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Vector Directional Filter-A New Class 
of Multichannel Image Processing Filters 

P. E. Trahanias and A. N. Venetsanopoulos 

Absmcf-  Vector directional filters (VDF) for multichannel image 
processing are introduced and studied in this paper. These filters separate 
the processing of vector-valued signals into directional processing and 
magnitude processing. This provides a link between single-channel image 
processing, where only magnitude processing is essentially performed, 
and multichannel image processing where both the direction and the 
magnitude of the image vectors play an important role in the resulting 
(processed) image. 

VDF find applications in satellite image data processing, color image 
processing, and multispectral biomedical image processing. In this paper, 
results are presented for the case of color images, as an important example 
of multichannel image processing. It is shown that VDF can achieve very 
good filtering results for various noise source models. 

I. INTRODUCTION 

Although conventional approaches to multichannel image process- 
ing are based on processing the image channels separately, they fail to 
utilize the inherent correlation that is usually present in multichannel 
images. Consequently, vector processing of multichannel images is 
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Fig. 1. A set of 2-dim vectors. The output of BVDF is always the middle 
vector (f2); this is not necessarily the case for the VMF output (f4). 

desirable [ 11. Recently, this has been adopted by many researchers 
[2]-[4]. An important case of vector image processing operators 
are the vector median filters (VMF) that have been introduced as 
extension of scalar median filters [5]. VMF can be derived 1) 
as maximum likelihood estimates when the underlying probability 
densities are double-exponential or 2) using vector order statistics 
[6]. In the latter case, the vector median of a population is defined 
as the minimal vector according to the aggregate ordering technique 
[6]. Based on vector order statistics, extensions or modifications of 
VMF have also been proposed [2], [7]. 

The operation of the above-mentioned filters can be described 
according to some distance criterion that is applied to the set of 
vectors inside the processing window. However, the features that 
uniquely characterize a vector, namely direction and magnitude, are 
not considered by such an operation and this may produce erroneous 
results in certain cases. Such an example is shown in Fig. 1, where 
VMF is applied to the set of vectors f l  , . . . , f5. The output produced 
is vector f 4 ,  although vector f 2  would be a better candidate to output. 

This paper approaches the aforementioned problem by explicitly 
considering the vector features and separating the processing of 
vector-valued signals into two steps: directional processing and 
magnitude processing. A new class of filters is introduced, called 
vector directional filters (VDF). VDF perform the first step, namely 
directional processing. They operate on the direction of the image 
vectors aiming at eliminating vectors with atypical directions in the 
vector space. This is achieved by employing a novel vector ordering 
technique in which the angle between the image vectors serves as 
the ordering criterion. The term “directional processing” used here 
denotes the processing performed according to the vectors’ direction 
in the vector space. This term has been adopted by other authors to 
denote processing in certain directions in the image plane [8]. Here it 
is used in the context of vector spaces and hence it should not bring 
any confusion. Similarly, the term “magnitude processing” denotes 
the processing of image data where only the vector magnitudes are 
taken into account. 

The application of VDF results in the removal of vectors with 
atypical directions and a set containing vectors with approximately 
the same direction in the vector space is produced as the output set. 
Since the vectors in this set are approximately collinear, a magnitude 
processing operation (second step) can be applied to produce a single 
output vector at each image pixel. This step can be performed by any 
classical gray-level image processing filter.’ 

‘This is obvious since gray-level image processing filters operate on the 
magnitude at each pixel location. 
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( 4  
Fig. 2. (a) 1-D vector valued signal. (b) Application of the BVDF to the 
signal, R = 5.  (c) Application of the GVDF to the signal, n = 5, IC = 3. (d) 
Scalar median in cascade with the GVDF. 

This property of VDF (separation of processing) establishes a link 
between multichannel image processing and single-channel image 
processing. After directional processing a multichannel signal can 
locally be seen as a single-channel signal, since this processing 
results in vectors being approximately collinear. Consequently, the 
bulk of techniques developed for gray-level image processing can 
be employed in the step of magnitude processing. This is a major 
advantage of this approach, since it facilitates the use of many 
efficient image processing operators (order statistics, a-trimmed 
mean, morphological) to multichannel images. 

