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Abstract—The Modular Multilevel Matrix Converter
(M3

C) is an ac-to-ac converter topology suitable for the
control of high-power variable-speed drives. The control
of this converter is complex, particularly when the two ac
system frequencies are similar or identical because large
voltage oscillations can be produced in the floating capac-
itors within the M

3
C. This paper proposes a new Vector

Control System based on nested controllers to regulate the
M

3
C over the full-range of frequencies. The proposed con-

trol scheme is especially useful to mitigate or eliminate the
oscillations that arise when the frequencies are similar. An
extensive discussion of the model and control of the M

3
C

is presented in this work. The effectiveness of the proposed
Vector Control System is demonstrated through simulation
studies and experimental validation tests conducted with a
27-cell-5kW M

3
C prototype.

Index Terms—ac-to-ac power conversion, Equal Fre-
quencies Operation, Modular Multilevel Matrix Converter

I. INTRODUCTION

MODULAR Multilevel Cascade Converters (MMCC) are

a family of power converters proposed initially for

High Voltage DC transmission [1]. MMCC have several

advantages over traditional topologies such as full modularity,

simple extension to high voltage levels, redundancy, control

flexibility and power quality [2]. More recently, recognising

these advantages, MMCCs have been proposed for use in

motor-drives for SAG mills, conveyors, mine hoists and wind

turbine applications [2]–[5].
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Fig. 1. Modular Multilevel Matrix Converter Topology.

The MMCC family is characterised by a cascaded connec-

tion of cells forming a cluster or arm (see Fig. 1) and the

converter voltage rating can be increased by using a higher

number of cells per cluster. The capacitor voltage of each cell

is floating and can be charged/discharged during the operation

of the converter. Therefore, one of the most important control

tasks is to maintain each capacitor voltage within an acceptable

range, mainly for variable speed operation [3]. Of this family,

the most investigated topologies for ac-to-ac applications are

the Modular Multilevel Converter (M2C) and the Modular

Multilevel Matrix Converter (M3C), being the M3C recom-

mended for low-speed high-power applications [2].

The M3C has 9 clusters based on series connected full-

bridge cells allowing direct connection of two ac ports as

shown Fig. 1. This converter is suitable for low-speed high-

power applications because lower circulating currents are re-

quired to mitigate the capacitor voltage oscillations compared

to those required in the M2C [6], [7]. However, the M3C

has an inherent problem operating when the input/output fre-

quencies are similar/identical because large capacitor voltage

oscillations can be produced [7].

Recently, nested control systems based on decoupled mod-

elling of the M3C have been proposed [4], [5]. It is claimed

that these approaches decouple the converter voltages and

currents simplifying the control of circulating currents and

common-mode voltage in the M3C. For the sake of simplicity,

in this work the operating range of the M3C will be divided



into two modes: the Different Frequencies Mode (DFM) and

the Equal Frequencies Mode (EFM). When the input-port

frequency is different to the output-port frequency (i.e. lower

or higher by a given threshold), the system is considered to op-

erate in DFM. In this zone, the capacitor voltage mean values

are controlled using either circulating currents or by injecting

a common-mode voltage. Some publications have reported

experimental validation of DFM control systems of the M3C

for drive applications [4], [5] and Wind Energy Conversion

Systems [8]–[10] and ac-ac conversion [11]–[13]. On the other

hand, when the absolute value of the input-port frequency is

very close or equal to the output-port frequency, the system

is considered to operate in EFM, where mitigation signals or

operation point restrictions are utilised in the control systems

to eliminate the oscillations in the floating capacitor voltages

[14]–[18]. The average value of the capacitor voltages are

regulated as in DFM, and the oscillations can be attenuated by

introducing some operational restrictions such as, for instance,

imposing complementary input/output power factors and equal

input/output voltage amplitudes in the converter [14], [16].

Alternatively, common-mode voltages and circulating currents

can be calculated offline and stored in a look-up table as part

of an open-loop mitigation scheme [15], [17], [18]. However,

the use of mitigation signals imposed in an open-loop manner

during EFM cannot compensate for non-linearities, changes in

the operating point and uncertainties in the converter model.

Therefore methods based on using look-up tables cannot

ensure good performance for all operating conditions. In [19],

closed-loop control of the mitigation signals is proposed.

However, in this preliminary work, only simulations results

are presented for the case where the input-output frequencies

of the converter are equal. Moreover, the performance of

the proposed control methodology is not compared with that

produced with the existing control systems. The contributions

of this paper can be summarised as follows:

• To the best our knowledge, this is the first paper where

vector control systems for the M3C are developed and

experimentally validated for the whole operating range.

The performance of the proposed control system is com-

pared with that obtained using some of the previously

reported control methodologies. The voltage oscillations

are directly controlled using the proposed control sys-

tem without using off-line-calculated mitigations signals

stored in look-up tables.

• The proposed control systems can be applied over the

whole frequency range, including DFM and EFM oper-

ation. The floating capacitor energies of the M3C are

regulated using nested controllers, where the outer loops

regulate the capacitor voltages by setting the circulating

current references.

• For EFM, the mitigation signals are regulated using

closed-loop controllers that successfully drive the low-

frequency oscillations, which can otherwise lead to large

voltage oscillations, to zero. Therefore, the control system

has all the advantages of standard vector control systems

which are well discussed in the literature for field ori-

entated control [20] and power converters [3]. This is

Fig. 2. CCV oscillations.

different to the control systems previously published for

M3C applications (see [15], [17], [18]) where Propor-

tional and PI controllers implemented in the stationary

αβ frame are utilised, which cannot regulate sinusoidal

signals with zero steady-state error.

• The effectiveness of the proposed control system is

validated through simulations and experiments conducted

with a 27-cell-5kVA prototype.

