achieving constant-size (soft
and hard) openings. This resulted in ZK-EDB with very short proofs, as by in-
creasing q one can get an arbitrarily “flat” tree5. Similarly to [10], the scheme
of Libert and Yung [19] also relies on a non-constant size assumption in bilinear
groups: the q-Diffie-Hellman Exponent [5].

Our main application of VCs to ZKS is the proof of the following theorem:

Theorem 1 (informal) A (concise) trapdoor q-mercurial commitment can be
obtained from a vector commitment and a trapdoor mercurial commitment.

The power of this theorem comes from the fact that, by applying the generic
transform of Catalano et al. [10], we can immediately conclude that Compact
ZKS (i.e. ZKS with short membership and non-membership proofs) can be built
from mercurial commitments and vector commitments. Therefore, when combin-
ing our realizations of Vector Commitments with well known (trapdoor) mer-
curial ones (such as that of Gennaro and Micali [14] for the RSA case, or that
from [23], for the CDH construction) we get concise qTMCs from RSA and
CDH. Moreover, when instantiating the ZK-EDB construction of Catalano et al.
[10] with such schemes, one gets the first compact ZK-EDB realizations which
are provably secure under standard assumptions. Our CDH realization induces
proofs whose length is comparable to that induced by Libert and Yung’s commit-
ment [19], while relying on more standard and better established assumptions.

Additionally, and more importantly, we show the first construction of updat-
able ZK-EDB with short proofs. The notion of Updatable Zero Knowledge EDB
was introduced by Liskov [20] to extend ZK-EDB to the (very natural) case of
“dynamic” databases. In an updatable ZK-EDB the prover is allowed to change
the value of some element x in the database and then output a new commitment
C ′ and some update information U . Users holding a proof πy for a y 6= x valid
w.r.t. C, should be able to use U to produce an updated proof π′y that is valid
w.r.t. C ′. In [20] is given a definition of Updatable Zero Knowledge (Elementary)
Databases together with a construction based on mercurial commitments and
Verifiable Random Functions [24] in the random oracle model. More precisely,
Liskov introduced the notion of updatable mercurial commitment and proposed
a construction, based on discrete logarithm, which is a variant of the mercurial
commitment of Micali et al. [23].

5 The only limitation is that the resulting CRS grows linearly in q.
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Using Vector Commitments, we realize the first constructions of “compact”
Updatable ZK-EDB whose proofs and updates are much shorter than those
of Liskov [20]. In particular, we show how to use VCs to build Updatable ZK-
EDB from updatable qTMCs (which we also define and construct) and Verifiable
Random Functions in the random oracle model. We stress that our solutions,
in addition to solving the open problem of realizing Updatable ZK-EDB with
short proofs, further improve on previous work as they allow for much shorter
updates as well6.

Additional Applications of Vector Commitments We leave to the full
version of this paper [9] a description of additional applications of Vector Com-
mitments to compact Independent Zero-Knowledge Databases [14], Fully Dy-
namic Universal Accumulators [4, 7, 17], and pseudonymous credentials [16]. Very
recently, Libert, Peters and Yung also used our Vector Commitments to improve
the efficiency of group signatures with revocation [18].

Preliminaries and Definitions. In what follows we will denote with k ∈ N the
security parameter, and by poly(k) any function which bounded by a polynomial
in k. An algorithm A is said to be PPT if it is modeled as a probabilistic Turing
machine that runs in time polynomial in k. Informally, we say that a function
is negligible if it vanishes faster than the inverse of any polynomial. If S is a

set, then x
$← S indicates the process of selecting x uniformly at random over

S (which in particular assumes that S can be sampled efficiently). If n is an
integer, we denote with [n], the set containing the integers 1, 2, . . . , n.

2 Vector Commitments

In this section we introduce the notion of Vector Commitment. Informally speak-
ing, a vector commitment allows to commit to an ordered sequence of values in
such a way that it is later possible to open the commitment only w.r.t. a specific
position. We define Vector Commitments as a non-interactive primitive, that
can be formally described via the following algorithms:

VC.KeyGen(1k, q) Given the security parameter k and the size q of the com-
mitted vector (with q = poly(k)), the key generation outputs some public
parameters pp (which implicitly define the message space M).

