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Modern complex large-scale impulsive systems involve multiple modes of operation plac-

ing stringent demands on controller analysis of increasing complexity. In analyzing these

large-scale systems, it is often desirable to treat the overall impulsive system as a collection

of interconnected impulsive subsystems. Solution properties of the large-scale impulsive

system are then deduced from the solution properties of the individual impulsive subsys-

tems and the nature of the impulsive system interconnections. In this paper, we develop

vector dissipativity theory for large-scale impulsive dynamical systems. Specifically, us-

ing vector storage functions and vector hybrid supply rates, dissipativity properties of

the composite large-scale impulsive systems are shown to be determined from the dissi-

pativity properties of the impulsive subsystems and their interconnections. Furthermore,

extended Kalman-Yakubovich-Popov conditions, in terms of the impulsive subsystem dy-

namics and interconnection constraints, characterizing vector dissipativeness via vector

system storage functions, are derived. Finally, these results are used to develop feedback

interconnection stability results for large-scale impulsive dynamical systems using vector

Lyapunov functions.

1. Introduction

Recent technological demands have required the analysis and control design of increas-

ingly complex, large-scale nonlinear dynamical systems. The complexity of modern con-

trolled large-scale dynamical systems is further exacerbated by the use of hierarchial em-

bedded control subsystems within the feedback control system, that is, abstract decision-

making units performing logical checks that identify system mode operation and spec-

ify the continuous-variable subcontroller to be activated. Such systems typically possess

a multiechelon hierarchical hybrid decentralized control architecture characterized by

continuous-time dynamics at the lower levels of the hierarchy and discrete-time dynam-

ics at the higher levels of the hierarchy (see [1, 25] and the numerous references therein).
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The lower-level units directly interact with the dynamical system to be controlled while

the higher-level units receive information from the lower-level units as inputs and pro-

vide (possibly discrete) output commands which serve to coordinate and reconcile the

(sometimes competing) actions of the lower-level units. The hierarchical controller orga-

nization reduces processor cost and controller complexity by breaking up the processing

task into relatively small pieces and decomposing the fast and the slow control functions.

Typically, the higher-level units perform logical checks that determine system mode op-

eration, while the lower-level units execute continuous-variable commands for a given

system mode of operation.

In analyzing hybrid large-scale dynamical systems, it is often desirable to treat the

overall system as a collection of interconnected subsystems. The behavior of the compos-

ite hybrid large-scale system can then be predicted from the behaviors of the individual

subsystems and their interconnections. The mathematical description of many of these

systems can be characterized by impulsive differential equations [10, 15]. In particular,

general hybrid dynamical systems involve an abstract axiomatic definition of a dynami-

cal system involving left-continuous (or right-continuous) flows defined on a completely

ordered time set as a mapping between vector spaces satisfying an appropriate set of ax-

ioms, and include hybrid inputs and hybrid outputs that take their values in appropriate

vector spaces [8, 22, 28]. In contrast, impulsive dynamical systems are a subclass of hybrid

dynamical systems and consist of three elements, namely, a continuous-time differential

equation, which governs the motion of the dynamical system between impulsive events;

a difference equation, which governs the way that the system states are instantaneously

changed when an impulsive event occurs; and a criterion for determining when the states

are to be reset [10, 15].

An approach to analyzing large-scale dynamical systems was introduced by the pio-

neering work of Šiljak [26] and involves the notion of connective stability. In particular,

the large-scale dynamical system is decomposed into a collection of subsystems with lo-

cal dynamics and uncertain interactions. Then, each subsystem is considered indepen-

dently so that the stability of each subsystem is combined with the interconnection con-

straints to obtain a vector Lyapunov function for the composite large-scale dynamical

system guaranteeing connective stability for the overall system. Vector Lyapunov func-

tions were first introduced by Bellman [2] and Matrosov [21] and further developed in

[7, 16, 17, 18, 19, 20, 23, 27], with [7, 17, 26, 27] exploiting their utility for analyzing

large-scale systems. Extensions of vector Lyapunov function theory that include matrix-

valued Lyapunov functions for stability analysis of large-scale dynamical systems appear

in the monographs by Martynyuk [19, 20]. The use of vector Lyapunov functions in large-

scale system analysis offers a very flexible framework since each component of the vector

Lyapunov function can satisfy less rigid requirements as compared to a single scalar Lya-

punov function. Weakening the hypothesis on the Lyapunov function enlarges the class

of Lyapunov functions that can be used for analyzing the stability of large-scale dynam-

ical systems. In particular, each component of a vector Lyapunov function need not be

positive-definite with a negative or even negative-semidefinite derivative. The time de-

rivative of the vector Lyapunov function need only satisfy an element-by-element vector

inequality involving a vector field of a certain comparison system.
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In light of the facts that energy flow modeling arises naturally in large-scale dynamical

systems and that vector Lyapunov functions provide a powerful stability analysis frame-

work for these systems, it seems natural that hybrid dissipativity theory [8, 10, 11], on the

subsystem level, should play a key role in analyzing large-scale impulsive dynamical sys-

tems. Specifically, hybrid dissipativity theory provides a fundamental framework for the

analysis and design of impulsive dynamical systems using an input-output description

based on system energy related considerations (here the notion of energy refers to ab-

stract energy for which a physical system energy interpretation is not necessary) [8, 10].

The hybrid dissipation hypothesis on impulsive dynamical systems results in a funda-

mental constraint on their dynamic behavior wherein a dissipative impulsive dynamical

system can only deliver a fraction of its energy to its surroundings and can only store a

fraction of the work done to it. Such conservation laws are prevalent in large-scale im-

pulsive dynamical systems such as aerospace systems, power systems, network systems,

telecommunication systems, and transportation systems. Since these systems have nu-

merous input-output properties related to conservation, dissipation, and transport of

energy, extending hybrid dissipativity theory to capture conservation and dissipation no-

tions on the subsystem level would provide a natural energy flow model for large-scale

impulsive dynamical systems. Aggregating the dissipativity properties of each of the im-

pulsive subsystems by appropriate storage functions and hybrid supply rates would allow

us to study the dissipativity properties of the composite large-scale impulsive system using

vector storage functions and vector hybrid supply rates. Furthermore, since vector Lyapunov

functions can be viewed as generalizations of composite energy functions for all of the

impulsive subsystems, a generalized notion of hybrid dissipativity, namely, vector hybrid

dissipativity, with appropriate vector storage functions and vector hybrid supply rates,

can be used to construct vector Lyapunov functions for nonlinear feedback large-scale

impulsive systems by appropriately combining vector storage functions for the forward

and feedback large-scale impulsive systems. Finally, as in classical dynamical system the-

ory, vector dissipativity theory can play a fundamental role in addressing robustness, dis-

turbance rejection, stability of feedback interconnections, and optimality for large-scale

impulsive dynamical systems.

In this paper, we develop vector dissipativity notions for large-scale nonlinear impul-

sive dynamical systems, a notion not previously considered in the literature. In particular,

we introduce a generalized definition of dissipativity for large-scale nonlinear impulsive

dynamical systems in terms of a hybrid vector inequality involving a vector hybrid sup-

ply rate, a vector storage function, and an essentially nonnegative, semistable dissipation

matrix. Generalized notions of vector available storage and vector required supply are

also defined and shown to be element-by-element ordered, nonnegative, and finite. On

the impulsive subsystem level, the proposed approach provides an energy flow balance

over the continuous-time dynamics and the resetting events in terms of the stored sub-

system energy, the supplied subsystem energy, the subsystem energy gained from all other

subsystems independent of the subsystem coupling strengths, and the subsystem energy

dissipated. Furthermore, for large-scale impulsive dynamical systems decomposed into

interconnected impulsive subsystems, dissipativity of the composite impulsive system is

shown to be determined from the dissipativity properties of the individual impulsive
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subsystems and the nature of the interconnections. In addition, we develop extended

Kalman-Yakubovich-Popov conditions, in terms of the local impulsive subsystem dy-

namics and the interconnection constraints, for characterizing vector dissipativeness via

vector storage functions for large-scale impulsive dynamical systems. Using the concepts

of vector dissipativity and vector storage functions as candidate vector Lyapunov func-

tions, we develop feedback interconnection stability results of large-scale impulsive non-

linear dynamical systems. General stability criteria are given for Lyapunov and asymp-

totic stability of feedback large-scale impulsive dynamical systems. In the case of vector

quadratic supply rates involving net subsystem powers and input-output subsystem en-

ergies, these results provide a positivity and small gain theorem for large-scale impulsive

systems predicated on vector Lyapunov functions. Finally, it is important to note that

vector dissipativity notions were first addressed in [13] in the context of continuous-

time, large-scale dynamical systems. However, the results of [13] predominately concen-

trate on connections between thermodynamic models and large-scale dynamical systems.

Kalman-Yakubovich-Popov conditions characterizing vector dissipativeness via vector

system storage functions and feedback interconnection stability results for large-scale sys-

tems are not addressed in [13].