II. MODULAR MULTILEVEL MATRIX CONVERTER

The M3C can be represented by a model expressed in

double αβ0 frame, obtaining a Voltage-Current model and a

Power-Capacitor Voltage model. The double αβ0 transform

has been discussed in [4], [5], [10] and it is obtained by using

[Xαβ0]=[C][Xabc][C]t, where [C] represents the Clarke trans-

form and the subscript abc represents natural coordinates. The

main advantage of the double αβ0 transform is in decoupling

the converter voltages and currents, which simplifies the design

and implementation of control systems [4], [5].

A. Voltage-Current Model of the M3C

The Voltage-Current model of the M3C in the double αβ0
frame is given in (1) [4], [5]:
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Note that the currents iα0 and iβ0 are only dependent on the

input-port currents, whereas i0α and i0β are only dependent

on the output-port currents. Furthermore, iαα, iβα, iβα and

iββ are circulating currents which have no effect on either the

input/output ports.

B. Power-Capacitor Voltage Model of the M3C

Assuming that all the capacitor voltages are well regulated

with a value close to the demanded voltage v∗c , then the total

capacitor voltage available in a cluster, referred to as the

Cluster Capacitor Voltage (CCV), can be related to the cluster

power as given in (2).

As mentioned before, the floating capacitors can charge or

discharge during the operation of the converter, and at some

input/output frequency operating points the control systems

required to regulate these variations can be relatively complex.

For instance using a simulation, the nine CCVs are plotted (in

per-unit form) as a function of the input-output port difference

frequency in Fig. 2. The parameters of the experimental setup



presented in Section VI are used. In this case, the input-port

frequency (fm) is varied from −75Hz to 75Hz while the

output-port frequency (fg) is fixed at 50Hz. The CCVs can

have very large voltage oscillations when fm is close or equal

to ±fg . In the other cases, when the absolute frequencies are

disimilar, the CCV oscillations are not very large. However,

due to the integrating effect of the capacitors, regulation

is required over the whole speed operating range when it

is considered that even small power variations can produce

significant voltage imbalances.

The M3C Power-CCV model of the M3C in double αβ0
frame is [4], [5]:
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Where the voltage terms of the left-side of (2) have the

following physical meanings:

• The terms vcαα
, vcβα

, vcαβ
, vcββ

, vc0α , vc0β , vcα0
and

vcβ0
represent CCV imbalances. The mean value of

those terms tends to zero when the converter is properly

regulated.

• The term vc00 is related to the total active power flowing

into/from the M3C and can be regulated to set the

average total value of the CCVs.

The power components on the right-hand side of (2) can

be expressed as a function of the transformed currents and

voltages as proposed in [5]. For instance, the cluster power

term Pαα can be expressed as:

Pαα =

1st component
︷ ︸︸ ︷
(vmαigα−vgαimα)

3 +

2nd component
︷ ︸︸ ︷
(vmαiαα−vmβiβα)

√
6

−

3rd component
︷ ︸︸ ︷
(vgαiαα−vgβiαα)

√
6

−
4th component
︷ ︸︸ ︷

vniαα

(3)

The complete expression of the remaining seven power com-

ponents (i.e. Pαβ , Pβα, Pββ , Pα0, Pβ0, P0α, P0β) can be found

in [5]. Assuming that neither circulating currents nor common-

mode voltage are applied, it can be concluded that the oscil-

lations in the capacitors are produced by the first component

of (3). For example, using (2)-(3), the oscillating component

of vcαα
can be approximated as:

ṽcαα
≈VmIg sin(φg+(ωg−ωm)t)+VgIm sin(φm−(ωg−ωm)t)

6Cv∗

c (ωg−ωm)

+
VmIg sin(φg+(ωg+ωm)t)−VgIm sin(φm+(ωg+ωm)t)

6Cv∗

c (ωg+ωm) +ṽhfcαα

(4)

where ωm=2πfm and ωg=2πfg . Note that Vm and Vg are the

input-port and the output-port phase-to-neutral peak voltage

magnitudes, respectively. Im and Ig are the input-port and the

output-port peak current magnitudes, respectively. fm and φm

are the input-port frequency and phase angle, whereas fg and

φg are output-port frequency and phase angle. The term ṽhfcαα

also has components of frequencies fg and fm
The term vcαα

can present theoretically unbounded voltage

oscillations when fm=±fg . In this condition, the same prob-

lem appears in vcαβ
, vcβα

and vcββ
. In the general case, the

CCVs depending on Pα0 and Pβ0 can lead to large voltage

fluctuations when fm=0 and the ones depending on P0α and

P0β when fg=0. However, for drives applications the machine

back emf is very small when fm=0 and consequently the

power oscillations at this operating point are relatively simple

to control. Moreover, for the studied system, the grid frequency

is 50Hz and the case of fg=0 is not applicable.

III. VECTOR MODEL OF THE M3C

Based on (4), it is concluded that the CCVs are com-

posed of several terms oscillating with different frequencies.

Consequently, it is not straightforward to regulate them by

using a simple controller. For this reason, an additional linear

transformation, denoted Σ∆ transformation, can be applied

to enable a vector representation of the Power-CCV model,

where the CCVs are represented by expressions with only one

fluctuating frequency. The Σ∆ transformation was proposed in

[18] to obtain a geometrical orientation of the four circulating

currents of the M3C. Additionally, a similar transformation

has been introduced previously in M2C control systems to

consider the interaction of the electrical variables among

the converter upper and lower clusters [21], [22]. The Σ∆
transformation is defined as:
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The Σ∆ transformation is applied to the terms vcαα
, vcαβ

,

vcβα
and vcββ

. Rewriting (2), and considering these new

components yields the Power-CCV model of the M3C in Σ∆
double-αβ0 coordinates:
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The new power-terms on the right-hand side of (6) can also

be expressed as a function of the transformed currents and

voltages of the converter as follows:
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At this point, the following classifications for the compo-

nents of the cluster power terms are defined:

• Non-Controllable (NC) Components. These compo-

nents depend on the machine or grid voltages and currents

and cannot be regulated without affecting either the

input/output ports.