VC.Compp(m1, . . . ,mq) On input a sequence of q messages m1, . . . ,mq ∈M and
the public parameters pp, the committing algorithm outputs a commitment
string C and an auxiliary information aux.

VC.Openpp(m, i, aux) This algorithm is run by the committer to produce a proof
Λi that m is the i-th committed message.

VC.Verpp(C,m, i, Λi) The verification algorithm accepts (i.e., it outputs 1) only
if Λi is a valid proof that C was created to a sequence m1, . . . ,mq such that
m = mi.

6 This is because, in all known constructions, the size of the update information lin-
early depends on the height of the tree.
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VC.Updatepp(C,m,m
′, i) This algorithm is run by the committer who produced

C and wants to update it by changing the i-th message to m′. The algorithm
takes as input the old message m, the new message m′ and the position i. It
outputs a new commitment C ′ together with an update information U .

VC.ProofUpdatepp(C,Λj ,m
′, i, U) This algorithm can be run by any user who

holds a proof Λj for some message at position j w.r.t. C, and it allows the
user to compute an updated proof Λ′j (and the updated commitment C ′)
such that Λ′j will be valid w.r.t. C ′ which contains m′ as the new message
at position i. Basically, the value U contains the update information which
is needed to compute such values.

For correctness, we require that ∀k ∈ N, q = poly(k), for all honestly gener-

ated parameters pp
$← VC.KeyGen(1k, q), if C is a commitment on a vector

(m1, . . . ,mq) ∈ Mq (obtained by running VC.Compp possibly followed by a
sequence of updates), Λi is a proof for position i generated by VC.Openpp or
VC.ProofUpdatepp (∀i = 1, . . . , q), then VC.Verpp(C,mi, i,VC.Openpp(mi, i, aux))
outputs 1 with overwhelming probability.

The attractive feature of vector commitments is that they are required to
meet a very simple security requirement, that we call position binding. Informally,
this says that it should be infeasible, for any polynomially bounded adversary
having knowledge of pp, to come up with a commitment C and two different
valid openings for the same position i. More formally:

Definition 2 [Position Binding] A vector commitment satisfies position binding
if ∀i = 1, . . . , q and for every PPT adversary A the following probability (which
is taken over all honestly generated parameters) is at most negligible in k:

Pr

[
VC.Verpp(C,m, i, Λ) = 1∧
VC.Verpp(C,m

′, i, Λ′) = 1 ∧m 6= m′
| (C,m,m′, i, Λ, Λ′)← A(pp)

]
Moreover, we require a vector commitment to be concise in the sense that

the size of the commitment string C and the outputs of VC.Open are both
independent of q.

Vector commitments can also be required to be hiding. Informally, a vector
commitment is hiding if an adversary cannot distinguish whether a commit-
ment was created to a sequence (m1, . . . ,mq) or to (m′1, . . . ,m

′
q), even after

seeing some openings (at positions i where the two sequences agree). We ob-
serve, however, that hiding is not a critical property in the realization of vector
commitments. Indeed, any construction of vector commitments which does not
satisfy hiding, can be easily fixed by composing it with a standard commitment
scheme, i.e., first commit to each message separately using a standard commit-
ment scheme, and then apply the VC to the obtained sequence of commitments.
Moreover, neither the applications considered in this paper nor that considered
in [18] require the underlying VC to be hiding. For these reasons, in our con-
structions we will only focus on the realization of the position binding property.
We leave a formal definition of hiding for the full version of the paper.
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2.1 A Vector Commitment based on CDH

Here we propose an implementation of concise vector commitments based on the
CDH assumption in bilinear groups. Precisely, the security of the scheme reduces
to the Square Computational Diffie-Hellman assumption. Roughly speaking, the
Square-CDH assumption says that it is computationally infeasible to compute
the value ga

2

, given g, ga ∈ G. This has been shown equivalent to the standard
CDH assumption [22, 1]. Our construction is reminiscent of the incremental hash
function by Bellare and Micciancio [2], even if we develop new techniques for
creating our proofs that open the commitment at a specific position.