2. Mathematical preliminaries

In this section, we introduce notations, several definitions, and some key results needed

for analyzing large-scale impulsive dynamical systems. Let R denote the set of real num-

bers, Z+ the set of nonnegative integers, Rn the set of n× 1 column vectors, Sn the set of

n× n symmetric matrices, Nn (resp., Pn) the set of n× n nonnegative- (resp., positive-)

definite matrices, (·)T transpose, and In or I the n× n identity matrix. For v ∈ Rq, we

write v ≥≥ 0 (resp., v≫ 0) to indicate that every component of v is nonnegative (resp.,

positive). In this case, we say that v is nonnegative or positive, respectively. Let R
q
+ and R

q
+

denote the nonnegative and positive orthants of Rq; that is, if v ∈ Rq, then v ∈ R
q
+ and

v ∈ R
q
+ are equivalent, respectively, to v ≥≥ 0 and v≫ 0. Finally, we write ‖ · ‖ for the

Euclidean vector norm, V ′(x) for the Fréchet derivative of V at x, �ε(α), α ∈ Rn, ε > 0,

for the open ball centered at α with radius ε, and M ≥ 0 (resp., M > 0) to denote the fact

that the Hermitian matrix M is nonnegative- (resp., positive-) definite. The following

definition introduces the notion of essentially nonnegative and nonnegative matrices.

Definition 2.1 [3, 5, 9]. Let W ∈ Rq×q. W is essentially nonnegative if W(i, j) ≥ 0, i, j =
1, . . . ,q, i �= j, where W(i, j) denotes the (i, j)th entry of W . W is nonnegative (resp., posi-

tive) if W(i, j) ≥ 0 (resp., W(i, j) > 0), i, j = 1, . . . ,q.

The following definition introduces the notion of class � functions involving quasi-

monotone increasing functions.

Definition 2.2 [26]. A functionw = [w1, . . . ,wq]T : Rq →Rq is of class � ifwi(r′)≤wi(r′′),

i= 1, . . . ,q, for all r′,r′′ ∈Rq such that r′j ≤ r′′j , r′i = r′′i , j = 1, . . . ,q, i �= j, where ri denotes

the ith component of r.

If w(·) ∈ �, we say that w satisfies the Kamke condition. Note that if w(r) =Wr,

where W ∈ Rq×q, then the function w(·) is of class � if and only if W is essentially
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nonnegative. Furthermore, note that it follows from Definition 2.2 that any scalar (q = 1)

function w(r) is of class �. The following definition introduces the notion of essentially

nonnegative functions [4, 9].

Definition 2.3. Let w = [w1, . . . ,wq]T : �→Rq, where � is an open subset of Rq that con-

tains R
q
+. Then w is essentially nonnegative if wi(r)≥ 0 for all i= 1, . . . ,q and r ∈R

q
+ such

that ri = 0.

Note that if w : Rq → Rq is such that w(·) ∈� and w(0) ≥≥ 0, then w is essentially

nonnegative; the converse however is not generally true. However, if w(r) =Wr, where

W ∈Rq×q is essentially nonnegative, then w(·) is essentially nonnegative and w(·)∈�.

Proposition 2.4 [4, 9]. Suppose R
q
+ ⊂�. Then R

q
+ is an invariant set with respect to

ṙ(t)=w
(

r(t)
)

, r(0)= r0, t ≥ t0, (2.1)

where r0 ∈R
q
+, if and only if w : �→Rq is essentially nonnegative.

The following corollary to Proposition 2.4 is immediate.

Corollary 2.5. Let W ∈ Rq×q. Then W is essentially nonnegative if and only if eWt is

nonnegative for all t ≥ 0.

It follows from Proposition 2.4 that if r0 ≥≥ 0, then r(t)≥≥ 0, t ≥ t0, if and only if w(·)

is essentially nonnegative. In this case, the usual stability definitions for the equilibrium

solution r(t)≡ re to (2.1) are not valid. In particular, stability notions need to be defined

with respect to relatively open subsets of R
q
+ containing re [12, 13]. The following lemma

is needed for developing several of the results in later sections. For the statement of this

lemma, recall that a matrix W ∈Rq×q is semistable if and only if limt→∞ eWt exists [5, 9],

while W is asymptotically stable if and only if limt→∞ eWt = 0.

Lemma 2.6 [12]. Suppose W ∈ Rq×q is essentially nonnegative. If W is semistable (resp.,

asymptotically stable), then there exist a scalar α≥ 0 (resp., α > 0) and a nonnegative vector

p ∈R
q
+, p �= 0, (resp., positive vector p ∈R

q
+) such that

WTp+αp = 0. (2.2)

Next, we present a stability result for large-scale impulsive dynamical systems using

vector Lyapunov functions. In particular, we consider state-dependent impulsive dynam-

ical systems of the form

ẋ(t)= Fc

(

x(t)
)

, x
(

t0
)

= x0, x(t) �∈�x, t ≥ t0, (2.3)

∆x(t)= Fd

(

x(t)
)

, x(t)∈�x, (2.4)

where x(t) ∈ �, � ⊆ Rn is an open set with 0 ∈ �, ∆x(t) � x(t+)− x(t), Fc : � → Rn

is Lipschitz continuous and satisfies Fc(0) = 0, Fd : � → Rn is continuous, and �x ⊂

� ⊆ Rn is a resetting set. Here, we assume that (2.3) and (2.4) characterize a large-scale

impulsive dynamical system composed of q interconnected subsystems such that, for

all i = 1, . . . ,q, each element of Fc(x) and Fd(x) is given by Fci(x) = fci(xi) + �ci(x) and
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Fdi(x) = fdi(xi) + �di(x), respectively, where fci : �i ⊆ Rni → Rni and fdi : �i ⊆ Rni → Rni

define the vector fields of each isolated impulsive subsystem of (2.3) and (2.4), �ci : �→

Rni and �di : �→Rni define the structure of interconnection dynamics of the ith impul-

sive subsystem with all other impulsive subsystems, xi ∈�i ⊆Rni , fci(0)= 0, �ci(0)= 0,

and
∑q

i=1ni = n. For the large-scale impulsive dynamical system (2.3), (2.4), we note that

the subsystem states that xi(t), t ≥ t0, for all i = 1, . . . ,q, belong to �i ⊆ Rni as long as

x(t) � [xT
1 (t), . . . ,xT

q (t)]T ∈�, t ≥ t0. We make the following additional assumptions:

(A1) if x(t)∈�x \�x, then there exists ε > 0 such that, for all 0 < δ < ε, x(t+ δ) �∈�x;

(A2) if x ∈�x, then x+Fd(x) �∈�x.

Assumption (A1) ensures that if a trajectory reaches the closure of �x at a point that

does not belong to �x, then the trajectory must be directed away from �x; that is, a

trajectory cannot enter �x through a point that belongs to the closure of �x but not

to �x. Furthermore, (A2) ensures that when a trajectory intersects the resetting set �x, it

instantaneously exits �x. Finally, we note that if x0 ∈�x, then the system initially resets to

x+
0 = x0 +Fd(x0) �∈�x, which serves as the initial condition for the continuous dynamics

(2.3). It follows from (A1) and (A2) that ∂�x ∩�x is closed and hence the resetting times

τk(x0) are well defined and distinct. Furthermore, it follows from (A2) that if x∗ ∈ Rn

satisfies Fd(x∗) = 0, then x∗ �∈ �x. To see this, suppose x∗ ∈ �x. Then x∗ + Fd(x∗) =

x∗ ∈ �x, contradicting (A2). In particular, we note that 0 �∈ �x. For further insights on

assumptions (A1) and (A2), the interested reader is referred to [8, 10].

The next theorem presents a stability result for (2.3), (2.4) via vector Lyapunov func-

tions by relating the stability properties of a comparison system to the stability properties

of the large-scale impulsive dynamical system.

Theorem 2.7 [15, 24]. Consider the large-scale impulsive dynamical system given by (2.3),

(2.4). Suppose there exist a continuously differentiable vector function V : �→ R
q
+ and a

positive vector p ∈R
q
+ such that V(0)= 0, the scalar function v : �→R+ defined by v(x)=

pTV(x), x ∈�, is such that v(0)= 0, v(x) > 0, x �= 0, and

V ′(x)Fc(x)≤≤wc

(

V(x)
)

, x �∈�x,

V
(

x+Fd(x)
)

≤≤V(x), x ∈�x,
(2.5)

where wc : R
q
+ →Rq is a class � function such that wc(0)= 0. Then the stability properties

of the zero solution r(t)≡ 0 to

ṙ(t)=wc

(

r(t)
)

, r
(

t0
)

= r0, t ≥ t0, (2.6)

imply the corresponding stability properties of the zero solution x(t)≡ 0 to (2.3), (2.4). That

is, if the zero solution r(t) ≡ 0 to (2.6) is Lyapunov (resp., asymptotically) stable, then the

zero solution x(t)≡ 0 to (2.3), (2.4) is Lyapunov (resp., asymptotically) stable. If, in addition,

� = Rn and V(x)→∞ as ‖x‖ → ∞, then global asymptotic stability of the zero solution

r(t) ≡ 0 to (2.6) implies global asymptotic stability of the zero solution x(t) ≡ 0 to (2.3),

(2.4).
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If V : �→ R
q
+ satisfies the conditions of Theorem 2.7, we say that V(x), x ∈�, is a

vector Lyapunov function for the large-scale impulsive dynamical system (2.3), (2.4). Fi-

nally, we recall the standard notions of dissipativity and exponential dissipativity [8, 10]

for input/state-dependent impulsive dynamical systems � of the form

ẋ(t)= fc
(

x(t)
)

+Gc

(

x(t)
)

uc(t), x
(

t0
)

= x0,
(

x(t),uc(t)
)

�∈�, (2.7)

∆x(t)= fd
(

x(t)
)

+Gd

(

x(t)
)

ud(t),
(

x(t),uc(t)
)

∈�, (2.8)

yc(t)= hc

(

x(t)
)

+ Jc
(

x(t)
)

uc(t),
(

x(t),uc(t)
)