• Semi-Controllable (SC) Components. These compo-

nents arise due to interactions between circulating cur-

rents or common-mode voltage with the input/output

ports currents and voltages.

• Fully-Controllable (FC) Components. These compo-

nents arise due to interactions between common-mode

voltage and circulating currents.

Analysing the power terms, it is possible to identify the

unstable operating points. For instance, inserting (7) into (6)

and solving for vΣ∆
c1α

, the low-frequency component that might

lead to large oscillations can be approximated as follows:

ṽΣ∆
c1α

≈VmIg sin(φg+(ωg−ωm)t)+VgIm sin(φm−(ωg−ωm)t)

6Cv∗c (ωg−ωm)
(15)

From (15), it is concluded that vΣ∆
c1α

has large voltage oscil-

lations when fm≈fg . Extending the previous analysis to the

remaining seven CCV terms (i.e. vΣ∆
c1β

, vΣ∆
c2α

, vΣ∆
c2β

, vcα0
, vcβ0

,

vc0α , vc0β ), the following conclusions are obtained:

• large oscillations are produced in vΣ∆
c1β

when fm≈fg .

• large oscillations are produced in vΣ∆
c2α

and vΣ∆
c2β

when

fm≈−fg .

• large oscillations could be produced in vcα0
, vcβ0

when

fm≈0.

• large oscillations could be produced in vc0α , vc0β when

fg≈0.

As mentioned previously the condition when fm≈0 is not an

important issue in drives applications because at this operating

point the machine back-emf is very low, and this implies a

low value of the power calculated from VmIm [7]. The case

of fg≈0 is not applicable for grid-connected applications.

The use of the Σ∆ transformation enables better repre-

sentation of the CCVs regarding the input and output port

frequencies because a pair of CCV terms is obtained for each

unstable condition. Furthermore, it is possible to represent

the dynamics of the CCV using just four equations. The

Vector Power-CCV model of the M3C in Σ∆ double-αβ0
coordinates is then obtained as:
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where the superscript c represents the complex conjugate

operator and (16)−(19) represent the vector Power-CCV

model of the M3C. Additionally, vector notation is used as

follows:

P
Σ∆
1αβ = PΣ∆

1α +jPΣ∆
1β ;PΣ∆

2αβ = PΣ∆
2α +jPΣ∆

2β

P
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0 = Pα0+jPβ0;P

0
αβ = P0α+jP0β

v
Σ∆
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= vΣ∆
c1α

+jvΣ∆
c1β

;vΣ∆
c2αβ

= vΣ∆
c2α

+jvΣ∆
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vmαβ
= vmα+jvmβ ; imαβ

= imα+jimβ

vgαβ
= vgα+jvgβ ; igαβ

= igα+jigβ

(20)

where vmαβ
and imαβ

represent the input-port voltages and

currents in αβ0 frame. Similarly, vgαβ
and igαβ

represent the

output-port voltages and currents.

The vector v
Σ∆
c1αβ

has a frequency of fm−fg , vΣ∆
c2αβ

has a

frequency of fm+fg , vαβ
c0

has a frequency of 2fm, and v
0
cαβ

has a frequency of 2fg . This four vector equations allow a

simple analysis and implementation of Vector Control struc-

tures to regulate the floating capacitor voltages as discussed

in the next Section. The previous classification (i.e. NC, SC

and FC) is valid for the CCV vectors as well.

IV. VECTOR CONTROL SYSTEMS OF THE M3C

The proposed control system comprises a nested structure

for decoupled regulation of the CCVs and for the input-output

ports variables. Each controller is described in the following

subsections.

A. Vector Control System of the CCVs

A Vector Control System for the regulation of v
Σ∆
c1αβ

,

v
Σ∆
c2αβ

,v αβ
c0

,v 0
cαβ

is proposed. The average value of all the

floating capacitor voltages is regulated using the component

vc00 . For the other voltage components in the Σ∆ double-

αβ0 coordinates, the control strategy applied depends on the

operating mode. In DFM operation, it is assumed that the

capacitor value is sufficient to attenuate the voltage oscillations

produced at (2fg, 2fm, fg ± fm) and only the average values

of the voltages in the Σ∆ double-αβ0 coordinates have to be

regulated to zero using the SC terms of (16)-(19). In EFM,

as well as regulating the average values, the low frequency

oscillations of frequency fg±fm are regulated to zero using

the FC terms of (16)-(19). The frequency fmax
m is defined as

the maximum frequency at which to switch between DFM

and EFM. The selection of fmax
m depends on the parameters

of the converter such as cell capacitance, input/output port

voltages and power factors. An analysis of the influence of

these parameters is given in [23]. For this work, fmax
m ≈0.9fg

is used.



Fig. 3. Proposed Vector Control System for the regulation of the CCVs.

1) Control of the average component of the capacitor

voltages

The term vc00 represents the average voltage taken across

all the floating capacitors of the M3C and it is related to the

active power flowing into the converter P00. Therefore, the

following expression is written:

Cv∗c
dvc00
dt

≈P00=

Input Power=Pin
︷ ︸︸ ︷

(vmαimα+vmβimβ)
3 −

Output Power=Pout
︷ ︸︸ ︷

(vgαigα+vgβigβ)
3

(21)

The term Pout represents the M3C output power, and it is con-

sidered as a disturbance that can be fed-forward. Additionally,

the input-port variables can be referred to a dq frame rotating

at θm and oriented along the voltage vector vm. Therefore,

(21) becomes:

Cv∗c
dvc00
dt

≈ P00 = 1
3vmdimd1 (22)

The total input-port current reference discussed in Section IV.C

[see (41)] is then composed of imd1 plus the corresponding

power producing current related to the power been transferred

between both ports. Then, imd1 is manipulated to regulate the

average value of the CCVs.