VC.KeyGen(1k, q) Let G,GT be two bilinear groups of prime order p equipped
with a bilinear map e : G × G → GT . Let g ∈ G be a random generator.

Randomly choose z1, . . . , zq
$← Zp. For all i = 1, . . . , q set: hi = gzi . For all

i, j = 1, . . . , q, i 6= j set hi,j = gzizj .

Set pp = (g, {hi}i∈[q], {hi,j}i,j∈[q],i6=j). The message space is M = Zp. 7

VC.Compp(m1, . . . ,mq) Compute C = hm1
1 hm2

2 · · ·h
mq
q and output C and the

auxiliary information aux = (m1, . . . ,mq).

VC.Openpp(mi, i, aux) Compute

Λi =

q∏
j=1,j 6=i

h
mj

i,j =

 q∏
j=1,j 6=i

h
mj

j

zi

VC.Verpp(C,mi, i, Λi) If e(C/hmi
i , hi) = e(Λi, g) then output 1. Otherwise out-

put 0.

VC.Updatepp(C,m,m
′, i) Compute the updated commitment C ′ = C · hm

′−m
i .

Finally output C ′ and U = (m,m′, i).

VC.ProofUpdatepp(C,Λj ,m
′, U) A client who owns a proof Λj , that is valid w.r.t.

to C for some message at position j, can use the update information U =
(m,m′, i) to compute the updated commitment C ′ and produce a new proof
Λ′j which will be valid w.r.t. C ′. We distinguish two cases:

1. i 6= j. Compute the updated commitment C ′ = C · hm
′−m

i while the

updated proof is Λ′j = Λj · (hm
′−m

i )zj = Λj · hm
′−m

j,i .

2. i = j. Compute the updated commitment as C ′ = C · hm
′−m

i while the
updated proof remains the same Λi.

The correctness of the scheme can be easily verified by inspection. We prove
its security via the following theorem whose proof appears in the full version.

Theorem 3 If the CDH assumption holds, then the scheme defined above is a
concise vector commitment.

7 The scheme can be easily extended to support arbitrary messages in {0, 1}∗ by using
a collision-resistant hash function H : {0, 1}∗ → Zp.
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Efficiency and Optimizations. A drawback of our scheme is that the size
of the public parameters pp is O(q2). This can be significant in those applica-
tions where the vector commitment is used with large datasets (e.g., verifiable
databases and accumulators). However, we first notice that the verifier does not
need the elements hi,j . Furthermore, our construction can be easily optimized
in such a way that the verifier does not need to store all the elements hi of pp.
The optimization works as follows. Who runs the setup signs each pair (i, hi),
includes the resulting signatures σi in the public parameters given to the com-
mitter pp, and publishes the signature’s verification key. Next, the committer
includes σi, hi in the proof of an element at position i. This way the verifier can
store only g and the verification key of the signature scheme. Later, each time
it runs the verification of the vector commitment it has to check the validity of
hi by checking that σi is a valid signature on (i, hi).

2.2 A Vector Commitment based on RSA

Here we propose a realization of vector commitments from the RSA assumption.

VC.KeyGen(1k, `, q) Randomly choose two k/2-bit primes p1, p2, set N = p1p2,
and then choose q (`+ 1)-bit primes e1, . . . , eq that do not divide φ(N). For

i = 1 to q set Si = a
∏q

j=1,j 6=i ej . The public parameters pp are (N, a, S1, . . . ,
Sq, e1, . . . , eq). The message space is M = {0, 1}`. 8

VC.Compp(m1, . . . ,mq) Compute C ← Sm1
1 · · ·Smq

q and output C and the aux-
iliary information aux = (m1, . . . ,mq).

VC.Openpp(m, i, aux), Compute

Λi ← ei

√√√√ q∏
j=1,j 6=i

S
mj

j mod N

Notice that knowledge of pp allows to compute Λi efficiently without the
factorization of N .

VC.Verpp(C,m, i, Λi) The verification algorithm returns 1 if m ∈ M and C =
Sm
i Λ

ei
i mod N Otherwise it returns 0.