�∈�, (2.9)

yd(t)= hd

(

x(t)
)

+ Jd
(

x(t)
)

ud(t),
(

x(t),uc(t)
)

∈�, (2.10)

where t ≥ t0, x(t)∈�⊆Rn, uc(t)∈�c ⊆Rmc , ud(tk)∈�d ⊆Rmd , tk denotes the kth in-

stant of time at which (x(t),uc(t)) intersects � ⊂�×�c for a particular trajectory x(t)
and input uc(t), yc(t) ∈ 	c ⊆ Rlc , yd(tk) ∈ 	d ⊆ Rld , fc : �→ Rn is Lipschitz continu-

ous and satisfies fc(0) = 0, Gc : �→ Rn×mc , fd : �→ Rn is continuous, Gd : �→ Rn×md ,

hc : �→Rlc satisfies hc(0)= 0, Jc : �→Rlc×mc , hd : �→Rld , and Jd : �→Rld×md . For the

impulsive dynamical system �, we assume that the required properties for the existence

and uniqueness of solutions are satisfied; that is, uc(·) satisfies sufficient regularity condi-

tions such that (2.7) has a unique solution forward in time. For the impulsive dynamical

system � given by (2.7), (2.8), (2.9), and (2.10), a function (sc(uc, yc),sd(ud, yd)), where

sc : �c×	c →R and sd : �d×	d →R are such that sc(0,0)= 0 and sd(0,0)= 0, is called

a hybrid supply rate [8, 10] if it is locally integrable for all input-output pairs satisfying

(2.7), (2.9); that is, for all input-output pairs uc ∈ �c, yc ∈ 	c satisfying (2.7), (2.9),

sc(·,·) satisfies
∫ t̂
t |sc(uc(σ), yc(σ))|dσ <∞, t, t̂ ≥ 0. Note that since all input-output pairs

ud(tk) ∈�d, yd(tk) ∈	d satisfying (2.8), (2.10) are defined for discrete instants, sd(·,·)

satisfies
∑

k∈Z[t,t̂)
|sd(ud(tk), yd(tk))| <∞, where Z[t,t̂) � {k : t ≤ tk < t̂}.

Definition 2.8 [10]. The impulsive dynamical system � given by (2.7), (2.8), (2.9), and

(2.10) is exponentially dissipative (resp., dissipative) with respect to the hybrid supply rate

(sc,sd) if there exist a continuous, nonnegative-definite function vs : �→ R and a scalar

ε > 0 (resp., ε = 0) such that vs(0)= 0, called a storage function, and the hybrid dissipation

inequality

eεTvs

(

x(T)
)

≤ eεt0vs

(

x
(

t0
))

+

∫ T

t0
eεtsc

(

uc(t), yc(t)
)

dt

+
∑

k∈Z[t0,T)

eεtk sd

(

ud

(

tk
)

, yd

(

tk
))

, T ≥ t0,
(2.11)

is satisfied for all T ≥ t0. The impulsive dynamical system � given by (2.7), (2.8), (2.9),

and (2.10) is lossless with respect to the hybrid supply rate (sc,sd) if the hybrid dissipation

inequality is satisfied as an equality with ε = 0 for all T ≥ t0.

The following result gives necessary and sufficient conditions for dissipativity over an

interval t ∈ (tk, tk+1] involving the consecutive resetting times tk and tk+1. First, however,

the following definition is required.
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Definition 2.9 [10]. A large-scale impulsive dynamical system � given by (2.7), (2.8),

(2.9), and (2.10) is completely reachable if for all (t0,xi)∈R×�, there exist a finite time

ti < t0, a square integrable input uc(t) defined on [ti, t0], and inputs ud(tk) defined on

k ∈ Z[ti,t0) such that the state x(t), t ≥ ti, can be driven from x(ti)= 0 to x(t0)= xi.

Theorem 2.10 [10]. Assume � is completely reachable. Then � is exponentially dissipative

(resp., dissipative) with respect to the hybrid supply rate (sc,sd) if and only if there exist a

continuous nonnegative-definite function vs : �→ R and a scalar ε > 0 (resp., ε = 0) such

that vs(0)= 0 and for all k ∈ Z+,

eεt̂vs

(

x(t̂)
)

≤ eεtvs

(

x(t)
)

+

∫ t̂

t
eεssc

(

uc(s), yc(s)
)

ds, tk < t ≤ t̂ ≤ tk+1, (2.12)

vs

(

x
(

tk
)

+ fd
(

x
(

tk
))

+Gd

(

x
(

tk
))

ud

(

tk
))

≤ vs

(

x
(

tk
))

+ sd

(

ud

(

tk
)

, yd

(

tk
))

. (2.13)

Finally, � given by (2.7), (2.8), (2.9), and (2.10) is lossless with respect to the hybrid supply

rate (sc,sd) if and only if (2.12) and (2.13) are satisfied as equalities with ε= 0 for all k ∈ Z+.

3. Vector dissipativity theory for large-scale impulsive dynamical systems

In this section, we extend the notion of dissipative impulsive dynamical systems to de-

velop the generalized notion of vector dissipativity for large-scale impulsive dynamical

systems. We begin by considering input/state-dependent impulsive dynamical systems �

of the form

ẋ(t)= Fc

(

x(t),uc(t)
)

, x
(

t0
)

= x0,
(

x(t),uc(t)
)

�∈�, t ≥ t0, (3.1)

∆x(t)= Fd

(

x(t),ud(t)
)

,
(

x(t),uc(t)
)

∈�, (3.2)

yc(t)=Hc

(

x(t),uc(t)
)

,
(

x(t),uc(t)
)

�∈�, (3.3)

yd(t)=Hd

(

x(t),ud(t)
)

,
(

x(t),uc(t)
)

∈�, (3.4)

where x(t) ∈� ⊆ Rn, t ≥ t0, uc ∈�c ⊆ Rmc , ud ∈�d ⊆ Rmd , yc ∈	c ⊆ Rlc , yd ∈	d ⊆

Rld , Fc : �×�c → Rn, Fd : �×�d → Rn, Hc : �×�c →	c, Hd : �×�d →	d, � is an

open set with 0∈�, �⊂�×�c, and Fc(0,0)= 0. Here, we assume that � represents a

large-scale impulsive dynamical system composed of q interconnected controlled impul-

sive subsystems �i such that, for all i= 1, . . . ,q,

Fci
(

x,uci
)

= fci
(

xi
)

+ �ci(x) +Gci
(

xi
)

uci,

Fdi
(

x,udi
)

= fdi
(

xi
)

+ �di(x) +Gdi
(

xi
)

udi,

Hci
(

xi,uci
)

= hci
(

xi
)

+ Jci
(

xi
)

uci,

Hdi
(

xi,udi
)

= hdi
(

xi
)

+ Jdi
(

xi
)

udi,

(3.5)
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where xi ∈ �i ⊆ Rni , uci ∈ �ci ⊆ Rmci , udi ∈ �di ⊆ Rmdi , yci � Hci(xi,uci) ∈ 	ci ⊆ Rlci ,

ydi �Hdi(xi,udi)∈	di ⊆Rldi , ((uci,udi),(yci, ydi)) is the hybrid input-output pair for the

ith subsystem, fci : Rni →Rni and �ci : �→Rni are Lipschitz continuous and satisfy fci(0)

= 0 and �ci(0) = 0, fdi : Rni → Rni and �di : �→ Rni are continuous, Gci : Rni → Rni×mci

and Gdi : Rni →Rni×mdi are continuous, hci : Rni →Rlci and satisfies hci(0)= 0, hdi : Rni →

Rldi , Jci : Rni → Rlci×mci , Jdi : Rni → Rldi×mdi ,
∑q

i=1ni = n,
∑q

i=1mci = mc,
∑q

i=1mdi = md,
∑q

i=1 lci = lc, and
∑q

i=1 ldi = ld. Furthermore, for the large-scale impulsive dynamical sys-

tem �, we assume that the required properties for the existence and uniqueness of solu-

tions are satisfied; that is, for each i ∈ {1, . . . ,q}, uci(·) satisfies sufficient regularity con-

ditions such that the system (3.1), (3.2) has a unique solution forward in time. We define

the composite input and composite output for the large-scale impulsive dynamical system

� as uc � [uT
c1, . . . ,uT

cq]T, ud � [uT
d1, . . . ,uT

dq]T, yc � [yT
c1, . . . , yT

cq]T, and yd � [yT
d1, . . . , yT

dq]T,

respectively.

Definition 3.1. For the large-scale impulsive dynamical system � given by (3.1), (3.2),

(3.3), and (3.4), a function (Sc(uc, yc),Sd(ud, yd)), where Sc(uc, yc) � [sc1(uc1, yc1), . . . ,
scq(ucq, ycq)]T, Sd(ud, yd) � [sd1(ud1, yd1), . . . ,sdq(udq, ydq)]T, sci : �ci ×	ci → R, and sdi :

�di ×	di → R, i = 1, . . . ,q, such that Sc(0,0) = 0 and Sd(0,0) = 0, is called a vector hy-

brid supply rate if it is locally componentwise integrable for all input-output pairs sat-

isfying (3.1), (3.2), (3.3), and (3.4); that is, for every i ∈ {1, . . . ,q} and for all input-

output pairs uci ∈�ci, yci ∈	ci satisfying (3.1), (3.2), (3.3), and (3.4), sci(·,·) satisfies
∫ t̂
t |sci(uci(s), yci(s))|ds <∞, t, t̂ ≥ t0.

