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To control West Nile virus (WNV), it is necessary to know which mosquitoes
are able to transmit this virus. Therefore, we evaluated the WNV vector
potential of several North American mosquito species. Culex restuans and
Cx. salinarius, two species from which WNV was isolated in New York in
2000, were efficient laboratory vectors. Cx. quinquefasciatus  and Cx. nigri-
palpus from Florida were competent but only moderately efficient vectors.
Coquillettidia perturbans was an inefficient laboratory vector. As WNV
extends its range, exposure of additional mosquito species may alter its epi-
demiology.

In 1999, West Nile virus (WNV) was recognized for the
first time in the Western Hemisphere, causing human,
equine, and avian deaths (1-4). Entomologic investigations of
this outbreak resulted in the isolation of WNV from two mos-
quito species, Aedes vexans and Culex pipiens (2). The distri-
bution of WNV in the United States expanded in 2000 from
four northeastern states (Connecticut, Maryland, New Jer-
sey, and New York) to eight additional eastern states (Dela-
ware, Massachusetts, New Hampshire, North Carolina,
Pennsylvania, Rhode Island, Vermont, and Virginia) and the
District of Columbia (4). 

During 2000, evidence of WNV infection was reported in
nine additional mosquito species (4). These isolation studies
provide preliminary evidence of involvement of several mos-
quito species in the transmission cycle. However, it is neces-
sary to determine if any of these species are able to transmit
WNV by bite before they can be implicated as vectors. In
addition, the population density, host preference, feeding
behavior, longevity, and seasonal activity of each mosquito
species must be considered in determining its relative impor-
tance.

In Africa, southern Europe, and western Asia, WNV has
been enzootic for many years, with isolations from >40 mos-
quito species, most in the genus Culex (5,6). Laboratory stud-
ies indicate that many Culex and Aedes species in the
traditional enzootic range of WNV are competent laboratory
vectors (5,6). However, because the introduction of WNV to
the United States was recent, little is known about the
potential for North American mosquito species to act as vec-
tors of this virus. 

Preliminary studies with North American mosquitoes
indicate that New York strains of Cx. pipiens and Ae. vexans

are competent but only moderately efficient laboratory vec-
tors (7). The vector competence of Ae. aegypti, Ae. albopictus,
Ochlerotatus atropalpus, Oc. j. japonicus, Oc. sollicitans, and
Oc. taeniorhynchus for WNV has since been evaluated (8,9).
WNV was isolated from Cx. restuans and Cx. salinarius
caught during the 2000 outbreak in New York (4); however,
the ability of these species to transmit WNV by bite is
unknown. Other viruses circulating in the eastern United
States have a similar epidemiology (e.g., St. Louis encephali-
tis [SLE] and eastern equine encephalomyelitis [EEE]
viruses): they are maintained in an enzootic cycle involving
birds as amplifying hosts and ornithophilic mosquitoes as
enzootic vectors. Based on their association with these other
arboviruses, several mosquito species should be considered
potential vectors of WNV, although it has not yet spread to
areas where these mosquitoes are found. 

To assist public health personnel in assessing the risk
that a potential mosquito vector represents for transmission
of WNV, we conducted laboratory studies to evaluate the
vector competence of Cx. nigripalpus, Cx. quinquefasciatus,
Cx. restuans, Cx. salinarius, and Coquillettidia perturbans.

Materials and Methods

Mosquitoes
We tested five mosquito species for susceptibility to

WNV (Table 1). Cx. nigripalpus was tested because it is the
primary vector of SLE virus in Florida (10,11). Cq. pertur-
bans is a potential epizootic vector of EEE virus in the east-
ern United States (12). Cx. salinarius has been found
naturally infected with WNV (4) and has been implicated as
a potential epizootic vector of EEE virus (12). Cx. quinque-
fasciatus has been implicated as a potential enzootic and epi-
zootic vector of SLE virus (13). Cx. restuans has been found
naturally infected with WNV (4) and may play a secondary
role in the transmission and maintenance of SLE virus (14).
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Virus and Virus Assay
The WNV strain (Crow 397-99) used was isolated from a

dead crow found in the Bronx, New York, during an epizootic
in 1999 (7); it had been passaged once in Vero cell culture.
Stocks of virus at a concentration of 104.2 PFU/mL were pre-
pared in a standard diluent (10% heat-inactivated fetal
bovine serum in Medium 199 with Earle's salts [GIBCO-
BRL, Gaithersburg, MD] NaHCO3, and antibiotics). Viral
stocks, triturated mosquito suspensions, and chicken blood
samples were tested for infectious virus by plaque assay on
Vero cells as described (15), except that the second overlay,
containing neutral red stain, was added 2 days after the first
overlay.