2) DFM Control of vΣ∆
c1αβ

and v
Σ∆
c2αβ

As mentioned before, in DFM only the average values

of v
Σ∆
c1αβ

and v
Σ∆
c2αβ

are regulated. By using complex polar

notation, (16) and (17) can be rewritten as:

Cv∗c
dvΣ∆

c1αβ

dt
≈ 1

6 (v
c
mdq

igdq−vgdqi
c
mdq

)ej(θg−θm)

+ 1√
6
(vmdq

i
Σ∆
2dq−vgdq i

Σ∆c
2dq e−j(θg−θm))

(23)

Cv∗c
dvΣ∆

c2αβ

dt
≈ 1

6 (vmdq
igdq−vgdqimdq

)ej(θg+θm)

+ 1√
6
(vc

mdq
i
Σ∆
1dq−v

c
gdq

i
Σ∆c
1dq ej(−θg+θm))

(24)

where each vector in Σ∆ double-αβ0 coordinates has been

defined as x
Σ∆
αβ =x

Σ∆
dq ejθe , and θe is the angle of the vector

x, and the common-mode voltage is zero.

The circulating currents are defined as follows to produce

dc components in (23)-(24):

i
Σ∆∗
1αβ1

= i
Σ∆∗

1dq1 ejθm ; i Σ∆∗
2αβ1

= i
Σ∆∗

2dq1 e−jθm (25)

Where i
Σ∆∗
1αβ1

and i
Σ∆∗
2αβ1

represent components of the total

circulating current references. Inserting (25) into (23)-(24) and

filtering the ac components yields:

Cv∗c
d

dt
v
Σ∆
c1αβ

≈
vmdq

i
Σ∆∗

2dq1√
6

;Cv∗c
d

dt
v
Σ∆
c2αβ

≈
v
c
mdq

i
Σ∆∗

1dq1√
6

(26)

v
Σ∆
c1αβ

and v
Σ∆
c2αβ

are the filtered versions of vΣ∆
c1αβ

and v
Σ∆
c2αβ

.

The active power flows produced by the right-side com-

ponents of (26) are used to regulate the average component

of v
Σ∆
c1αβ

and v
Σ∆
c2αβ

. Notice that in (26) to maximise the

power regulation effect produced by the circulating current,

the currents iΣ∆∗
1αβ1

and i
Σ∆∗
2αβ1

are controlled to have zero phase

shift with respect to the input-port voltages.

Fig.3 shows the proposed balancing control system. The

average components of both vectors are obtained using syn-

chronous reference frame notch filters [3]. Accordingly, vΣ∆
c1αβ

is referred to a dq-frame rotating at θu+=
∫
(ωg−ωm)dt, and

v
Σ∆
c2αβ

is referred to a dq-frame rotating at θu-=
∫
(ωg+ωm)dt.

The oscillatory components are filtered and both components

are rotated back to obtain v
Σ∆
c1αβ

and v
Σ∆
c2αβ

. Then, outer control

loops regulate v
Σ∆
c1αβ

and v
Σ∆
c2αβ

to zero using PI controllers.

The outputs of these controllers are used to calculate the

reference of the dq circulating currents in accordance with

(25). Additionally, the gains to enable the DFM control are

kDFM = 1 and kEFM = 0.

3) DFM Control of vαβ
c0

and v
0
cαβ

Similar assumptions to those used in Sub-Section IV-A2 are

valid for the regulation of (18)-(19). Vectors vαβ
c0

and v
0
cαβ

are

rewritten as follows:

Cv∗c
dvαβ

c0

dt
≈

(vc
mdq

i
c
mdq

)e−j2θm

3
√
2

−
(vgdq

i
Σ∆c
1dq +v

c
gdq

i
Σ∆

2dq)
√
3

(27)

Cv∗c
dv0

cαβ

dt
≈

−(vc
gdq

i
c
gdq

)e−j2θg

3
√
2

+
(vmdq

i
Σ∆

1dq+v
c
mdq

i
Σ∆

2dq)
√
3

(28)

The circulating currents are defined as follows to produce dc

components in (27)-(28):

i
Σ∆∗

1αβ2
= i

Σ∆∗
1dq2 ejθg ; i Σ∆∗

2αβ2
= i

Σ∆∗
2dq2 ejθm (29)

Where i
Σ∆∗
1αβ2

and i
Σ∆∗
2αβ2

represent components of the total

circulating current references.

Substituting (29) in (27)-(28) and filtering the ac compo-

nents yields:



Fig. 4. Proposed DFM Control of v
αβ
c0 and v

0
cαβ

.

Cv∗c
d

dt
v
αβ
c0

≈−
vgdqi

Σ∆c
1dq2√
3

;Cv∗c
d

dt
v
0
cαβ

≈−
v
c
mdq

i
Σ∆
2dq2√
3

(30)

Again it is assumed that the active power flows are produced

in the right-hand side terms of (30) by currents and voltages

which are in phase. The proposed DFM control system is

presented in Fig. 4 (it has the same structure as the control

system depicted in Fig. 3). The average components v
αβ
c0

are

regulated to zero using circulating currents at ωg , whereas

the average components v
0
cαβ

are regulated to zero using

circulating currents at ωm.