Note that since all input-output pairs udi(tk)∈�di, ydi(tk) ∈	di are defined for dis-

crete instants, sdi(·,·) in Definition 3.1 satisfies
∑

k∈Z[t,t̂)
|sdi(udi(tk), ydi(tk))| <∞.

Definition 3.2. The large-scale impulsive dynamical system � given by (3.1), (3.2), (3.3),

and (3.4) is vector dissipative (resp., exponentially vector dissipative) with respect to the

vector hybrid supply rate (Sc,Sd) if there exist a continuous, nonnegative-definite vector

function Vs = [vs1, . . . ,vsq]T : �→ R
q
+, called a vector storage function, and an essentially

nonnegative dissipation matrix W ∈ Rq×q such that Vs(0) = 0, W is semistable (resp.,

asymptotically stable), and the vector hybrid dissipation inequality

Vs

(

x(T)
)

≤≤ eW(T−t0)Vs

(

x
(

t0
))

+

∫ T

t0
eW(T−t)Sc

(

uc(t), yc(t)
)

dt

+
∑

k∈Z[t0,T)

eW(T−tk)Sd

(

ud

(

tk
)

, yd

(

tk
))

, T ≥ t0,
(3.6)

is satisfied, where x(t), t ≥ t0, is the solution to (3.1), (3.2), (3.3), and (3.4) with (uc(t),

ud(tk)) ∈�c ×�d and x(t0) = x0. The large-scale impulsive dynamical system � given

by (3.1), (3.2), (3.3), and (3.4) is vector lossless with respect to the vector hybrid supply

rate (Sc,Sd) if the vector hybrid dissipation inequality is satisfied as an equality with W
semistable.

Note that if the subsystems �i of � are disconnected, that is, �ci(x)≡ 0 and �di(x)≡ 0

for all i = 1, . . . ,q, and −W ∈ Rq×q is diagonal and nonnegative-definite, then it follows
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from Definition 3.2 that each of disconnected subsystems �i is dissipative or exponen-

tially dissipative in the sense of Definition 2.8. A similar remark holds in the case where

q = 1. Next, define the vector available storage of the large-scale impulsive dynamical sys-

tem � by

Va

(

x0

)

�− inf
T≥t0, (uc(·),ud(·))

[

∫ T

t0
e−W(t−t0)Sc

(

uc(t), yc(t)
)

dt

+
∑

k∈Z[t0,T)

e−W(tk−t0)Sd

(

ud

(

tk
)

, yd

(

tk
))

]

,

(3.7)

where x(t), t ≥ t0, is the solution to (3.1), (3.2), (3.3), and (3.4) with x(t0) = x0 and ad-

missible inputs (uc,ud)∈�c×�d. The infimum in (3.7) is taken componentwise which

implies that for different elements of Va(·), the infimum is calculated separately. Note

that Va(x0)≥≥ 0, x0 ∈�, since Va(x0) is the infimum over a set of vectors containing the

zero vector (T = t0).

Theorem 3.3. Consider the large-scale impulsive dynamical system � given by (3.1), (3.2),

(3.3), and (3.4) and assume that � is completely reachable. Then � is vector dissipative

(resp., exponentially vector dissipative) with respect to the vector hybrid supply rate (Sc,Sd) if

and only if there exist a continuous, nonnegative-definite vector function Vs : �→R
q
+ and an

essentially nonnegative dissipation matrix W ∈ Rq×q such that Vs(0)= 0, W is semistable

(resp., asymptotically stable), and for all k ∈ Z+,

Vs

(

x(t̂)
)

≤≤ eW(t̂−t)Vs

(

x(t)
)

+

∫ t̂

t
eW(t̂−s)Sc

(

uc(s), yc(s)
)

ds, tk < t ≤ t̂ ≤ tk+1, (3.8)

Vs

(

x
(

tk
)

+Fd

(

x
(

tk
)

,ud

(

tk
)))

≤≤Vs

(

x
(

tk
))

+ Sd

(

ud

(

tk
)

, yd

(

tk
))

. (3.9)

Alternatively, � is vector lossless with respect to the vector hybrid supply rate (Sc,Sd) if and

only if (3.8) and (3.9) are satisfied as equalities with W semistable.

Proof. Let k ∈ Z+ and suppose � is vector dissipative (resp., exponentially vector dissipa-

tive) with respect to the vector hybrid supply rate (Sc,Sd). Then, there exist a continuous

nonnegative-definite vector function Vs : �→R
q
+ and an essentially nonnegative matrix

W ∈ Rq×q such that (3.6) holds. Now, since for tk < t ≤ t̂ ≤ tk+1, Z[t,t̂) =∅, (3.8) is im-

mediate. Next, it follows from (3.6) that

Vs

(

x
(

t+
k

))

≤≤ eW(t+
k−tk)Vs

(

x
(

tk
))

+

∫ t+
k

tk
eW(t+

k−s)Sc

(

uc(s), yc(s)
)

ds

+
∑

k∈Z[tk ,t+k )

eW(t+
k−tk)Sd

(

ud

(

tk
)

, yd

(

tk
))

,
(3.10)

which, since Z[tk ,t+
k ) = k, implies (3.9).

Conversely, suppose (3.8) and (3.9) hold and let t̂ ≥ t ≥ t0 and Z[t,t̂) = {i, i+ 1, . . . , j}.
(Note that if Z[t,t̂) =∅, the converse result is a direct consequence of (3.8).) If Z[t,t̂) �= ∅,
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it follows from (3.8) and (3.9) that

Vs

(

x(t̂)
)

− eW(t̂−t)Vs

(

x(t)
)

=Vs

(

x(t̂)
)

− eW(t̂−t+
j )Vs

(

x
(

t+
j

))

+ eW(t̂−t+
j )Vs

(

x
(

t+
j

))

− eW(t̂−t+
j−1)Vs

(

x
(

t+
j−1

))

+ eW(t̂−t+
j−1)Vs

(

x
(

t+
j−1

))

−···− eW(t̂−t+
i )Vs

(

x
(

t+
i

))

+ eW(t̂−t+
i )Vs

(

x
(

t+
i

))

− eW(t̂−t)Vs

(

x(t)
)

=Vs

(

x(t̂)
)

− eW(t̂−t j )Vs

(

x
(

t+
j

))

+ eW(t̂−t j )Vs

(

x
(

t j
)

+Fd

(

x
(

t j
)

,ud

(

t j
)))

− eW(t̂−t j )Vs

(

x
(

t j
))

+ eW(t̂−t j )Vs

(

x
(

t j
))

− eW(t̂−t+
j−1)Vs

(

x
(

t+
j−1

))

+ ···+ eW(t̂−ti)Vs

(

x
(

ti
)

+Fd

(

x
(

ti
)

,ud

(

ti
)))

− eW(t̂−ti)Vs

(

x
(

ti
))

+ eW(t̂−ti)Vs

(

x
(

ti
))

− eW(t̂−t)Vs

(

x(t)
)

=Vs

(

x(t̂)
)

− eW(t̂−t j )Vs

(

x
(

t+
j

))

+ eW(t̂−t j )
[

Vs

(

x
(

t j
)

+Fd

(

x
(

t j
)

,ud

(

t j
)))

−Vs

(

x
(

t j
))]

+ eW(t̂−t j )
[

Vs

(

x
(

t j
))

− eW(t j−t j−1)Vs

(

x
(

t+
j−1

))]

+ ···+ eW(t̂−ti)
[

Vs

(

x
(

ti
)

+Fd

(

x
(

ti
)

,ud

(

ti
)))

−Vs

(

x
(

ti
))]

+ eW(t̂−ti)
[

Vs

(

x
(

ti
))

− eW(ti−t)Vs

(

x(t)
)]

≤≤

∫ t̂

t j
eW(t̂−s)Sc

(

uc(s), yc(s)
)

ds+ eW(t̂−t j )Sd

(

ud(t j
)

, yd

(

t j
))

+ eW(t̂−t j )

∫ t j

t j−1

eW(t j−s)Sc

(

uc(s), yc(s)
)

ds

+ ···+ eW(t̂−ti)Sd

(

ud

(

ti
)

, yd

(

ti
))

+ eW(t̂−ti)

∫ ti

t
eW(ti−s)Sc

(

uc(s), yc(s)
)

ds

=

∫ t̂

t
eW(t̂−s)Sc

(

uc(s), yc(s)
)

ds+
∑

k∈Z[t,t̂)

eW(t̂−tk)Sd

(

ud

(

tk
)

, yd

(

tk
))

,

(3.11)

which implies that � is vector dissipative (resp., exponentially vector dissipative) with

respect to the vector hybrid supply rate (Sc,Sd). Finally, similar constructions show that

� is vector lossless with respect to the vector hybrid supply rate (Sc,Sd) if and only if (3.8)

and (3.9) are satisfied as equalities with W semistable. �
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Theorem 3.4. Consider the large-scale impulsive dynamical system � given by (3.1), (3.2),

(3.3), and (3.4) and assume that � is completely reachable. Let W ∈ Rq×q be essentially

nonnegative and semistable (resp., asymptotically stable). Then

∫ T

t0
e−W(t−t0)Sc

(

uc(t), yc(t)
)

dt

+
∑

k∈Z[t0,T)

e−W(tk−t0)Sd

(

ud

(

tk
)

, yd

(

tk
))

≥≥ 0, T ≥ t0,
(3.12)

for x(t0) = 0 and (uc,ud) ∈ �c ×�d if and only if Va(0) = 0 and Va(x) is finite for all

x ∈�. Moreover, if (3.12) holds, then Va(x), x ∈�, is a vector storage function for � and

hence � is vector dissipative (resp., exponentially vector dissipative) with respect to the vector

hybrid supply rate (Sc(uc, yc),Sd(ud, yd)).