VC.Updatepp(C,m,m
′, i) Compute the updated commitment C ′ = C · Sm′−m

i .
Finally output C ′ and U = (m,m′, i).

VC.ProofUpdatepp(C,Λj ,m
′, i, U) A client who owns a proof Λj , that is valid

w.r.t. to C for some message at position j, can use the update information
U to compute the updated commitment C ′ and to produce a new proof Λ′j
which will be valid w.r.t. C ′. We distinguish two cases:

1. i 6= j. Compute the updated commitment as C ′ = CSm′−m
i while the

updated proof is Λ′j = Λj
ej

√
Sm′−m
i (notice that such ej-th root can be

efficiently computed using the elements in the public key).

8 As in the CDH case, also this scheme can be extended to support arbitrary messages
by using a collision-resistant hash function H : {0, 1}∗ → {0, 1}`.
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2. i = j. Compute the updated commitment C ′ = C · Sm′−m
i while the

updated proof remains the same Λi.

In order for the verification process to be correct, notice that one should also
verify (only once) the validity of the public key by checking that the Si’s are
correctly generated with respect to a and the exponents e1, . . . , eq.

The correctness of the scheme can be easily verified by inspection. We prove
its security via the following theorem.

Theorem 4 If the RSA assumption holds, then the scheme defined above is a
concise vector commitment.

An optimization similar to the one suggested for CDH construction in the
previous section applies to this scheme as well, and thus allows the verifier to
store only a constant number of elements of the public parameters.

Achieving constant-size public parameters. In the full version of this work
we show a variant of this RSA scheme that achieves constant-size public parame-
ters. Very roughly, to do this we borrow some techniques from [15] that introduce
a “special” pseudorandom function f that generates prime numbers, and we use
such f to compute each prime ei as f(i). This new scheme is computationally
less efficient compared to the other RSA and CDH constructions. Though, it
shows that vector commitments with constant-size public parameters exist.

3 Verifiable Databases with Efficient Updates from
Vector Commitments

In this section we show that vector commitments allow to build a verifiable
database scheme. This notion has been formalized very recently by Benabbas,
Gennaro and Vahlis [3]. Intuitively, a verifiable database allows a weak client to
outsource the storage of a large database D to a server in such a way that the
client can later retrieve the database records from the server and be convinced
that the records have not been tampered with. In particular, since the main
application is in the context of cloud computing services for storage outsourc-
ing, it is crucial that the resources invested by the client after transmitting the
database (e.g., to retrieve and update the records) must be independent of the
database’s size. While a solution for the static case in which the database is not
updated can be obtained using standard techniques (e.g., digital signatures), the
setting in which the client can update the values of the database records need
different ideas.

Here we describe a solution based on our notion of Vector Commitments.
Our construction, when instantiated with our CDH-based VC, allows for an
efficient scheme, yet it is based on a standard constant-size assumption such as
Computation Diffie-Hellman in bilinear groups. Furthermore, our scheme allows
for public verifiability, that was not supported by the scheme in [3].

We begin by recalling the definition of Verifiable Databases. Our definition
closely follows that in [3] except for some changes that we introduce because we
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consider public verifiability. We denote a database D as a set of tuples (x, vx)
in some appropriate domain, where x is the key, and vx is the corresponding
value. We denote this by writing D(x) = vx. In our case we consider keys that
are integers in the interval {1, . . . , q}, where q = poly(k), whereas the DB values
can be arbitrary strings v ∈ {0, 1}∗.

A Verifiable Database scheme VDB is defined by the following algorithms:

VDB.Setup(1k, D) On input the security parameter k and a database D, the
setup algorithm is run by the client to generate a secret key SK that is kept
private by the client, a database encoding S that is given to the server, and
a public key PK that is distributed to all users (including the client itself)
who wish to verify the proofs.

VDB.Query(PK, S, x) On input a database key x, the query processing algorithm
is run by the server, and returns a pair τ = (v, π).

VDB.Verify(PK, x, τ) The public verification algorithm outputs a value v if τ
verifies correctly w.r.t. x (i.e., D(x) = v), and an error ⊥ otherwise.