Vector Competence Studies
Mosquitoes were allowed to feed on 2- to 3-day-old leg-

horn chickens (Gallus gallus) that had been inoculated with
approximately 103 PFU of WNV 1 to 2 days earlier. Immedi-
ately after the mosquitoes fed, blood was drawn from the jug-
ular vein of each chicken (0.1 mL of blood into 0.9 mL of
heparinized diluent), and the blood suspensions were frozen
at –70°C until assayed for virus to determine viremias at the
time of mosquito feeding. After feeding on viremic chickens,
engorged mosquitoes were transferred to 3.8-L screen-topped
cardboard cages and held at 26°C with a 16:8(L:D)-hour pho-
toperiod. After an incubation period of 12 to 14 days, the
mosquitoes were allowed to feed again on 1- to 2-day-old
chickens, either individually or in small groups, to determine
if they could transmit virus by bite. Immediately after the
transmission attempt, the mosquitoes were killed by freez-
ing, their feeding status was determined, and their legs and
bodies were triturated separately in 1 mL of diluent. 

Infection was determined by recovery of virus from the
mosquito tissue suspension. If virus was recovered from its
body but not its legs, the mosquito was considered to have a
nondisseminated infection limited to its midgut. If virus was
recovered from both the body and leg suspensions, the mos-
quito was considered to have a disseminated infection (16).
We defined the infection and dissemination rates as the per-
centages of mosquitoes tested that contained virus in their

body or legs, respectively. Chickens used in the transmission
attempts were bled from the jugular vein 2 days after mos-
quito feeding, and the blood was handled as described above.
Recovery of virus from this blood indicated transmission (9).

To examine viral transmission more efficiently, some of
the unfed mosquitoes were inoculated intrathoracically (17)
with 0.3 µL of a viral suspension containing 104.2 PFU of
WNV/mL (100.7 PFU/mosquito), held 7 to 14 days, and
allowed to feed on 1- to 2-day-old chickens. Mosquitoes and
blood specimens from these chicks were processed as
described for the orally exposed mosquitoes. 

To estimate transmission rates by species, we deter-
mined the percentage of mosquitoes with disseminated infec-
tion (after either oral exposure or by intrathoracic
inoculation) that transmitted virus by bite. We then multi-
plied that percentage times the percentage of mosquitoes
that developed a disseminated infection after feeding on a
host with a particular viremia. The result is the estimated
transmission rate for those mosquitoes.

Statistical Analysis
Confidence intervals (95%) for infection and dissemina-

tion rates were calculated by SAS 8.0 (18). We used Fisher
exact test to compare transmission rates among dissemi-
nated mosquitoes in each species. Significance was tested at
a level of alpha = 0.05.

Results
All mosquito species examined in this study were sus-

ceptible to infection with WNV and developed disseminated
infections (Table 2). Infection rates were >84% in all the
Culex species when the viral titer in the donor chicken was
>106.3 PFU/mL of blood. In contrast, the infection rate was
18% in Cq. perturbans fed on a chicken with a similar level of
viremia. For most mosquito species tested, dissemination
rates were approximately one fourth the infection rates. 

None of the Culex species tested differed significantly in
the percentages of mosquitoes with disseminated infection
that transmitted virus (Table 3). However, the percentage of
Cq. perturbans with disseminated infection that transmitted
WNV was significantly lower than that for Cx. nigripalpus
and Cx. quinquefasciatus (Fisher exact test, p <0.01). 

We used the percentage of mosquitoes with dissemi-
nated infection that transmitted virus from Table 3 and the
dissemination rates at 14 days after the infectious blood
meal from Table 2 to estimate the transmission rate for each
species. Under laboratory conditions and at the highest viral
dose tested, the Culex species tested were moderately effi-
cient vectors (estimated transmission rates 10% to 55%). In
contrast, Cq. perturbans was an inefficient vector (estimated
transmission rate <2%) (Table 2). 

Conclusions
Previous laboratory studies indicate that a number of

North American mosquito species could serve as vectors of
WNV (7-9). Our study indicated that several additional
Culex species and Cq. perturbans are potential vectors of
WNV. The viremias used in our study, 105.5-7.5 PFU/mL of
blood, are consistent with levels considered to be low to mod-
erate viremias for hooded crows and house sparrows in
Egypt (19) and experimentally infected North American
house sparrows and other passerine birds (N. Komar, pers.

Table 1. Mosquito species tested for susceptibility to infection with
West Nile virus

Species Strain
Source 

(year collected) Generation

Culex 
nigripalpus

Indian 
River

Indian River, 
FL (2000)

F 0-1

Cx. 
quinquefasciatus

Sebring Sebring 
County, FL 

(1988)

>F30

Cx. 
quinquefasciatus

Vero Beach Vero Beach, FL 
(1999)

F10-12

Cx. restuans Maryland Frederick & 
Prince George’s 
Counties, MD 
(2000,2001)

F0

Cx. salinarius Chambers Chambers Co., 
TX (1992)

>F30

Cq. perturbans Laurel Laurel, MD 
(2000)

F0
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comm.). Thus, our results should reflect what would happen
when mosquitoes feed on birds circulating a similar concen-
tration of virus in nature.