B. Open-Loop EFM Control of vΣ∆
c1αβ

and v
Σ∆
c2αβ

In EFM, the CCV oscillations can be partially mitigated

by imposing operational restrictions on the input/output ports

[14], [17]. Moreover there are other methods that use only

circulating currents [15], and a combination of circulating

currents and common-mode voltage to mitigate the voltage

oscillations [17], [18].

In previous works [14], [17] the values of Qm=−Qg and

Vm=Vg are selected for equal frequency operation, in addition

to the regulation of the average component of the CCV vectors.

Note that in these cases, mitigation signals are applied (during

EFM) in an open-loop manner, because large instantaneous

voltage oscillations are not directly controlled to manipulate

the values of Qg and Vm. Therefore, this is an intrinsically

open-loop control method which cannot compensate changes

in the operating points, incorrect estimation of the reactive

power, measurement errors, etc.

C. Closed-loop EFM Control of vΣ∆
c1αβ

and v
Σ∆
c2αβ

The open-loop EFM control is not always practicable and

any drift or difference in Qm=−Qg and/or Vm=Vg could

produce significant low-frequency capacitor voltage oscilla-

tions [17]. Therefore, to ensure good performance of the

M3C under different operational conditions, a new closed-

loop control system is proposed to operate in the EFM without

operational restrictions. Accordingly, the control flexibility is

increased and the M3C can operate in EFM with different

power factors and voltage amplitudes. In this proposal, the

CCV vectors are regulated using closed-loop vector-control

algorithms implemented in synchronously rotating dq frames.

As the proposed control system is implemented in

dq coordinates, (16) is referred to a dq-frame using

θu+=
∫
(ωg−ωm)dt, and (17) is referred to a dq-frame rotating

using θu-=
∫
(ωg+ωm)dt.

Cv∗c (
dvΣ∆

c1dq

dt
+jωurv

Σ∆
c1dq

)≈ 1
6 (v

c
mdq

igdq−vgdqi
c
mdq

)

+ 1√
6
(vmdq

i
Σ∆
2dq

ej3θm−v
c
gdq

i
Σ∆c
2dq

e−j3θg )−vni
Σ∆
1dq

(31)

Cv∗c (
dvΣ∆

c2dq

dt
+jωu-v

Σ∆
c2dq

) ≈ 1
6 (vmdq

igdq−vgdqimdq
)

+ 1√
6
(vc

mdq
i
Σ∆
1dq

e−j3θm−v
c
gdq

i
Σ∆c
1dq

e−j3θg )−vni
Σ∆
2dq

(32)

Again the common-mode voltage and the dq circulating

currents should be in phase to efficiently produce adjustable

power flows. Additionally, iΣ∆
1dq

and i
Σ∆
2dq

have to be defined

as relatively high-frequency signals to avoid undesired low-

frequency power flows that could lead to large voltage os-

cillations. Owing to these considerations, the dq circulating

currents and the common-mode voltage are defined as:

i
Σ∆∗

1dq3 =I
Σ∆∗

1dq3 f(t); i Σ∆∗
2dq3 =I

Σ∆∗
2dq3 f(t); vn=V0g(t) (33)

Where vn is a square (or trapezoidal) waveform of frequency

ωn. The terms i
Σ∆∗
1dq3 and i

Σ∆∗
2dq3 represent components of

the total circulating current references. The functions f(t)
and g(t) are in phase, f(t)=A1 sin θn+A3 sin 3θn (where

θn=ωnt, with ωn set at a relatively high frequency) , and

g(t)=sign{f(t)}. The amplitudes of the constants A1, A3 and

V0 are chosen to reduce the peak of the circulating currents

as proposed in [24]. These definitions imply than the product

f(t)g(t) has a large dc component.

Neglecting the high frequency components in (31)-(32):

Cv∗c
dvΣ∆

c1dq

dt
≈ 1

6
(vc

mdq
igdq − vgdqi

c
mdq

)− V0I
Σ∆
1dq3

(34)

Cv∗c
dvΣ∆

c2dq

dt
≈ 1

6
(vmdq

igdq − vgdqimdq
)− V0I

Σ∆
2dq3

(35)

To improve the dynamic response, the NC terms of

(34)−(35) can be fed-forward to the total circulating current

(see Fig. 5). Therefore:

I
Σ∆
1dq3=I

Σ∆
1dq3c+I

Σ∆
1dq3f

; I
Σ∆
1dq3f

=
(vc

mdq
igdq

−vgdq
i
c
mdq

)

6V0

(36)

I
Σ∆
2dq3=I

Σ∆
2dq3c+I

Σ∆
2dq3f

; I
Σ∆
2dq3f

=
(vmdq

igdq
−vgdq

imdq
)

6V0

(37)

Finally, inserting (36)-(37) into (34)-(35) gives:

Cv∗c
dvΣ∆

c1dq

dt
≈ −V0I

Σ∆∗
1dq3c ;Cv∗c

dvΣ∆

c2dq

dt
≈ −V0I

Σ∆∗
2dq3c

(38)

The control system for EFM operation is presented in Fig. 5.

When fm>fmax
m , the circulating currents of (38) are used to

regulate v
Σ∆
c1αβ

and v
Σ∆
c2αβ

in the dq frames using PI controllers.

The dynamic regulation is improved through feed-forward of

the component IΣ∆
1dq3f

, which represents the oscillations of the

NC component. The output of the external control loop is

multiplied by f(t) and the common-mode voltage is imposed

as in (33). In this case, the weighting factors are selected to

kDFM=0 and kEFM=1.

The control schemes used to regulate the voltage oscillations

during EFM are shown in Fig. 6. The upper graphic shows



Fig. 5. Proposed EFM Control of vΣ∆
c1αβ

and v
Σ∆
c2αβ

.