VDB.ClientUpdate(SK, x, v′) The client update algorithm is used by the client to
change the value of the database record with key x, and it outputs a value
t′x and an updated public key PK′.

VDB.ServerUpdate(PK, S, x, t′x) The server update algorithm is run by the server
to update the database according to the value t′x produced by the client.

Before defining the notion of security we remark that a crucial requirement
is that the size of the information stored by the client as well as the time needed
to compute verifications and updates must be independent of the size |D| of the
database.

Roughly speaking, a Verifiable Database is secure if the server cannot con-
vince users about the validity of false statements, i.e., that D(x) = v where v
is not the value vx that the client wrote in the record with key x. We defer the
interested reader to [3] and our full version for a more precise definition.

3.1 A Verifiable Database scheme from Vector Commitments

Now we show how to build a verifiable database scheme VDB from a vector
commitment VC. The construction follows.

VDB.Setup(1k, D) Let D = {(i, vi)}qi=1. Run pp
$← VC.KeyGen(1k, q). Compute

(C, aux)←VC.Compp(v1, . . . , vq) and set PK = (pp, C), S = (pp, aux, D),
SK = ⊥.

VDB.Query(PK, S, x) Let vx = D(x). Compute Λx←VC.Openpp(vx, x, aux) and
return τ = (vx, Λx).

VDB.Verify(PK, x, τ) Parse τ as (vx, Λx). If VC.Verpp(C, x, vx, Λx) = 1, then re-
turn vx. Otherwise return ⊥.

VDB.ClientUpdate(SK, x, v′x) To update the record with key x, the client first re-
trieves the record x from the server (i.e., it asks the server for τ←VDB.Query(
PK, S, x) and checks that VDB.Verify(PK, x, τ) = vx 6= ⊥). Then, it com-

putes (C ′, U)
$← VC.Updatepp(C, vx, v

′
x, x) and outputs PK′ = (pp, C ′) and

t′x = (PK′, v′x, U).
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VDB.ServerUpdate(pk, S, x, t′x) Let t′x = (PK′, v′x, U). The server writes v′x in the
database record with key x and adds the update information U to aux in S.

The security of our scheme follows from the following theorem whose proof
appears in the full version.

Theorem 5 If VC is a vector commitment, then the Verifiable Database scheme
described above is secure.

A note on the size of the public key. If one looks at the concrete Verifiable
Database scheme resulting by instantiating the vector commitment with one of
our constructions in sections 2.1 and 2.2 a problem arises. In VDBs the public
key must have size independent of the DB size, but this happens not to be
the case in our CDH and RSA constructions where the public parameters pp
depend on q. To solve this issue we thus require this transform to use vector
commitments with constant size parameters. Concretely, we can use the variant
of our RSA construction that has this property, or, for a better efficiency, our
CDH/RSA constructions in Section 2 with the respective optimizations that
enable the verifier to store only a constant number of elements of pp. A detailed
description of this optimization was given in the previous section.

4 (Updatable) Zero-Knowledge Elementary Databases
from Vector Commitments

In this section we show that Vector Commitments can be used to build Zero-
Knowledge Elementary Databases (ZK-EDBs). In particular, following the ap-
proach of Catalano, Fiore and Messina [10], we can solve the open problem
of building compact ZK-EDBs based on standard constant-size assumptions.
Furthermore, in the next section we will show that the same approach can be
extended to build Updatable ZK-EDBs, thus allowing for the first compact con-
struction of this primitive. Since the updatable case is more interesting in prac-
tice, we believe that this can be a significant improvement.

Zero-Knowledge Elementary Databases. We first recall the notion of
Zero-Knowledge Elementary Databases. Let D be a database and [D] be the
set of all the keys in D. We assume that [D] is a proper subset of {0, 1}∗. If
x ∈ [D], we denote with y = D(x) its associated value in the database D. If
x /∈ [D] we let D(x) = ⊥. A Zero Knowledge (Elementary) Database system is
formally defined by a tuple of algorithms (Setup,Commit,Prove,V) that work as
follows:

– Setup(1k) takes as input the security parameter k and generates a common
reference string CRS.