The Culex species tested in this study were moderately
efficient vectors, with estimated transmission rates from
10% to 55% after exposure to viremias >106.3. For compari-
son, the estimated transmission rate for Cx. pipiens held
under conditions similar to those of our study is 20% (9).
Although the Culex species tested were readily susceptible to
oral infection, most infections were limited to the midgut
and did not disseminate to the hemocoel. This finding is sim-
ilar to results reported for Cx. pipiens, in which 81% became
infected but only 23% developed disseminated infection (9).
Compared with the moderately efficient Culex mosquito vec-
tors of WNV, selected container-breeding Aedes and Ochlero-
tatus species are highly efficient vectors, and selected
floodwater Aedes and Ochlerotatus mosquitoes are inefficient
laboratory vectors (7-9). The Cq. perturbans in our study fell
into the inefficient vector category.

Cx. nigripalpus has not been found naturally infected
with WNV. However, the distribution of WNV in the United
States is just beginning to reach the southern half of North
Carolina, the northernmost limit of these mosquitoes’ geo-
graphic distribution. Cx. nigripalpus is likely to become
involved in WNV transmission because it is a primary vector
of SLE in Florida (10,11) and is a competent laboratory vec-
tor of WNV. Furthermore, Cx. nigripalpus is an opportunis-
tic feeder (20,21) and shifts host selection based on the
season, feeding on avian hosts in the winter and spring and
on mammalian hosts in the summer and fall (22). These fac-
tors, coupled with the vector competence data, suggest that
Cx. nigripalpus could serve as an epizootic as well as an
enzootic vector for WNV.

Our study showed that Cx. quinquefasciatus  can trans-
mit WNV by bite. WNV has not been isolated from wild-
caught Cx. quinquefasciatus. However, the current distribu-
tion of WNV is just beginning to overlap the geographic
range of this species (generally the southern United States).

Cx. quinquefasciatus has been implicated (through virus iso-
lation and abundance during outbreaks) in the rural trans-
mission of SLE virus in the western United States (23) and
in urban transmission of SLE virus in the southern United
States (24). In contrast to Cx. pipiens, which primarily feeds
on birds, Cx. quinquefasciatus shows a preference for avian
blood but will feed readily on mammals, including humans
(25). The data from this study, the bionomics of Cx. quinque-
fasciatus, and the mosquitoes’ association with an arbovirus
with similar epidemiology to WNV, suggest that Cx. quin-
quefasciatus may play a role in WNV transmission if—or
more likely when—the distribution of the mosquito and the
virus overlap to a sufficient degree.

Cx. restuans, which has been found naturally infected
with WNV (4), transmitted WNV by bite in our study. Simi-
larly, this species has been implicated as a vector of SLE

Table 2. Infection, dissemination and estimated transmission rates for mosquitoes orally exposed to West Nile virus

Species Strain
Viral 
dosea

No. 
tested Infection rateb Dissemination ratec

Estimated 
transmission rated

Culex nigripalpus Indian River 4.6 7 29 ([4-71], 2) 0 ([0-41], 0) 0

Indian River 5.7±0.5 132 78 ([70-85], 103) 8 ([4-14], 11) 7

Indian River 6.8±0.4 127 84 ([77-90], 107) 12 ([7-19], 15) 10

Cx. quinquefasciatus Sebring 5.5 16 50 ([25-75], 8) 6 ([0-30], 1) 6

Sebring 7.0±0.5 78 91 ([82-96], 71) 22 ([13-33], 17) 20

Vero Beach 5.0 13 46 ([19-75], 6) 0 ([0-25], 0) 0

Vero Beach 6.3 17 94 ([71-100], 16) 12 ([1-36], 2) <13

Cx. restuans Maryland 6.6±0.3 11 100 ([72-100], 11) 55 ([23-83], 6) 55

Cx. salinarius Chambers 6.6±0.3 20 95 ([75-100], 19) 60 ([36-81], 12) 34

Coquillettidia perturbans Laurel 6.6±0.3 11 18 ([2-52], 2) 9 ([0-41], 1) 2

aLog10 PFU/mL of blood.
bPercentage of mosquitoes containing virus in their bodies ([95% confidence interval (CI)], number infected). 
cPercentage of mosquitoes containing virus in their legs ([95% CI], number disseminated).
dThe estimated transmission rate = the percentage of mosquitoes that developed disseminated infection 12-14 days after ingesting WNV multiplied by the
percentage of mosquitoes with disseminated infection that transmitted virus by bite (Table 3).