11. VECTOR DIRECTIONAL FILTERS 

Basic Vector Directional Filter 

Let f(z) : 2' + Z", represent a multichannel signal and let 
W E 2' be a window of finite size n (filter length). 1 represents the 
signal dimensions and m represents the number of signal channels. 
The pixels in W will be denoted as z,, i = 1 , 2 , .  . . ,n and f ( z , )  will 
be denoted as f,. f, are m-dimensional (m-D) vectors in the vector 
space defined by the m signal channels. A window size n is implied 
in all subsequent operations, if not stated otherwise. 

The definition of the basic vector directionalfilter (BVDF) follows. 
This is a special case of VDF. However, it facilitates their introduction 
and mathematical treatment. 

Definition I :  The output of the BVDF, for input { f t ,  i = 
1 , 2 , . . . , n } ,  iS f B D  = BVDF[fl,f,,***,fn], such that 

f B D  E { f Z ,  i =  1 , 2 , . . ' , n }  (1) 

and 

where .4(f,,f,) denotes the angle between the vectors f, and f,, 
0 5 A ( f , , f , )  I7T. 0 

BVDF outputs the vector from the input set that minimizes the sum 
of the angles with the other vectors. In other words, it chooses the 
vector most centrally located, without considering magnitudes. The 
operation of BVDF can be parallelized with the operation of VMF 
which outputs the vector that minimizes the sum of the distances to 
the other vectors. 

Directional Magnitude 
Processing processing 

Fig. 3. Multichannel image processing using a cascade of directional 
processing and magnitude processing. 

-- Color Vector 

Fig. 4. Perspective representation of the color cube. 

h 

Fig. 5. Definition of the chromaticity error for two vectors f and i. 

The application of BVDF to a vector-valued 1-D signal is illus- 
trated in Fig. 2. The BVDF output is shown in Fig. 2(b) for the input 
shown in Fig. 2(a). It should be explicitly noted that for the special 
case of BVDF processing, a single output vector is produced at each 
pixel and the next step, i.e. magnitude processing, is not applicable. 
In other words, BVDF filtering considers only directional information 
in producing the output vector signal. 

For 2 - 0  vectors, the angle o f f  B D  is the least error estimate of the 
angle location. 

Proof: With respect to Fig. 1, we observe that the angles of the 
vectors with the z-axis form a sequence of numbers with median the 
angle of f B D  (= fz). It is well known that the median is the least 
absolute error estimate of the location of a set of numbers, which, 
since the angles are positive, proves the above statement. Q.E.D. 

In 3 - 0  the above statement holds approximately for small angles 
between the vectors. 

Proof: Without loss of generality we consider a set of vectors 
{ f t ,  i = 1 ,2 ,  . . . , n }  of equal length. Then, the least error estimate 
of the location of the vectors {ft} (constrained to the set f,) is the 
vector median f V M ,  since 

i.e. the minimum of E, [ I f ,  - f , l l  is obtained for f, = f V M .  Since 
the vectors are of equal length, say 1 (> 0), 1 1  f - f v M l l  can be 
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Fig. 6. Color images. (a) Lena. (b) Lake. 

expressed as 

(4) 
4z 

Ilf, - f V M I I  = 2lsin - 2 

where, dt = A ( f , , f v M ) .  Since E, [ I f ,  - f v M l l  is a minimum, 
E, sin 9 is a minimum. By assumption, the angles q5z are small 
and the sin 9 can be substituted with the angles $ (expressed in 
radians). Q.E.D. 

From the above proof it is evident that the outputs of VMF and 
BVDF are the same for equal-length vectors. However, this is not 
the case for vectors of unequal length. In the latter case, the BVDF 
output is still the vector that would have resulted if the vectors were of 
equal length. The VMF, however, would generally produce different 
results. This is demonstrated in Fig. 1 where the BVDF output is 
vector f 2  whereas the VMF output is vector f4 .  