– Commit(CRS,D), the committer algorithm, takes as input a database D
and the common reference string CRS and outputs a public key ZPK and
a secret key ZSK.
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– Prove(CRS,ZSK, x) On input the common reference string CRS, the secret
key ZSK and an element x, the prover algorithm produces a proof πx of
either D(x) = y or D(x) = ⊥.

– V(CRS,ZPK, x, πx) The verifier algorithm outputs y if D(x) = y, out if
D(x) = ⊥, and ⊥ if the proof πx is not valid.

We say that such a scheme is a Zero-Knowledge Elementary Database if it sat-
isfies completeness, soundness and zero-knowledge. A precise description of such
requirements can be found in [11]. Here we only explain them informally. In a nut-
shell, completeness requires that proofs generated by honest provers are correctly
verified; soundness imposes that a dishonest prover cannot prove false statements
about elements of the database; zero-knowledge guarantees that proofs do not
reveal any information on the database (beyond their validity).

Towards Building Zero-Knowledge Elementary Databases. Chase et
al. showed a general construction of ZK-EDB from a new primitive, that they
called trapdoor mercurial commitment, and collision-resistant hash functions
[12]. At a very high level, the idea of the construction is to build a Merkle
tree in which each node is the mercurial commitment (instead of a hash) of its
two children. This construction has been later generalized by Catalano et al. so
as to work with q-ary trees instead of binary ones [10, 11] in order to obtain
more efficient schemes. This required the introduction of a new primitive called
trapdoor q-mercurial commitments (qTMC), and it basically shows that the task
of building ZK-EDBs can be reduced to that of building qTMCs. Therefore, in
what follows we simply show how to build qTMCs using vector commitments.
Then one can apply the generic methodology of Catalano et al. to obtain compact
ZK-EDBs. We stress that in the construction of Catalano et al. the value q is the
branching factor of the tree and is not related to the size of the database. Thus,
even if vector commitments reveal q in the clear, this does not compromise the
security of ZK-EDBs.

4.1 Trapdoor q-Mercurial Commitments from Vector Commitments
and Mercurial Commitments

Here we show how to combine (concise) vector commitments and standard trap-
door commitment to obtain (concise) trapdoor qTMC. For lack of space, we
defer the interested reader to [11] for the definitions of (trapdoor) mercurial
commitments and trapdoor q-mercurial commitments.

Let TMC = (KeyGen,HCom,HOpen,HVer,SCom,SOpen,SVer,Fake,HEquiv,
SEquiv) be a trapdoor mercurial commitment and VC = (VC.KeyGen,VC.Com,
VC.Open,VC.Ver) be a vector commitment. We construct a trapdoor qTMC as
follows:

qKeyGen(1k) Run pp
$← VC.KeyGen(1k, q) and (PKTMC, TKTMC)

$← KeyGen(1k)
and set pk = (pp, PKTMC) and tk = TKTMC.

qHCompk(m1, . . . ,mq) For i = 1 to q compute (Ci, aux
i
TMC)

$← HComPKTMC
(mi).

Next, compute (C, auxVC)← VC.Compp(C1, . . . Cq). The output is C and the
auxiliary information is aux = (auxVC,m1, C1, aux

1
TMC, . . . ,mq, Cq, aux

q
TMC).
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qHOpenpk(mi, i, aux) Extract (mi, Ci, aux
i
TMC) from aux and set

Λi ← VC.Openpp(Ci, i, auxVC). The opening information is τi = (Λi, Ci, πi)

where πi is the output of HOpenPKTMC
(mi, aux

i
TMC).

qHVerpk(C,mi, i, τi) Parse τi as (Λi, Ci, πi). The hard verification algorithm re-
turns 1 if and only if both HVerPKTMC

(Ci, mi, πi) and VC.Verpp(C,Ci, i, Λi)
return 1.

qSCompk() For i = 1 to q compute (Ci, aux
i
TMC) ← SComPKTMC

(). Next, com-
pute (C, auxVC)← VC.Compp(C1, . . . , Cq). The output is C and the auxiliary
information is aux = (auxVC,m1, C1, aux

1
TMC, . . . ,mq, Cq, aux

q
TMC).