Proof. Suppose Va(0)= 0 and Va(x), x ∈�, is finite. Then

0=Va(0)=− inf
T≥t0, (uc(·),ud(·))

[

∫ T

t0
e−W(t−t0)Sc

(

uc(t), yc(t)
)

dt

+
∑

k∈Z[t0,T)

e−W(tk−t0)Sd

(

ud

(

tk
)

, yd

(

tk
))

]

,

(3.13)

which implies (3.12).

Next, suppose (3.12) holds. Then for x(t0)= 0,

− inf
T≥t0, (uc(·),ud(·))

[

∫ T

t0
e−W(t−t0)Sc

(

uc(t), yc(t)
)

dt

+
∑

k∈Z[t0,T)

e−W(tk−t0)Sd

(

ud

(

tk
)

, yd

(

tk
))

]

≤≤ 0,

(3.14)

which implies that Va(0)≤≤ 0. However, since Va(x0)≥≥ 0, x0 ∈�, it follows that Va(0)

= 0. Moreover, since � is completely reachable, it follows that for every x0 ∈�, there exist

t̂ > t0 and an admissible input u(·) defined on [t0, t̂] such that x(t̂)= x0. Now, since (3.12)

holds for x(t0) = 0, it follows that for all admissible (uc, yc) ∈ �c ×	c and (ud, yd) ∈

�d×	d,

∫ T

t0
e−W(t−t0)Sc

(

uc(t), yc(t)
)

dt

+
∑

k∈Z[t0,T)

e−W(tk−t0)Sd

(

ud

(

tk
)

, yd

(

tk
))

≥≥ 0, T ≥ t̂,
(3.15)
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or, equivalently, multiplying (3.15) by the nonnegative matrix eW(t̂−t0), t̂ ≥ t0, yields

−

∫ T

t̂
e−(t−t̂)Sc

(

uc(t), yc(t)
)

dt−
∑

k∈Z[t̂,T)

e−W(tk−t̂)Sd

(

ud

(

tk
)

,ud

(

tk
))

≤≤

∫ t̂

t0
e−W(t−t̂)Sc

(

uc(t), yc(t)
)

dt+
∑

k∈Z[t0,t̂)

e−W(tk−t̂)Sd

(

ud

(

tk
)

,ud

(

tk
))

≤≤Q
(

x0

)

≪∞, T ≥ t̂,
(

uc,ud

)

∈�c×�d,

(3.16)

where Q : �→Rq. Hence,

Va

(

x0

)

=− inf
T≥t̂, (uc(·),ud(·))

[

∫ T

t̂
e−W(t−t̂)Sc

(

uc(t), yc(t)
)

dt

+
∑

k∈Z[t̂,T)

e−W(tk−t̂)Sd

(

ud

(

tk
)

,ud

(

tk
))

]

≤≤Q
(

x0

)

≪∞, x0 ∈�,

(3.17)

which implies that Va(x0), x0 ∈�, is finite.

Finally, since (3.12) implies that Va(0)= 0 and Va(x), x ∈�, is finite, it follows from

the definition of the vector available storage that

−Va

(

x0

)

≤≤

∫ T

t0
e−W(t−t0)Sc

(

uc(t), yc(t)
)

dt

+
∑

k∈Z[t0,T)

e−W(tk−t0)Sd

(

ud

(

tk
)

,ud

(

tk
))

=

∫ tf

t0
e−W(t−t0)Sc

(

uc(t), yc(t)
)

dt

+
∑

k∈Z[t0,tf )

e−W(tk−t0)Sd

(

ud

(

tk
)

,ud

(

tk
))

+

∫ T

tf
e−W(t−t0)Sc

(

uc(t), yc(t)
)

dt

+
∑

k∈Z[tf ,T)

e−W(tk−t0)Sd

(

ud

(

tk
)

,ud

(

tk
))

, T ≥ t0.

(3.18)
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Now, multiplying (3.18) by the nonnegative matrix eW(tf−t0), tf ≥ t0, it follows that

eW(tf−t0)Va

(

x0

)

+

∫ tf

t0
eW(tf−t)Sc

(

uc(t), yc(t)
)

dt+
∑

k∈Z[t0,tf )

eW(tf−tk)Sd

(

ud

(

tk
)

,ud

(

tk
))

≥≥− inf
T≥tf , (uc(·),ud(·))

[

∫ T

tf
e−W(t−tf )Sc

(

uc(t), yd(t)
)

dt

+
∑

k∈Z[tf ,T)

e−W(tk−tf )Sd

(

ud

(

tk
)

,ud

(

tk
))

]

=Va

(

x
(

tf
))

,

(3.19)

which implies that Va(x), x ∈�, is a vector storage function and hence � is vector dis-

sipative (resp., exponentially vector dissipative) with respect to the vector hybrid supply

rate (Sc(uc, yc),Sd(ud, yd)). �

It follows from Lemma 2.6 that if W ∈Rq×q is essentially nonnegative and semistable

(resp., asymptotically stable), then there exist a scalar α≥ 0 (resp., α > 0) and a nonnega-

tive vector p ∈R
q
+, p �= 0, (resp., p ∈R

q
+) such that (2.2) holds. In this case,

pTeWt = pT

[

Iq +Wt+
1

2
W2t2 + ···

]

= pT

[

Iq−αtIq +
1

2
α2t2Iq + ···

]

= e−αt pT, t ∈R.

(3.20)

Using (3.20), we define the (scalar) available storage for the large-scale impulsive dynam-

ical system � by

va

(

x0

)

�− inf
T≥t0, (uc(·),ud(·))

[

∫ T

t0
pTe−W(t−t0)Sc

(

uc(t), yc(t)
)

dt

+
∑

k∈Z[t0,T)

pTe−W(tk−t0)Sd

(

ud

(

tk
)

, yd

(

tk
))

]

=− inf
T≥t0, (uc(·),ud(·))

[

∫ T

t0
eα(t−t0)sc

(

uc(t), yc(t)
)

dt

+
∑

k∈Z[t0,T)

eα(tk−t0)sd

(

ud

(

tk
)

, yd

(

tk
))

]

,

(3.21)

where sc : �c ×	c → R and sd : �d ×	d → R defined as sc(uc, yc) � pTSc(uc, yc) and

sd(ud, yd) � pTSd(ud, yd) form the (scalar) hybrid supply rate (sc,sd) for the large-scale

impulsive dynamical system �. Clearly, va(x) ≥ 0 for all x ∈ �. As in standard hybrid

dissipativity theory [10], the available storage va(x), x ∈ �, denotes the maximum

amount of (scaled) energy that can be extracted from the large-scale impulsive dynamical

system � at any time T .
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The following theorem relates vector storage functions and vector hybrid supply rates

to scalar storage functions and scalar hybrid supply rates of large-scale impulsive dynam-

ical systems.

Theorem 3.5. Consider the large-scale impulsive dynamical system � given by (3.1), (3.2),

(3.3), and (3.4). Suppose � is vector dissipative (resp., exponentially vector dissipative) with

respect to the vector hybrid supply rate (Sc(uc, yc),Sd(ud, yd)) : (�c×	c,�d×	d)→Rq ×

Rq and with vector storage function Vs : �→ R
q
+. Then there exists p ∈ R

q
+, p �= 0, (resp.,

p ∈R
q
+) such that � is dissipative (resp., exponentially dissipative) with respect to the scalar

hybrid supply rate (sc(uc, yc),sd(ud, yd)) = (pTSc(uc, yc), pTSd(ud, yd)) and with storage

function vs(x)= pTVs(x), x ∈�. Moreover, in this case, va(x), x ∈�, is a storage function

for � and

0≤ va(x)≤ vs(x), x ∈�. (3.22)

Proof. Suppose � is vector dissipative (resp., exponentially vector dissipative) with re-

spect to the vector hybrid supply rate (Sc(uc, yc),Sd(ud, yd)). Then there exist an essen-

tially nonnegative, semistable (resp., asymptotically stable) dissipation matrix W and a

vector storage function Vs : �→R
q
+ such that the dissipation inequality (3.6) holds. Fur-

thermore, it follows from Lemma 2.6 that there exist α ≥ 0 (resp., α > 0) and a nonzero

vector p ∈ R
q
+ (resp., p ∈ R

q
+) satisfying (2.2). Hence, premultiplying (3.6) by pT and

using (3.20), it follows that

eαTvs

(

x(T)
)

≤ eαt0vs

(

x
(

t0
))

+

∫ T

t0
eαtsc

(

uc(t), yc(t)
)

dt

+
∑

k∈Z[t0,T)

eαtk sd

(

ud

(

tk
)

, yd

(

tk
))

, T ≥ t0,
(

uc,ud

)

∈�c×�d,
(3.23)

where vs(x) = pTVs(x), x ∈ �, which implies dissipativity (resp., exponential dissipa-

tivity) of � with respect to the scalar hybrid supply rate (sc(uc, yc),sd(ud, yd)) and with

storage function vs(x), x ∈�. Moreover, since vs(0) = 0, it follows from (3.23) that for

x(t0)= 0,

∫ T

t0
eα(t−t0)sc

(

uc(t), yc(t)
)

dt

+
∑

k∈Z[t0,T)

eα(tk−t0)sd

(

ud

(

tk
)

, yd

(

tk
))