Table 3. Percent of mosquitoes with disseminated infection (after
either oral exposure to or intrathoracic inoculation with West Nile
virus ) that transmitted virus by bite

Species (strain) No. tested
Percent 

transmission a

Culex nigripalpus  
(Indian River)

15 87 ([60-98],13)a

Cx. quinquefasciatus 
(Sebring)

18 94 ([73-100],17)a

Cx. quinquefasciatus  
(Vero Beach)

Not 
determined

Cx. restuans (Maryland) 2 100 ([16-100],2) a,b

Cx. salinarius  
(Chambers)

16 56 ([30-80],9)a,b

Coquillettidia 
perturbans (Laurel)

17 24 ([7-50],4)b

aPercentage of mosquitoes with disseminated infection that transmitted
virus by bite (95% confidence interval), number transmitting). Percent
transmissions followed by the same letter are not significantly different at
alpha = 0.05 by Fisher exact test.
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virus by virus isolations from field-collected specimens
(26,27), and its role is supported by laboratory transmission
studies (13). Cx. restuans breeds in ground pools or container
habitats, is widespread in its distribution in the United
States, and adults are active early (by mid-May) in the east-
ern United States (28). This early season abundance, along
with coinciding isolations of SLE virus from this species in
early summer, implies that it may be involved in the over-
wintering or amplification of SLE virus (26). The isolation of
WNV from Cx. restuans in July in Connecticut (29), rela-
tively early in the WNV transmission season, raises concern
that the role of Cx. restuans in WNV transmission may be
similar to the one suggested for SLE virus. Cx. restuans
feeds primarily on avian hosts (30), but whether it feeds on
humans remains unclear (31). Given the lack of firm data on
host preference, the role of this species as an enzootic or epi-
zootic vector of WNV is still uncertain.

Our study indicated that Cx. salinarius transmits WNV
efficiently by bite. During 2000, evidence of WNV infection
was reported in 35 pools of this species, second in number
only to the number of positive pools (126) of Cx. pipiens (4).
To date, no summary of the data (e.g., minimum infection
rates) from the 2000 season has been published, so the rela-
tive importance of these isolates cannot be compared. In gen-
eral, Cx. salinarius appears to be mammalophagic in studies
of blood meals, but its host feeding pattern is thought to be
opportunistic, depending on host availability, innate host
preference, or combination of these factors (20,25,32,33).
Given the number of WNV-positive pools, its vector compe-
tence for WNV, and its feeding behavior, Cx. salinarius may
be an ideal bridge vector between the enzootic avian cycle of
WN and mammalian hosts. 

Cq. perturbans  was the least efficient WNV vector of
those we tested. Contributing heavily to this finding was
the presence of a salivary gland barrier. Less than one
fourth of Cq. perturbans with disseminated infection trans-
mitted WNV by bite (Table 3). Furthermore, this is the only
North American species tested so far that exhibits a sub-
stantial salivary gland barrier. Cq. perturbans is generally
regarded as mammalophagic (30,34); however, there are
reports of its feeding on wading birds and passerines (34-
36) and of numerous EEE virus isolates from field-collected
specimens (37-40). Despite the low transmission rate, the
role of Cq. perturbans as a potential epizootic vector of
WNV should not be totally discounted.

Our study extended the list of potential North American
mosquito vectors of WNV. None of the North American spe-
cies tested in this study or others (7-9) was refractory to
WNV. However, there is a wide range in vector competence in
these species, ranging from nearly incompetent (e.g., Cq. per-
turbans) to highly efficient (e.g., Oc. j. japonicus). These data
are similar to those for Old World mosquito vectors of WNV,
in which all Aedes and Culex species tested were competent
vectors (5,6). Vector competence studies indicate that North
American mosquitoes fall into three general categories
depending on genera and, in some instances, breeding habi-
tat: highly efficient, container-breeding Aedes and Ochlerota-
tus species; moderately efficient, Culex species; and
inefficient, floodwater-breeding Aedes and Ochlerotatus and
Cq. perturbans.

As WNV extends its range southward and westward,
additional mosquito species (e.g., Cx. nigripalpus, Cx. quin-

quefasciatus, Cx. tarsalis , and Ae. albopictus) will have
greater exposure to this virus. Involvement of some of the
species, particularly container-breeding Aedes and Ochlero-
tatus, may alter the epidemiology of WNV and present addi-
tional control problems for mosquito abatement personnel.
In addition, mosquitoes are more efficient vectors at warmer
temperatures (41,42; Dohm, unpub. data), a factor that will
further change the epidemiology of WNV as its range
extends southward.
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