qSOpenpk(mi, i, flag, aux) Extract (mi, Ci, aux
i
TMC) from aux and set

Λi ← VC.Openpp(Ci, i, auxVC). The opening information is τi = (Λi, Ci, πi)

where πi is the output of SOpenPKTMC
(mi, aux

i
TMC).

qSVerpk(C,m, i, τi) Parse τi as (Λi, Ci, πi). The soft verification algorithm re-
turns 1 if and only if both SVerPKTMC

(Ci,mi, πi) and VC.Verpp(C,Ci, i, Λi)
return 1.

qFakepk,tk() This is the same as the qSCom algorithm.

qHEquivpk,tk(m, i, aux) Extract (Ci, aux
i
TMC) (for all i = 1 to q) and set Λi ←

VC.Openpp(Ci, i, auxVC). The hard equivocation is τi = (Λi, Ci, πi) where πi
is the output of HEquivPKTMC,tkTMC

(m, auxiTMC)

qSEquivpk,tk(m, i, aux) Extract (Ci, aux
i
TMC) (for all i = 1 to q) and set Λi ←

VC.Openpp(Ci, i, auxVC). The soft equivocation is τi = (Λi, Ci, πi) where πi
is the output of SEquivPKTMC,tkTMC

(m, auxiTMC)

The correctness of the scheme easily follows from the correctness of the un-
derlying building blocks. Its security follows from the following theorem (whose
proof appears in the full version).

Theorem 6 Assuming that TMC is a trapdoor mercurial commitment and VC
is a vector commitment, then the scheme defined above is a trapdoor q-mercurial
commitment.

On the efficiency of the CDH instantiation. By instantiating the above
scheme with our vector commitment based on CDH (and with the discrete log
based TMC from [23]), one gets a qTMC based on CDH whose efficiency is
roughly the same as that of the scheme in [19] based on q-DHE. For the sake
of a fair comparison we notice that in our construction the reduction to CDH
is not tight (due to the non-tight reduction from Square-DH to CDH [22]), and
our scheme suffers from public parameters of size O(q2). In contrast, the scheme
by Libert and Yung has a tight reduction to the q-DHE problem and achieves
public parameters of size O(q). However, we think that the CDH and the q-
DHE assumptions are not easily comparable, especially given that the latter is
defined with instances of size O(q), where q is known to degrade the quality of
the assumption (see [13, 28] for some attacks). Furthermore, a more careful look
shows that in our scheme the verifier does not need to store this many elements.
This is because the hi,j ’s are not required for verification. Thus, from the verifier
side, the space required is actually only O(q). In the application of ZK-EDBs
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such an optimization reflects on the size of the common reference string. More
precisely, while the server still needs to store a CRS of size O(q2), the client
is required to keep in memory only a portion of the CRS of size of O(q) (thus
allowing for comparable client-side requirements with respect to [19]).

4.2 Updatable ZK-EDBs with Short Proofs and Updates

In most practical applications databases are frequently updated. The construc-
tions of ZK-EDBs described so far do not deal with this and the only way of up-
dating a ZK-EDB is to actually recompute the entire commitment from scratch
every time the database changes. This is highly undesirable as previously issued
proofs can no longer be valid.

This problem was studied by Liskov in [20] where he showed how to build
Updatable ZK EDB by appropriately modifying the basic approach of combining
Merkle trees and mercurial commitments. In particular, rather than using stan-
dard mercurial commitments, Liskov employed a new primitive called updatable
mercurial commitment. Very informally, updatable mercurial commitments are
like standard ones with the additional feature that they allow for two update
procedures. The committer can change the message inside the commitment and
produce: a new commitment and an update information. These can later be used
by verifiers to update their commitments and the associated proofs (that will be
valid w.r.t. the new commitment). Therefore whenever the prover changes some
value D(x) in the database, first he has to update the commitment in the leaf
labeled by x and then he updates all the commitments in the path from x to
the root. The new database commitment is the updated commitment in the root
node, while the database update information contains the update informations
for all the nodes involved in the update.