≥ 0, T ≥ t0,
(

uc,ud

)

∈�c×�d,
(3.24)

which, using (3.21), implies that va(0)= 0. Now, it can be easily shown that va(x), x ∈�,

satisfies (3.23) and hence the available storage defined by (3.21) is a storage function
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for �. Finally, it follows from (3.23) that

vs(x(t0))≥ eα(T−t0)vs

(

x(T)
)

−

∫ T

t0
eα(t−t0)sc

(

uc(t), yc(t)
)

dt

−
∑

k∈Z[t0,T)

eα(tk−t0)sd

(

ud

(

tk
)

, yd

(

tk
))

≥−

∫ T

t0
eα(t−t0)sc

(

u(t), y(t)
)

dt

−
∑

k∈Z[t0,T)

eα(tk−t0)sd

(

ud

(

tk
)

, yd

(

tk
))

, T ≥ t0,
(

uc,ud

)

∈�c×�d,

(3.25)

which implies

vs

(

x
(

t0
))

≥− inf
T≥t0, (uc(·),ud(·))

[

∫ T

t0
eα(t−t0)sc

(

uc(t), yc(t)
)

dt

+
∑

k∈Z[t0,T)

eα(tk−t0)sd

(

ud

(

tk
)

, yd

(

tk
))

]

= va

(

x
(

t0
))

(3.26)

and hence (3.22) holds. �

Remark 3.6. It follows from Theorem 3.4 that if (3.12) holds for x(t0)= 0, then the vector

available storage Va(x), x ∈�, is a vector storage function for �. In this case, it follows

from Theorem 3.5 that there exists p ∈R
q
+, p �= 0, such that vs(x) � pTVa(x) is a storage

function for � that satisfies (3.23), and hence by (3.22), va(x)≤ pTVa(x), x ∈�.

Remark 3.7. It is important to note that it follows from Theorem 3.5 that if � is vector

dissipative, then � can either be (scalar) dissipative or (scalar) exponentially dissipative.

The following theorem provides sufficient conditions guaranteeing that all scalar stor-

age functions defined in terms of vector storage functions, that is, vs(x) = pTVs(x), of a

given vector dissipative large-scale impulsive nonlinear dynamical system, are positive-

definite. To state this result, the following definition is needed.

Definition 3.8 [10]. A large-scale impulsive dynamical system � given by (3.1), (3.2),

(3.3), and (3.4) is zero-state observable if (uc(t),ud(tk))≡ (0,0) and (yc(t), yd(tk))≡ (0,0)

imply x(t)≡ 0.

Theorem 3.9. Consider the large-scale impulsive dynamical system � given by (3.1), (3.2),

(3.3), and (3.4) and assume that � is zero-state observable. Furthermore, assume that � is

vector dissipative (resp., exponentially vector dissipative) with respect to the vector hybrid

supply rate (Sc(uc, yc),Sd(ud, yd)) and there exist α ≥ 0 and p ∈ R
q
+ such that (2.2) holds.

In addition, assume that there exist functions κci : 	ci →�ci and κdi : 	di →�di such that

κci(0)= 0, κdi(0)= 0, sci(κci(yci), yci) < 0, yci �= 0, and sdi(κdi(ydi), ydi) < 0, ydi �= 0, for all

i = 1, . . . ,q. Then for all vector storage functions Vs : �→ R
q
+, the storage function vs(x) �

pTVs(x), x ∈�, is positive-definite; that is, vs(0)= 0 and vs(x) > 0, x ∈�, x �= 0.
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Proof. The proof is similar to the proof of [13, Theorem 3.3]. �

Next, we introduce the concept of vector required supply of a large-scale impulsive dy-

namical system. Specifically, define the vector required supply of the large-scale impulsive

dynamical system � by

Vr

(

x0

)

� inf
T≤t0, (uc(·),ud(·))

[

∫ t0

T
e−W(t−t0)Sc

(

uc(t), yc(t)
)

dt

+
∑

k∈Z[T ,t0)

e−W(tk−t0)Sd

(

ud

(

tk
)

, yd

(

tk
))

]

,

(3.27)

where x(t), t ≥ T , is the solution to (3.1), (3.2), (3.3), and (3.4) with x(T) = 0 and

x(t0)= x0. Note that since, with x(t0)= 0, the infimum in (3.27) is the zero vector, it fol-

lows that Vr(0)= 0. Moreover, since � is completely reachable, it follows that Vr(x)≪∞,

x ∈�. Using the notion of the vector required supply, we present necessary and suffi-

cient conditions for vector dissipativity of a large-scale impulsive dynamical system with

respect to a vector hybrid supply rate.

Theorem 3.10. Consider the large-scale impulsive dynamical system � given by (3.1),

(3.2), (3.3), and (3.4) and assume that � is completely reachable. Then � is vector dissi-

pative (resp., exponentially vector dissipative) with respect to the vector hybrid supply rate

(Sc(uc, yc),Sd(ud, yd)) if and only if

0≤≤Vr(x)≪∞, x ∈�. (3.28)

Moreover, if (3.28) holds, then Vr(x), x ∈�, is a vector storage function for �. Finally, if the

vector available storage Va(x), x ∈�, is a vector storage function for �, then

0≤≤Va(x)≤≤Vr(x)≪∞, x ∈�. (3.29)

Proof. Suppose (3.28) holds and let x(t), t ∈ R, satisfy (3.1), (3.2), (3.3), and (3.4) with

admissible inputs (uc(t),ud(t)) ∈�c ×�d, t ∈ R, and x(t0) = x0. Then it follows from

the definition of Vr(·) that for T ≤ tf ≤ t0, uc(·)∈�c, and ud(·)∈�d,

Vr

(

x0

)

≤≤

∫ t0

T
e−W(t−t0)Sc

(

uc(t), yc(t)
)

dt+
∑

k∈Z[T ,t0)

e−W(tk−t0)Sd

(

ud

(

tk
)

, yd

(

tk
))

=

∫ tf

T
e−W(t−t0)Sc

(

uc(t), yc(t)
)

dt+
∑

k∈Z[T ,tf )

e−W(tk−t0)Sd

(

ud

(

tk
)

, yd

(

tk
))

+

∫ t0

tf
e−W(t−t0)Sc

(

uc(t), yc(t)
)

dt+
∑

k∈Z[tf ,t0)

e−W(tk−t0)Sd

(

ud

(

tk
)

, yd

(

tk
))

(3.30)
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and hence,

Vr

(

x0

)

≤≤ eW(t0−tf ) inf
T≤tf , (uc(·),ud(·))

[

∫ tf

T
e−W(t−tf )Sc

(

uc(t), yc(t)
)

dt

+
∑

k∈Z[T ,tf )

e−W(tk−tf )Sd

(

ud

(

tk
)

, yd

(

tk
))

]

+

∫ t0

tf
e−W(t−t0)Sc

(

uc(t), yc(t)
)

dt

+
∑

k∈Z[tf ,t0)

e−W(tk−t0)Sd

(

ud

(

tk
)

, yd

(

tk
))

= eW(t0−tf )Vr

(

x
(

tf
))

+

∫ t0

tf
e−W(t−t0)Sc

(

uc(t), yc(t)
)

dt

+
∑

k∈Z[tf ,t0)

e−W(tk−t0)Sd

(

ud

(

tk
)

, yd

(

tk
))

,

(3.31)

which shows that Vr(x), x ∈�, is a vector storage function for � and hence � is vector

dissipative with respect to the vector hybrid supply rate (Sc(uc, yc),Sd(ud, yd)).

Conversely, suppose that � is vector dissipative with respect to the vector hybrid supply

rate (Sc(uc, yc),Sd(ud, yd)). Then there exists a nonnegative vector storage function Vs(x),

x ∈�, such that Vs(0)= 0. Since � is completely reachable, it follows that for x(t0)= x0,

there exist T < t0 and u(t), t ∈ [T , t0], such that x(T) = 0. Hence, it follows from the

vector hybrid dissipation inequality (3.6) that

0≤≤Vs

(

x
(

t0
))

≤≤ eW(t0−T)Vs

(

x(T)
)

+

∫ t0

T
eW(t0−t)Sc

(

uc(t), yc(t)
)

dt

+
∑

k∈Z[T ,t0)

eW(t0−tk)Sd

(

ud

(

tk
)

, yd

(

tk
))

,
(3.32)

which implies that for all T ≤ t0, uc ∈�c, and ud ∈�d,

0≤≤

∫ t0

T
eW(t0−t)Sc

(

uc(t), yc(t)
)

dt+
∑

k∈Z[T ,t0)

eW(t0−tk)Sd

(

ud

(

tk
)

, yd

(

tk
))

(3.33)

or, equivalently,

0≤≤ inf
T≤t0, (uc(·),ud(·))

[

∫ t0

T
eW(t0−t)Sc

(

uc(t), yc(t)
)

dt

+
∑

k∈Z[T ,t0)

eW(t0−tk)Sd

(

ud

(

tk
)

, yd

(

tk
))

]

=Vr

(

x0

)

.