Fig. 6. (a) Proposed closed-loop EFM control system. (b) Open-Loop
EFM Control Strategies.

the control system proposed in this work where the voltage

oscillations in v
Σ∆
c1αβ

are directly regulated using closed loop

control. The lower graphic in Fig. 6 shows the control scheme

reported in the literature, where mitigation signals are offline

calculated and applied in an open-loop fashion.

D. Circulating Current Control

In Fig. 3 the overall control system is shown. The clus-

ter currents are transformed to Σ∆ double-αβ0 coordinates

to be compared to the total circulating current references

which are obtained considering superposition of the refer-

ences from the CCV vector control systems. For instance,

i
Σ∆∗
1αβ =i

Σ∆∗
1αβ1

+i
Σ∆∗
1αβ2

+i
Σ∆∗
1αβ3

. Because of simplicity, propor-

tional controllers are used to track the circulating current

references. The output of the proportional controllers are

rotated back to Double-αβ0 coordinates resulting in v∗αα,

v∗αβ , v∗βα, and v∗ββ . Thereafter, these voltage references are

referred to the natural (abc − rst) frame to be processed by

the single-cell modulation and control stage (see [10]).

E. Input and Output Control Systems

Using (1), and considering that the voltages connected to

the input-output ports are balanced (i.e. vg0=vm0=0) and that

there is no current circulation path between the neutral points

N and n (i.e. i00 = 0), the Voltage-Current model of (1) can

be re-written as two independent equations to describe the

dynamics of the input and output ports.

The dynamics of the input-port Voltage-Current Model are

represented in dq coordinates rotating at θm:
[

vmd

vmq

]

=
1√
3

[

vd0

vq0

]

+
Lc

3

[
d
dt

−ωm

ωm
d
dt

][

imd

imq

]

(39)

Similarly, the dynamics of the output-port Voltage-Current

Model are represented in dq coordinates rotating at θg:

−
[

vgd

vgq

]

=
1√
3

[

v0d

v0q

]

+
Lc

3

[
d
dt

−ωg

ωg
d
dt

][

igd

igq

]

(40)

Then, the input-port and the output-port can be controlled

using conventional dq control systems. To achieve decoupled

regulation, the voltage commands are:

1√
3

[

v∗d0

v∗q0

]

=

[

vmd

vmq

]

−
[

0 −Lcωm

3
Lcωm

3 0

][

imd

imq

]

−PIm

[

i∗md−imd

i∗mq−imq

]

(41)

−1√
3

[

v∗0d

v∗0q

]

=

[

vgd

vgq

]

−
[

0 −Lcωg

3
Lcωg

3 0

][

igd

igq

]

−PIg

[

i∗gd−igd

i∗gq−igq

]

(42)

where PIm and PIg stand for the transfer functions of the PI

controllers used to regulate the currents at each port. The volt-

age references obtained in (41)-(42) are rotated back to double

αβ0 frame resulting in v∗α0-v∗β0 for the input-port, and v∗0α-v∗0β
for the output-port. These references are sent to the single-cell

control stage, as shown in Fig. 3. Note that i∗md=i∗md1+i∗md2,

where i∗md1 is the current used to regulate the average value

of the CCVs, and i∗md2 is the power producing current. The

output-port current references are calculated to regulate the

power transferred from the input to the output port. Different

calculations of the current references i∗md, i∗mq , i∗gd and i∗q can

be imposed to fulfil the requirements of the application. For

example, the input-port control can be as stated in [10] for

a wind energy conversion system, and as stated in [5] for an

induction machine drive.

F. Single-Cell Control and Modulation Stage

The voltage references obtained in the control systems

above (i.e. v∗αα, v∗βα, v∗αβ , v∗ββ , v∗α0, v∗β0, v∗0α and v∗0β)

are transformed to the natural reference frame using the

inverse Double-αβ0 Transformation. Then, single-cell control

proposed in [25] is used. The capacitor voltage of the ith

[i∈ (1, n)] cell is compared to the algebraic-mean value of

the corresponding CCV. The resulting error is multiplied by

the sign of the cluster current to generate either an in-phase

or a 180 degrees out-of-phase voltage with respect to the

cluster current. Therefore capacitor voltage balancing of that

particular cell is produced by supplying or releasing energy

to/from the capacitor, driving its voltage to v∗c . Finally, phase-

shifted unipolar sinusoidal PWM is used to generate the

switching signals of each cell [25].

V. SIMULATION RESULTS

A 10 MW M3C simulation model has been implemented

in PLECS software to validate the theoretical work. The

parameters considered are shown in Table I. The control

strategies published in [17] were implemented using the power

terms produced by the circulating current and the common-

mode voltage, and the corresponding results are presented



TABLE I
SIMULATION AND EXPERIMENTAL PROTOTYPE PARAMETERS.

in Fig. 7. Subsequently, the control strategy proposed here

was implemented yielding the results presented in Fig. 8 for

comparison. In each case the power is constant and the input-

port frequency fm is increased in steps every 2s from 42 Hz

to 50 Hz, as illustrated in Fig.7(a) and Fig. 8(a). For both

cases, the common-mode voltage has an amplitude of 1.25 kV.

Moreover, for closed-loop EFM control, the common-mode

voltage is defined as in (33), with a 3rd order harmonic method

for the circulating currents [24], where A1=1.473, A3=0.295,

and fn=120 Hz.

Fig. 6 illustrated the main difference between the two

approaches demonstrated in Fig. 7 and Fig. 8. The previous

methods regulate the average value of the CCV and use feed-

forward mitigating signals to reduce the voltage oscillations.

On the other hand, the proposal here directly regulates the

CCV (including the voltage oscillations) in a dq frame.