Generalized Vector Directional Filters 

BVDF may perform well when the vector magnitudes are of 
no importance and the direction of the vectors is the major issue. 
However, this may not be the case in some multichannel signal 
processing applications and the magnitudes of the vectors should also 
be considered. This can be accomplished by generalizing BVDF so 
that the output at each pixel is not a vector f, E W but instead a set 

Definition 2: The output of the generalized vector directional filter 
(GVDF), for input { f t ,  i = 1,2, . . . ,n},  is the set SGD = 

of vectors f; E W, i = 1 , 2 , . . .  . k ,  k < n. 

GVDF[f,,f,,...,f,l, where 

L e t  cy2 correspond to f, and be defined as 

implies the same ordering to the corresponding f;s 

. . .  ... f(1) 5 f ( 2 )  5 5 f ( k )  5 5 f‘“’ (8) 

The first k terms of the ordered sequence f(*) constitute the output 
of the GVDF. 0 

We note here that the first term in (8), f(’), is the BVDF output. 
GVDF generalizes BVDF in the sense that its output is a superset of 
the (single) BVDF output. GVDF outputs the set of vectors whose 
angle from all the other vectors is small as opposed to the BVDF 
which outputs the vector whose angle from all the other vectors is 
a minimum. In other words, the output set of the GVDF consists 
of vectors centrally located in the population with approximately the 
same direction in the vector space. The application of the GVDF to 
the signal of Fig. 2(a) is illustrated in Fig. 2(c) where a set of vectors 
is output at each sample point. 

After the application of GVDF (directional processing) the output 
produced is a set of k vectors with approximately the same direction 
and the magnitude processing step should be applied to produce a 
single output vector at each pixel. The whole operation is illustrated 
in Fig. 3, where the GVDF is cascaded with the F module (filter). 
Since F processes the vectors using only magnitude information, 
it can be any gray-scale image processing filter [9], [lo]. This is 
illustrated in Figs. 2(c), (d). The GVDF output (Fig. 2(c)) has been 
passed through a gray-scale median filter (F) to produce the final 
output shown in Fig. 2(d). 

Some properties that constitute VDF appropriate for image pro- 
cessing have been studied elsewhere [ll]. We mention here the 
preservation of step edges, invariance under scaling and rotation, and 
existence of and convergence to root signals.’ The behavior of VDF 
in the case of vector edges can be illustrated by the following 1-D 
example, where the window W of size five is centered over vector 
f 4  and f2,..., fs are inside W .  

W 

An ordering of the a , s  

“(1) I ” ( 2 )  I ... I “(k) I ... I “(n)  (7) this property. 

’A proof of this property has been derived for the BVDF of length three 
only. However, experimentation with larger filter lengths has demonstrated 
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TABLE I 
NMSE (xlO-’) FOR THE “LENA” IMAGE 

VMF BVDF GVDF’ GVDF’ GVDF3 
noise model 3 x 3  5 x 5  3 x 3  5 x 5  3 x 3  5 x 5  3 x 3  5 x 5  3 x 3  5 x 5  
Gaussian 1.60 1.17 3.28 3.41 1.46 1.08* 2.48 4.04 2.89 2.56 
Gaussian/impulsive 1.70 1.24 3.52 3.67 1.53 1.13* 2.51 4.05 3.18 2.74 
double-exponential 0.41 0.60 0.61 0.89 0.36* 0.56 0.73 0.97 0.52 0.37 
impulsive 0.33 0.58 0.44 0.77 0.30 0.54 0.62 0.91 0.43 0.29* 

GVDF’ : GVDF followed by a-trimmed mean 
GVDF’ : GVDF followed by morphological open-close 
GVDF3 : GVDF followed by multistage maxhedian 

TABLE I1 
NMSE (xlo-’) FOR THE “LAKE” IMAGE 

VMF BVDF GVDF’ GVDF’ GVDF3 
noise model 3 x 3  5 x 5  3 x 3  5 x 5  3 x 3  5 x 5  3 x 3  5 x 5  3 x 3  5 x 5  
Gaussian 1.54 1.20 3.86 4.20 1.52 1.16* 2.56 3.66 2.45 2.41 
Gaussiadimpulsive 1.64 1.29* 4.04 4.53 1.64 1.33 2.76 3.12 2.58 2.51 
double-exponential 0.49* 0.93 1.20 2.13 0.53 0.95 1.45 2.64 0.71 0.51 
impulsive 0.66 1.14 1.35 2.37 0.63 1.38 1.47 1.85 0.93 0.48* 