(3.34)

Since, by complete reachability, Vr(x)≪∞, x ∈�, it follows that (3.28) holds.
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Finally, suppose that Va(x), x ∈ �, is a vector storage function. Then for x(T) = 0,

x(t0)= x0, uc ∈�c, and ud ∈�d, it follows that

Va

(

x
(

t0
))

≤≤ eW(t0−T)Va

(

x(T)
)

+

∫ t0

T
eW(t0−t)Sc

(

uc(t), yc(t)
)

dt

+
∑

k∈Z[T ,t0)

eW(t0−tk)Sd

(

ud

(

tk
)

, yd

(

tk
))

,
(3.35)

which implies that

0≤≤Va

(

x
(

t0
))

≤≤ inf
T≤t0, (uc(·),ud(·))

[

∫ t0

T
eW(t0−t)Sc

(

uc(t), yc(t)
)

dt

+
∑

k∈Z[T ,t0)

eW(t0−tk)Sd

(

ud

(

tk
)

, yd

(

tk
))

]

=Vr

(

x
(

t0
))

, x ∈�.

(3.36)

Since x(t0)= x0 ∈� is arbitrary and, by complete reachability, Vr(x)≪∞, x ∈�, (3.36)

implies (3.29). �

The next result is a direct consequence of Theorems 3.4 and 3.10.

Proposition 3.11. Consider the large-scale impulsive dynamical system � given by (3.1),

(3.2), (3.3), and (3.4). Let M = diag[µ1, . . . ,µq] be such that 0≤ µi ≤ 1, i= 1, . . . ,q. If Va(x),

x ∈�, and Vr(x), x ∈�, are vector storage functions for �, then

Vs(x)=MVa(x) +
(

Iq−M
)

Vr(x), x ∈�, (3.37)

is a vector storage function for �.

Next, recall that if � is vector dissipative (resp., exponentially vector dissipative), then

there exist p ∈R
q
+, p �= 0, and α≥ 0 (resp., p ∈R

q
+ and α > 0) such that (2.2) and (3.20)

hold. Now, define the (scalar) required supply for the large-scale impulsive dynamical

system � by

vr

(

x0

)

� inf
T≤t0, (uc(·),ud(·))

[

∫ t0

T
pTe−W(t−t0)Sc

(

uc(t), yc(t)
)

dt

+
∑

k∈Z[T ,t0)

e−W(tk−t0)Sd

(

ud

(

tk
)

, yd

(

tk
))

]

= inf
T≤t0, (uc(·),ud(·))

[

∫ t0

T
eα(t−t0)sc

(

uc(t), yc(t)
)

dt

+
∑

k∈Z[T ,t0)

eα(tk−t0)sd

(

ud

(

tk
)

, yd

(

tk
))

]

, x0 ∈�,

(3.38)

where sc(uc, yc) = pTSc(uc, yc), sd(ud, yd) = pTSd(ud, yd), and x(t), t ≥ T , is the solution

to (3.1), (3.2), (3.3), and (3.4) with x(T) = 0 and x(t0) = x0. It follows from (3.38) that
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the required supply of a large-scale impulsive dynamical system is the minimum amount

of generalized energy which can be delivered to the large-scale system in order to transfer

it from an initial state x(T)= 0 to a given state x(t0)= x0. Using the same arguments as

in the case of the vector required supply, it follows that vr(0)= 0 and vr(x) <∞, x ∈�.

Next, using the notion of required supply, we show that all storage functions of the

form vs(x) = pTVs(x), where p ∈ R
q
+, p �= 0, are bounded from above by the required

supply and bounded from below by the available storage. Hence, a dissipative large-scale

impulsive dynamical system can only deliver to its surroundings a fraction of all of its

stored subsystem energies and can only store a fraction of the work done to all of its

subsystems.

Corollary 3.12. Consider the large-scale impulsive dynamical system � given by (3.1),

(3.2), (3.3), and (3.4). Assume that � is vector dissipative with respect to the vector hybrid

supply rate (Sc(uc, yc),Sd(ud, yd)) and with vector storage function Vs : �→R
q
+. Then vr(x),

x ∈ �, is a storage function for �. Moreover, if vs(x) � pTVs(x), x ∈ �, where p ∈ R
q
+,

p �= 0, then

0≤ va(x)≤ vs(x)≤ vr(x) <∞, x ∈�. (3.39)

Proof. It follows from Theorem 3.5 that if � is vector dissipative with respect to the vector

hybrid supply rate (Sc(uc, yc),Sd(ud, yd)) and with a vector storage function Vs : �→R
q
+,

then there exists p ∈R
q
+, p �= 0, such that � is dissipative with respect to the hybrid supply

rate (sc(uc, yc),sd(ud, yd))= (pTSc(uc, yc), pTSd(ud, yd)) and with storage function vs(x)=

pTVs(x), x ∈�. Hence, it follows from (3.23), with x(T)= 0 and x(t0)= x0, that

∫ t0

T
eα(t−t0)sc

(

uc(t), yc(t)
)

dt+
∑

k∈Z[T ,t0)

eα(tk−t0)sd

(

ud

(

tk
)

, yd

(

tk
))

≥ 0,

T ≤ t0,
(

uc,ud

)

∈�c×�d,

(3.40)

which implies that vr(x0)≥ 0, x0 ∈�. Furthermore, it is easy to see from the definition of

required supply that vr(x), x ∈�, satisfies the dissipation inequality (3.23). Hence, vr(x),

x ∈�, is a storage function for �. Moreover, it follows from the dissipation inequality

(3.23), with x(T)= 0, x(t0)= x0, uc ∈�c, and ud ∈�d, that

eαt0vs

(

x
(

t0
))

≤ eαTvs

(

x(T)
)

+

∫ t0

T
eαtsc

(

uc(t), yc(t)
)

dt

+
∑

k∈Z[T ,t0)

eαtk sd

(

ud

(

tk
)

, yd

(

tk
))

=

∫ t0

T
eαtsc

(

uc(t), yc(t)
)

dt+
∑

k∈Z[T ,t0)

eαtk sd

(

ud

(

tk
)

, yd

(

tk
))

,

(3.41)
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which implies that

vs

(

x
(

t0
))

≤ inf
T≤t0, (uc(·),ud(·))

[

∫ t0

T
eα(t−t0)sc

(

uc(t), yc(t)
)

dt

+
∑

k∈Z[T ,t0)

eα(tk−t0)sd

(

ud

(

tk
)

, yd

(

tk
))

]

= vr

(

x
(

t0
))

.

(3.42)

Finally, it follows from Theorem 3.5 that va(x), x ∈ �, is a storage function for � and

hence, using (3.22) and (3.42), (3.39) holds. �

Remark 3.13. It follows from Theorem 3.10 that if � is vector dissipative with respect to

the vector hybrid supply rate (Sc(uc, yc),Sd(ud, yd)), then Vr(x), x ∈�, is a vector stor-

age function for � and, by Theorem 3.5, there exists p ∈ R
q
+, p �= 0, such that vs(x) �

pTVr(x), x ∈ �, is a storage function for � satisfying (3.23). Hence, it follows from

Corollary 3.12 that pTVr(x)≤ vr(x), x ∈�.

The next result relates vector (resp., scalar) available storage and vector (resp., scalar)

required supply for vector lossless large-scale impulsive dynamical systems.

Theorem 3.14. Consider the large-scale impulsive dynamical system � given by (3.1), (3.2),

(3.3), and (3.4). Assume that � is completely reachable to and from the origin. If � is vector

lossless with respect to the vector hybrid supply rate (Sc(uc, yc),Sd(ud, yd)) and Va(x), x ∈�,

is a vector storage function, then Va(x)=Vr(x), x ∈�. Moreover, if Vs(x), x ∈�, is a vector

storage function, then all (scalar) storage functions of the form vs(x) = pTVs(x), x ∈ �,

where p ∈R
q
+, p �= 0, are given by

vs

(

x0

)

= va

(

x0

)

= vr

(

x0

)

=−

∫ T

t0
eα(t−t0)sc

(

uc(t), yc(t)
)

dt−
∑

k∈Z[t0,T)

eα(tk−t0)sd

(

ud

(

tk
)

, yd

(

tk
))

=

∫ t0

T′
eα(t−t0)sc

(

uc(t), yc(t)
)

dt+
∑

k∈Z
[T
′

,t0)

eα(tk−t0)sd

(

ud

(

tk
)

, yd

(

tk
))

,

(3.43)

where x(t), t ≥ t0, is the solution to (3.1), (3.2), (3.3), and (3.4) with uc ∈�c, ud ∈�d,

x(T
′

) = 0, x(T) = 0, x(t0) = x0 ∈ �, sc(uc, yc) = pTSc(uc, yc), and sd(ud, yd) = pTSd(ud,

yd).

Proof. The proof is similar to the proof of [13, Theorem 3.5]. �

The next proposition presents a characterization for vector dissipativity of large-scale

impulsive dynamical systems in the case where Vs(·) is continuously differentiable.
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Proposition 3.15. Consider the large-scale impulsive dynamical system � given by (3.1),

(3.2), (3.3), and (3.4) and assume Vs = [vs1, . . . ,vsq]T : �→ R
q
+ is a continuously differen-

tiable vector storage function for � and � is completely reachable. Then � is vector dissipative

with respect to the vector hybrid supply rate (Sc(uc, yc),Sd(ud, yd)) if and only if

V̇s

(

x(t)
)

≤≤WVs

(

x(t)
)

+ Sc

(

uc(t), yc(t)
)

, tk < t ≤ tk+1,

Vs

(

x
(

tk
)

+Fd

(

x
(

tk
)

,ud

(

tk
)))

≤≤Vs

(

x
(

tk
))

+ Sd

(

ud

(

tk
)

, yd

(

tk
))

, k ∈ Z+,
(3.44)

where V̇s(x(t)) denotes the total time derivative of each component of Vs(·) along the state

trajectories x(t), tk < t ≤ tk+1, of �.