For each result, the CCVs are successfully regulated to

14 kV, as shown in Fig. 7(b) and Fig. 8(b). The CCV

imbalance terms vc0α , vc0β , vcα0
, vcβ0

are presented in Fig.

7(b) and Fig. 8(b). The terms vcαα
, vcαβ

, vcαβ
, vcββ

are

illustrated in Fig. 7(c). The CCV vectors v
Σ∆
c1αβ

and v
Σ∆
c2αβ

are presented in Fig. 8(c), respectively. In both cases, the

ripple of the imbalance terms is properly bounded and it

is not increased as fm gets closer to fg . However, better

performance is obtained using the method proposed here. In

fact, the eight imbalance terms are bounded inside a ±350 V

band, which represents oscillations of ≈ 4% of the CCV

nominal value. The control systems presented in [15], [17],

[18] use Proportional and PI controllers implemented in αβ

components which cannot regulate sinusoidal signals with

zero steady-state error. In contrast, the proposed closed-loop

EFM control system provides zero steady-state error in the

CCV even when fm=50 Hz.Fig. 7(d) and Fig. 8(d) show the

constant power transfer between the ports.

Finally, the circulating currents using both methods are pre-

sented in Fig. 9. Notice that in Fig 9(b), the circulating currents

have a fundamental frequency of 120Hz (due to the definition

of (33)). Additionally, it is observed that the circulating current

magnitude is lower using the method proposed in this paper,

which will result in less additional power losses.

VI. EXPERIMENTAL RESULTS

Experimental results for the proposed control methodology

have been obtained using a 27-power-cell M3C prototype

shown in Fig. 10. The parameters considered are shown in

Table I. The prototype is composed of a control platform and

a power stage. A Texas Instrument 6713C DSP board, three

FPGA boards and additional external boards for computer

Fig. 7. Simulation Results for EFM Control as proposed in [17]. (a)

input-output ports Frequencies. (b) CCVs. (c) Vectors v
αβ
c0 , v 0

cαβ
. (d)

Components vcαα , vcαβ
, vcαβ

, vcββ
. (e) Power injected into the grid.

Fig. 8. Simulation Results for the proposed Closed-loop EFM Control

System. (a) input-output ports Frequencies. (b) CCVs. (c) Vectors v
αβ
c0 ,

v
0
cαβ

. (d) Vectors v
Σ∆
c1αβ

, vΣ∆
c2αβ

. (e) Power injected into the grid.

communication and analogue-digital conversion form the con-

trol platform. Additionally, the control platform is equipped

with hardware protections to avoid over voltage/currents. The

voltage protections are activated when any of the capacitor

voltages is higher than 170V or when the currents are higher

than 20A. The power stage of the prototype is composed of
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Fig. 9. Simulation Results. (a) Circulating currents using the method
proposed in this paper. (b) Circulating currents using [17].

Fig. 10. Downscaled Laboratoy Prototype.

nine clusters, each one based on the series connection of three

full-bridge cells and one 2.5mH inductor. Each cell uses a

floating capacitor of 4.7 mF. The output-port is connected to

an Ametek Programmable power source, Model CSW5550,

whereas the output-port is connected to another Ametek Pro-

grammable Power Source, Model MX45.

A. Case I: DFM control

In this case, the DFM control systems for v
Σ∆
c1αβ

, v
Σ∆
c2αβ

,

v
αβ
c0

and v
0

cαβ
are tested. The M3C operates with unity power

factor injecting 4 kW to the input-port. The input/output port

voltages are regulated to 200 V (peak value phase-to-neutral).

Experimental results for variable frequency are presented in

Fig. 11. As shown in Fig. 11(a), a ramp of frequency between

16 Hz (the lower limit of the Ametek Power Sources) and

40 Hz is applied. The 27 capacitor voltages are well regulated

to v∗c=150 V, as depicted in Fig. 11(b). The CCV vectors

v
Σ∆
c1αβ

-vΣ∆
c2αβ

and v
αβ

c0
-v 0

cαβ
are illustrated in Fig. 11(c) and

Fig. 11(d), respectively. The average components of the CCV

vectors are ≈0 regardless of fm, and the oscillatory compo-

nents in these vectors are bounded inside a ±7 V band.

Scope waveforms of the voltages and currents of the M3C

are presented in Fig. 11 for fm=25 Hz. Fig. 11(e) from top to

bottom shows: One of the M3C capacitor voltages vcar1
; the

cluster voltage var; and the Output-Input ports voltages vmab

(purple line) and vgrt (blue line). As shown in Fig. 11(f), the

output-port currents are controlled to a peak value of ≈ 14 A.

Moreover, the port currents are not affected by the circulating

currents produced by the DFM control system.

B. Case II: Open-Loop EFM Control

The M3C is tested for operation at similar input/output

port frequencies. The input-port frequency has been set to 48

Hz, whereas the output-port frequency is 50 Hz. As described

in Section IV-B, Qm=−Qg and Vm=Vg . The remaining

operational set-points are the same as in Case I.

Fig. 12(a) shows that the 27 capacitor voltages are con-

trolled to v∗c=150 V. The operational restrictions over the re-
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Fig. 11. Experimental Results for Case I. (a) input-output ports

frequencies. (b) 27 Floating Capacitor Voltages. (c) Vectors v
αβ
c0 , v 0

cαβ
.