GVDF’ : GVDF followed by a-trimmed mean 
GVDF’ : GVDF followed by morphological open-close 
GVDF3 : GVDF followed by multistage madmedian 

TABLE Ill 
MCRE FOR THE “LENA” IMAGE 

VMF BVDF GVDF’ GVDF’ GVDF3 
noise model 3 x 3  5 x 5  3 x 3  5 x 5  3 x 3  5 x 5  3 x 3  5 x 5  3 x 3  5 x 5  
Gaussian 7.48 5.71 5.96 4.45 6.05 4.20* 6.55 6.13 8.32 7.64 
Gaussiadimpulsive 7.64 5.80 6.30 5.04 6.22 4.37* 6.80 6.38 8.59 8.15 
double-exponential 2.98 2.90 2.81 2.73 2.82 2.66* 3.06 3.47 2.95 2.74 
impulsive 2.14 2.48 1.97 2.46 2.02 2.39 2.44 2.94 1.18* 1.51 

GVDF’ : GVDF followed by a-trimmed mean 
GVDF’ : GVDF followed by morphological open-close 
GVDF3 : GVDF followed by multistage maxhedian 

Ordering of fz,. . . ,f6 will result in f q  = fs = fs < f 2  = f 3 .  It is 
evident that the vectors in the high ranks ( f2 , f3)  will be eliminated 
after VDF processing and will not affect the vector edge. 

111. MOTIVATION AND INTUITIVE ISSUES 

The introduction of VDF for multichannel image processing has 
been motivated by a number of factors mostly related to color 
imaging. In this section we attempt to introduce the reader to these 
concepts. As already explained, VDF attempt to process vector 
images by exploiting the vector features, direction and magnitude. 
They separate the processing of multichannel images into directional 
processing and magnitude processing. This allows the bridging of 
scalar image processing and vector image processing and also enables 
the use of all the successful scalar image processing techniques in 
multichannel images. 

As a special (and important) case of multichannel images, we 
may consider the case of color images. Color image processing 
can be regarded from the perspective of the color cube, as shown 
in Fig. 4. The three axes that define the color cube represent the 
three primaries (R,G,B). A particular color may be described as a 
vector in the color space. Such a color vector is shown in Fig. 4; 
the point marked with a “ x ”  denotes the intersection point of the 
color vector with the Maxwell triangle (the triangle drawn between 
the three primaries, R,G,B). It is well known that the intersection 
point of a color vector with the Maxwell triangle gives an indication 
of the chromaticity of the color (hue and saturation) in terms of 

the distances of the point from the vertices of the triangle [12]. It 
is obvious that this point depends only on the direction of a color 
vector and not on its magnitude. Therefore, the operation of VDF can 
be described in terms of the color chromaticity. Since BVDF results 
in the least error estimate of the angle location, directional filtering 
renders the color vector fsD, from the set of input vectors, with 
the least chromaticity error. In the case of GVDF, a set of vectors 
with similar chromaticities with the chromaticity of fBD is rendered. 
In other words, VDF operate on the chromaticity components of a 
color by filtering out color vectors with large chromaticity errors. 
This is very important in color image processing where chromaticity 
is actually the attribute which determines the color perception [13], 
[ 14, p. 264-671 and luminance (proportional to the vector magnitude) 
is the attribute which determines the brightness of a given color. 

It should be clear at this point that for the case of color image 
processing, VDF operate actually as chromaficity filters. The signifi- 
cance of this stems from the fact that color is generally perceived first 
in terms of the hue component [15, p. 311 and then in other terms 
such as brightness, richness, purity, and saturation. On the other hand, 
luminance filtering can be efficiently performed subsequently using 
classical gray-level image processing filters. 