A natural question raised by the methodology above is whether the zero-
knowledge property remains preserved after an update occurs, as the latter re-
veals information about the updated key. To solve this issue Liskov proposed to
“mask” the label of each key x (i.e. the paths in the tree) using a pseudorandom
pseudonym N(x) and he relaxed the zero-knowledge property to hold w.r.t. N().
Further details can be found in [20].

In [20] two constructions of updatable mercurial commitments are given. One
is generic and uses both standard and mercurial commitments. The other one is
direct and builds from the DL-based mercurial commitment of [23].

Our Result. We introduce the notion of updatable q-mercurial commitments,
and then we show that these can be built from vector commitments and up-
datable mercurial commitments. Next, by applying the methodology of Liskov
sketched above, adapted with the compact construction of Catalano et al. [10],
we can build the first compact Updatable ZK-EDB. It is interesting to observe
that by using the compact construction the resulting ZK-EDB improves over the
scheme in [20] both in terms of proofs’ size and length of the update information,
as these both grow linearly in the height of the tree logq2k (which is strictly less
than k for q > 2). For lack of space, we defer the interested reader to [20] for
formal definitions of (basic) updatable mercurial commitments.
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Updatable q-mercurial commitments. An updatable q-(trapdoor) mercurial
commitment is defined like a qTMC with the following two additional algorithms:

qUpdatepk(C, aux,m′, i) This algorithm is run by the committer who produced
C (and holds the corresponding aux) and wants to change the i-th committed
message with m′. The algorithm takes as input m′ and the position i and
outputs a new commitment C ′ and an update information U .

qProofUpdatepk(C, τj ,m
′, i, U) This algorithm can be run by any user who holds

a proof τj for some message at position j in C and allows the user to produce
a new proof τ ′j (and the updated commitment C ′) which will be valid w.r.t.
C ′ that contains m′ as the new message at position i. The value U contains
the update information which is needed to compute such values.

The q-mercurial binding property is defined as usual, namely for any PPT ad-
versary it is computationally infeasible to open a commitment (even an updated
one) to two different messages at the same position. Hiding and equivocations for
updatable qTMCs easily follow from those of updatable mercurial commitments
by extending them to the case of sequences of q messages.

Updatable q-mercurial commitments from Vector Commitments. In
this section we show that an updatable qTMC can be built using an updatable
(trapdoor) mercurial commitment uTMC and a vector commitment VC. The
construction is essentially the same as that given in Section 4.1 augmented with
the following update algorithms:

qUpdatepk(C, aux,m′, i) Parse aux as (m1, C1, aux
1
uTMC, . . . ,mq, Cq, aux

q
uTMC,

auxVC), extract (Ci,mi, aux
i
uTMC) from it and run (C ′i, UuTMC)←UpdatepkuTMC

(

Ci, aux
i
uTMC,m

′). Then update the vector commitment (C ′, U ′)←
VC.Updatepp(C,Ci, C

′
i, i) and output C ′ and U = (U ′, Ci, C

′
i, i, U

i
uTMC).

qProofUpdatepk(C, τj ,m
′, i, U) The client who holds a proof τj = (Λj , Cj , πj)

that is valid w.r.t. to C for some message at position j, can use the update
information U to compute the updated commitment C ′ and produce a new
proof τ ′j which will be valid w.r.t. the new C ′. We distinguish two cases:

1. i 6= j. Compute (C ′, Λ′j) ← VC.ProofUpdatepp(C,Λj , C
′
i, i, U

′) and out-
put the updated commitment C ′ and the updated proof τj = (Λ′j , Cj , πj).

2. i = j. Let (C ′i, π
′
i)←ProofUpdatepkuTMC

(Ci,m
′, πi, U

i
uTMC). Compute the

updated commitment as (C ′, Λ′i) ← VC.ProofUpdatepp(C,Λi, C
′
i, i, U

′)
and the updated proof is τ ′i = (Λ′i, C

′
i, π
′
i).

Theorem 7 If uTMC is an updatable trapdoor mercurial commitment and VC
is an updatable vector commitment, then the scheme given above is an updatable
concise trapdoor q-mercurial commitment.

The proof is very similar to that of Theorem 6 and is omitted here.
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