(d) Vectors v
Σ∆
c1αβ

, vΣ∆
c2αβ

. (e) Voltages. (f) Input-port currents.

active power and voltage amplitudes, Qm=−Qg and Vm=Vg ,

mitigate part of the oscillations. Nevertheless, as aforemen-

tioned, the values of Qg and Vm are manipulated using an

open-loop control scheme, where it is difficult to drive the

low-frequency oscillating power terms to zero and voltage

oscillations still appear on the floating capacitors. Additionally,

because of the integral effect of the capacitors, even small low-

frequency power terms can lead to significant voltage imbal-

ances/oscillations [see the denominator in (15)]. As stated in

Section IV-C, the voltage oscillations appear in v
Σ∆
c1αβ

(see Fig.

12(b)). However, the CCV vectors v
Σ∆
c2αβ

-vαβ
c0

-v0
cαβ

are well

regulated as shown in Fig. 12(b)-(c). Scope waveforms are

also presented. From top to bottom, Fig. 12(d) illustrates vcar1

(yellow line), var (green line), vmab
(purple line) and vgrt

(blue line). Fig. 12(e) illustrates the grid currents which have a

peak amplitude of ≈ 14 A. Fig. 13 presents results for negative

sequence operation. The input-port frequency is set to −48 Hz.

In this case, the voltage oscillations appear in v
Σ∆
c2αβ

(see Fig.

13(b)). Whereas, CCV vectors v
Σ∆
c1αβ

, vαβ
c0

, and v
0
cαβ

are well

regulated with magnitudes close to zero as shown in Fig.

13(b)-(c). Note that using this regulating scheme the power

oscillations are not directly regulated, and closed-loop control

is not used to compensate for changes in the operating points,

incorrect estimation of the reactive powers, etc. Therefore, in

the experimental implementation, it was not possible to operate

at equal frequencies even though it is theoretically possible.



Fig. 12. Experimental Results for Case II. (a) 27 Floating Capacitor

Voltages. (b) Vectors v
Σ∆
c1αβ

, vΣ∆
c2αβ

. (c) Vectors v
αβ
c0 , v 0

cαβ
. (e) Voltages.

(f) Input-port currents.

This is further demonstrated by the experimental results shown

in Fig. 13(d), where the performance for a step change from

48 Hz to 50 Hz is depicted. In this case, the control system

is not able to regulate the capacitor voltage oscillations, and

some of the floating capacitor voltages exceed the hardware

protection threshold, producing a system shut-down.

C. Case III: Closed-loop EFM Control

In this case, the Closed-loop EFM Control of the M3C is

enabled. The objective of this test is to validate that the M3C

can operate at EFM without operational restrictions. Therefore,

both port frequencies are set to 50 Hz, and the converter

operates with different power factors. The output-port is set

to operate with Pm= − 3.3 kW and Qm=0 kVAr, and the

input-port is set with Pg=3.3 kW and Qm=2.1 KVAr (to have

nominal current amplitude in the input-port). The common-

mode voltage is defined as in (33), using a 3rd order harmonic

method for the circulating currents [24], where A1=1.473,

A3=0.295, V0 = 30 V and fn=120 Hz. As shown in Fig.

14(a), the 27 floating capacitor voltages are well regulated to

v∗c = 150 V. The vectors v
Σ∆
c1αβ

and v
Σ∆
c2αβ

are illustrated in

Fig. 14(b), and v
αβ

c0
and v

0
cαβ

are illustrated in Fig. 14(c). In

this case, the closed-loop control strategy discussed in Section

IV-C, ensures that the CCV vectors are effectively regulated

to zero. Additionally, the ripple in these vectors is bounded

within ±5 V. Note that in Fig. 15(d), the common-mode

voltage waveform is presented. Oscilloscope waveforms are

also presented. From top to bottom, Fig. 14(e) illustrates the

same variables than those shown in Fig. 11(e), and Fig. 14(f)

illustrates the grid currents.
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Fig. 13. Experimental Results for Case II operating with negative
sequence. (a) 27 Floating Capacitor Voltages. (b) Vectors v

Σ∆
c1αβ

, vΣ∆
c2αβ

.

(c) Vectors v
αβ
c0 , v 0

cαβ
. (d) 27 Floating Capacitor Voltages.

Fig. 14. Experimental Results for Case III. (a) 27 floating Capacitor Volt-

ages. (b) Vectors v
Σ∆
c1αβ

, vΣ∆
c2αβ

. (c) Vectors v
αβ
c0 , v 0

cαβ
. (d) Common-

mode voltage. (e) Voltages. (f) Input-port currents.



VII. CONCLUSIONS

A new vector control system based on the representation of

the M3C converter in Σ∆ double-αβ0 coordinates has been

proposed to enable the operation of the converter over a wide

operating range, including equal input/output port frequencies.

For mitigation purposes, the vector control system is orientated

using synchronous axis systems rotating at fm±fg .

For the implementation of the control algorithms for EMF

operation proposed in this paper, extra voltage/current con-

verter capacity is required for the utilisation of common-mode

voltage and circulating currents during EFM. However, the

open-loop methods proposed in the literature also require aux-

iliary signals, and they are also likely to require extra converter

ratings. As aforementioned, to obtain good performance with

open loop methods during EFM is very difficult and unlikely

to be achieved in a practical implementation.

The proposed control algorithms consider two primary

operational modes, the DFM and the EFM. The control

system for DFM operation regulates the average components

of the CCVs using circulating currents. The control system

for EFM operation considers the use of circulating currents

and common-mode voltage when the difference between the

input/output port frequencies is small. It has been shown that

the EFM control system performs closed-loop regulation of

the CCV vectors driving the low-frequency capacitor voltage

oscillations effectively to zero.

Finally, it is highlighted that the vector control system

discussed in this work, has been theoretically analysed and

experimentally validated using a 27-cell-5kW M3C prototype.

In the experimental test conditions, decoupled regulation of the

input/output ports, balancing of the floating capacitor voltages

and mitigation of the oscillations in the floating capacitor

voltages have been demonstrated with good performance.
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