IV. SIMULATION RESULTS 

VDF have been evaluated, and their performance has been com- 
pared against the performance of VMF, using RGB color images 
as test data. Simulations have been conducted for both BVDF and 
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TABLE IV 
MCRE FOR THE “LAKE” IMAGE 

VMF BVDF G V D F ~  GVDF’ GVDF3 
noise model 3 x 3  5 x 5  3 x 3  5 x 5  3 x 3  5 x 5  3 x 3  5 x 5  3 x 3  5 x 5  
Gaussian 10.60 8.75 8.65 7.38 8.80 6.97’ 9.71 9.53 11.09 10.58 
Gaussian/impulsive 10.84 8.89 8.99 8.37 8.95 7.09* 9.22 9.82 11.32 11.09 
double-exponential 5.12 5.57 4.92 5.42 4.96 5.32 5.62 6.41 3.72* 4.03 
impulsive 4.77 5.44 4.94 6.35 4.74 5.43 5.50 6.63 2.87* 3.31 

GVDF’ : GVDF followed by o-trimmed mean 
GVDF2 : GVDF followed by morphological open-close 
GVDF3 : GVDF followed by multistage max/median 

(c) ( 4  
Fig. 7. (a) “Lena” corrupted with Gaussian noise (U = 30). (b) “Lena” corrupted with 4% impulsive noise. 

(c). (d) 3 x 3 VMF of (a) and (b), respectively. 

GVDF. In the case of GVDF, three filters have been used for the step 
of magnitude processing: the &-trimmed mean [9] ,  the morphological 
open-close [ 161, and the multistage max/median [SI. Two quantitative 
measures have been employed. The first is the normalized mean 

other authors in evaluation experiments [2], [8]: 

c:i0 CYZ, I(f(i,j) - j(i,j)1(* 
N M S E = 

squared error (NMSE) which is a standard measure also used by C,”_z, IIf( i, j)II ’  
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Fig. 7 (continued). (e), (f) 3 x 3 GVDF/a-trimmed mean of (a) and @), respectively. (g), (h) 5 x 5 GVDF/multistage max/median 
of (a) and (b). respectively. 

where N1 and N2 are the image dimensions, and f ( i , j )  and j ( i , j )  
denote the original and the estimated image vector at pixel ( i , j ) ,  
respectively. The second measure is related to the color chromaticity 
and is referred to as the mean chromaticity error (MCRE). We have 
introduced this measure since VDF operate as chromaticity filters 
and, consequently, their performance in terms of chromaticity error 
should be evaluated. MCRE is defined as 

whereN1, N ~ , f ( i , j )  a n d j ( i , j )  areas in (9 )andC[f ( i , j ) , j ( i , j ) ]  

is the chromaticity error between vectors f ( i , j )  and j ( i , j ) .  It is 
defined as the distance P P  between the twp points P and P ,  which 
are the intersection points of f ( i , j )  and f ( i , j )  with the Maxwell 
triangle, respectively. This is shown graphically in Fig. 5. 

We have applied VDF to a number of color images ranging from 
detailed indoor and outdoor scenes to human faces. We present here 
the results for two images, “Lena” and “Lake,” shown in Fig. 6. 
The test images have been contaminated using the following noise 

distributions: (a) Gaussian (U = 30), (b) Gaussian (U = 30) contam- 
inated with 2% of impulses, (c) double-exponential (U = 40), and 
(d) impulsive (4%). The impulsive noise has been simulated in two 
steps. In the first step each image channel is corrupted independently 
with 4% impulsive noise. In the second step, a correlation factor 
p = 0.5 is used to further determine the corruption of pixel ( i , ~ )  
in channel C, if the same pixel ( i , j )  is corrupted in any of the two 
other channels. The second step simulates the channel correlation in 
multichannel images. It is noted that, although vector order statistics 
based filters are not optimal for Gaussian noise, this type of noise 
has been used in our experiments since, for a suitable selection of 
the magnitude processing filter (e.g., a-trimmed mean), VDF are 
expected to perform efficiently in this case, too. 

Tables I and I1 show the NMSE results for the two test images 
and for filter windows 3 x 3 and 5 x 5. A “*” in a table entry 
indicates the best filter performance in the corresponding row (noise 
distribution). From these results it can be concluded that VDF perform 
at least as good and in most cases better than VMF. It can be 
observed that the GVDF followed by an a-trimmed mean filter 
has very good performance in short tailed noise. Similarly, with a 
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multistage maxhedian filter as the magnitude processing filter, very 
good performance in long tailed noise is obtained. Tables 111 and IV 
show the MCRE results for the same images. As can be observed, 
VDF result always in a better chrominance estimate than VMF and 
this justifies their employment in color image processing. 

In addition to the quantitative evaluation presented above, a 
qualitative evaluation seems worthwhile since the topic is image 
processing and the visual assessment of the processed images is, 
ultimately, the best subjective measure of the efficacy of any method. 
Therefore, we present sample processing results in Fig. 7. Fig. 7(a) 
shows the “Lena” image corrupted with Gaussian noise (c = 30) 
and Fig. 7(b) shows the same image corrupted with 4% impulsive 
noise. Figs. 7(c) and(d) show the VMF results for Figs. 7(a) and 
(b), respectively, and Figs. 7(e), (f), (g), and (h) refer to the VDF 
processing results. Figs. 7(e) and ( f )  show the GVDF/a-trimmed 
mean results and Figs. 7(g) and (h) show the GVDF/multistage 
maxhedian results. The superiority of the GVDF/a-trimmed mean 
in the case of Gaussian noise and the GVDF/multistage max/median 
in the case of impulsive noise is illustrated in this example. In 
effect, the properties of the gray-scale processing filters that make 
them appropriate for monochrome image processing have also been 
retained in the case of color images. In other words, the a-trimmed 
mean is still efficient in low pass filtering the Gaussian noise, whereas 
the multistage max/median possesses the detail preserving property. 
This demonstrates the advantage of combining the directional filters 
with efficient gray-scale filters. The former filter out vectors with 
“atypical” direction producing thus a set of vectors with almost the 
same direction; the latter can, subsequently, perform on this output 
set as if it has been produced by a single-channel source. 

It should be noted that the correlated noise has no effect on VDF 
(and VMF) since they operate directly on the image vectors and not 
on the individual channels of a multichannel image. This can also be 
verified from the results obtained. 
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Recursive High-Resolution Reconstruction 
of Blurred Multiframe Images 

P. Kim, Member, IEEE, and Wen-Yu su, Student Member, IEEE 

Abstract-An approach to obtain high-resolution image reconstructions 
from low-resolution, blurred, and noisy multiple-input frames is pre- 
sented. A recursive least-square approach with iterative regularization 
is developed in the DIT domain. 

When the input frames are processed recursively, the reconstruction 
does not converge in general due to the measurement noise and ill- 
conditioned nature of the deblurring. Through the iterative update of 
the regularization function and the proper choice of the regularization pa- 
rameter, good high-resolution reconstructions are obtained. This provides 
an unified approach for deblurring, noise removal, and high resolution 
reconstruction of low-resolution, blurred, and noisy input frames. The 
proposed recursive algorithm minimizes the required computations and 
provides the parallel computation structure since the reconstruction 
is done independently for each DFT element. Computer simulations 
demonstrate the performance of the algorithm. 

I. INTRODUCTION 

In the applications such as satellite remote sensing and computer 
vision applications, it is required to reconstruct a high-resolution 
image from multiframes of undersampled low-resolution images from 
a scene. In many practical cases, input images are degraded by both 
blurs and noises. A DFT-based algorithm for reconstruction of high- 
resolution images from multiple input frames corrupted by noises has 
been developed in [l]. However, this result can not be directly used 
if the input frames have blur distortions. In this correspondence, the 
previous result in [l] is advanced for blurred input frames. In [2] and 
[3] ,  some multi-channel image restoration schemes were presented 
for blurred images, and in [4] and [5],  restorations from multiple 
measurements were studied. The issues on increasing the resolution 
of the input images, however, have not been addressed. 

In the high-resolution reconstruction problem where blur distor- 
tions are included, it is desirable to include the deblurring com- 
putation into the reconstruction process since the deblurring of 
input frames separately would introduce phase and high-frequency 
distortions in the input frames, which is not desirable for high 
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