Proof. The proof is similar to the proof of [13, Proposition 3.2]. �

Recall that if a disconnected subsystem �i (i.e., �ci(x)≡ 0 and �di(x)≡ 0, i∈ {1, . . . ,q})
of a large-scale impulsive dynamical system � is exponentially dissipative (resp., dissipa-

tive) with respect to a hybrid supply rate (sci(uci, yci),sdi(udi, ydi)), then there exist a stor-

age function vsi : Rni → R+ and a constant εi > 0 (resp., εi = 0) such that the dissipation

inequality (2.11) holds. In the case where vsi : Rni →R+ is continuously differentiable and

� is completely reachable, (2.11) yields

v′si
(

xi
)(

fci
(

xi
)

+Gci
(

xi
)

uci
)

≤−εivsi
(

xi
)

+ sci
(

uci, yci
)

, x �∈�i, uci ∈�ci,

vsi
(

xi + fdi
(

xi
)

+Gdi
(

xi
)

udi
)

≤ vsi
(

xi
)

+ sdi
(

udi, ydi
)

, x ∈�i, udi ∈�di,
(3.45)

where �i � Rn1 × ··· ×Rni−1 ×�xi ×Rni+1 × ··· ×Rq ⊂ Rn and �xi ⊂ Rni , i = 1, . . . ,q.

The next result relates exponential dissipativity with respect to a scalar hybrid supply rate

of each disconnected subsystem �i of � with vector dissipativity (or, possibly, exponential

vector dissipativity) of � with respect to a hybrid vector supply rate.

Proposition 3.16. Consider the large-scale impulsive dynamical system � given by (3.1),

(3.2), (3.3), and (3.4) with �x = ∪
q
i=1�i. Assume that � is completely reachable and each

disconnected subsystem �i of � is exponentially dissipative with respect to the hybrid supply

rate (sci(uci, yci),sdi(udi, ydi)) and with a continuously differentiable storage function vsi :

Rni → R+, i = 1, . . . ,q. Furthermore, assume that interconnection functions �ci : � → Rni

and �di : �→Rni , i= 1, . . . ,q, of � are such that

v′si
(

xi
)

�ci(x)≤

q
∑

j=1

ξi j(x)vs j
(

x j
)

, x �∈�x,

vsi
(

xi + fdi
(

xi
)

+ �di(x) +Gdi
(

xi
)

udi
)

≤ vsi
(

xi + fdi
(

xi
)

+Gdi
(

xi
)

udi
)

, x ∈�x, udi ∈�di, i= 1, . . . ,q,

(3.46)
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where ξi j : �→ R, i, j = 1, . . . ,q, are given bounded functions. If W ∈ Rq×q is semistable

(resp., asymptotically stable), with

W(i, j) =







−εi +αii, i= j,

αi j , i �= j,
(3.47)

where εi > 0 and αi j � max{0,supx∈�
ξi j(x)}, i, j = 1, . . . ,q, then � is vector dissipative

(respectively, exponentially vector dissipative) with respect to the vector hybrid supply rate

(Sc(uc, yc),Sd(ud, yd)) � ([sc1(uc1, yc1), . . . ,scq(ucq, ycq)]T, [sd1(ud1, yd1), . . . ,sdq(udq, ydq)]T)

and with vector storage function Vs(x) � [vs1(x1), . . . ,vsq(xq)]T, x ∈�.

Proof. Since each disconnected impulsive subsystem �i of � is exponentially dissipative

with respect to the hybrid supply rate sci(uci, yci), i = 1, . . . ,q, it follows from (3.45) and

(3.46) that, for all uci ∈�ci and i= 1, . . . ,q,

v̇si
(

xi(t)
)

= v′si
(

xi(t)
)[

fci
(

xi(t)
)

+ �ci
(

x(t)
)

+Gci
(

xi(t)
)

uci(t)
]

≤−εivsi
(

xi(t)
)

+ sci
(

uci(t), yci(t)
)

+

q
∑

j=1

ξi j
(

x(t)
)

vs j
(

x j(t)
)

≤−εivsi
(

xi(t)
)

+ sci
(

uci(t), yci(t)
)

+

q
∑

j=1

αi jvs j
(

x j(t)
)

, tk < t ≤ tk+1,

vsi
(

xi
(

tk
)

+ fdi
(

xi
(

tk
))

+ �di
(

x
(

tk
))

+Gdi
(

xi
(

tk
))

udi
(

tk
))

≤ vsi
(

xi
(

tk
)

+ fdi
(

xi
(

tk
))

+Gdi
(

xi
(

tk
))

udi
(

tk
))

≤ vsi
(

xi
(

tk
))

+ sdi
(

udi
(

tk
)

, ydi
(

tk
))

, k ∈ Z+.

(3.48)

Now, the result follows from Proposition 3.15 by noting that for all subsystems �i of �,

V̇s

(

x(t)
)

≤≤WVs

(

x(t)
)

+ Sc

(

uc(t), yc(t)
)

, tk < t ≤ tk+1, uc ∈�c,

Vs

(

x
(

tk
)

+Fd

(

x
(

tk
)

,ud

(

tk
)))

≤≤Vs

(

x
(

tk
))

+ Sd

(

ud

(

tk
)

, yd

(

tk
))

, k ∈ Z+, ud ∈�d,

(3.49)

where W is essentially nonnegative and, by assumption, semistable (resp., asymptotically

stable) and Vs(x) � [vs1(x1), . . . ,vsq(xq)]T, x ∈�, is a vector storage function for �. �

4. Extended Kalman-Yakubovich-Popov conditions for large-scale impulsive

dynamical systems

In this section, we show that vector dissipativeness (resp., exponential vector dissipative-

ness) of a large-scale impulsive dynamical system � of the form (3.1), (3.2), (3.3), and

(3.4) can be characterized in terms of the local subsystem functions fci(·), Gci(·), hci(·),

Jci(·), fdi(·), Gdi(·), hdi(·), and Jdi(·), along with the interconnection structures �ci(·)

and �di(·) for i = 1, . . . ,q. For the results in this section, we consider the special case
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of dissipative systems with quadratic vector hybrid supply rates and set � = Rn, �ci =

Rmci , �di =Rmdi , 	ci =Rlci , and 	di =Rldi . Furthermore, we assume that �=�x ×Rmc ,

where �x ⊂ �, so that resetting occurs only when x(t) intersects �x. Specifically, let

Rci ∈ Smci , Sci ∈ Rlci×mci , Qci ∈ Slci , Rdi ∈ Smdi , Sdi ∈ Rldi×mdi , and Qdi ∈ Sldi be given and

assume Sc(uc, yc) is such that sci(uci, yci) = yT
ciQciyci + 2yT

ciSciuci + uT
ciRciuci and Sd(ud, yd)

is such that sdi(udi, ydi) = yT
diQdiydi + 2yT

diSdiudi + uT
diRdiudi, i = 1, . . . ,q. Furthermore, for

the remainder of this paper, we assume that there exists a continuously differentiable

vector storage function Vs(x), x ∈ Rn, for the large-scale impulsive dynamical system

�. For the statement of the next result, recall that x = [xT
1 , . . . ,xT

q ]T, uc = [uT
c1, . . . ,uT

cq]T,

yc = [yT
c1, . . . , yT

cq]T, ud = [uT
d1, . . . ,uT

dq]T, yd = [yT
d1, . . . , yT

dq]T, xi ∈Rni , uci ∈Rmci , yci ∈Rlci ,

udi ∈Rmdi , ydi ∈Rldi , i= 1, . . . ,q,
∑q

i=1ni = n,
∑q

i=1mci =mc,
∑q

i=1mdi =md,
∑q

i=1 lci = lc,

and
∑q

i=1 ldi = ld. Furthermore, for (3.1), (3.2), (3.3), and (3.4), define 
c : Rn → Rn,

Gc : Rn → Rn×mc , hc : Rn → Rlc , Jc : Rn → Rlc×mc , 
d : Rn → Rn, Gd : Rn → Rn×md , hd :

Rn → Rld , and Jd : Rn → Rld×md by 
c(x) � [

T
c1(x), . . . ,
T

cq(x)]T, 
d(x) � [

T
d1(x), . . . ,



T
dq(x)]T, where 
ci(x) � fci(xi) + �ci(x), 
di(x) � fdi(xi) + �di(x), i = 1, . . . ,q, Gc(x) �

diag[Gc1(x1), . . . ,Gcq(xq)], Gd(x) � diag[Gd1(x1), . . . ,Gdq(xq)], hc(x) � [hT
c1(x1), . . . ,

hT
cq(xq)]T, hd(x) � [hT

d1(x1), . . . ,hT
dq(xq)]T, Jc(x) � diag[Jc1(x1), . . . , Jcq(xq)], and Jd(x) �

diag[Jd1(x1), . . . , Jdq(xq)]. Moreover, for all i= 1, . . . ,q, define R̂ci ∈ Smc , Ŝci ∈Rlc×mc , Q̂ci ∈

Slc , R̂di ∈ Smd , Ŝdi ∈Rld×md , and Q̂di ∈ Sld such that each of these block matrices consists of

zero blocks except for, respectively, the matrix blocks Rci ∈ Smci , Sci ∈ Rlci×mci , Qci ∈ Slci ,

Rdi ∈ Smdi , Sdi ∈ Rldi×mdi , and Qdi ∈ Sldi on (i, i) position. Finally, we introduce a more

general definition of vector dissipativity involving an underlying nonlinear comparison

system.

Definition 4.1. The large-scale impulsive dynamical system � given by (3.1), (3.2), (3.3),

and (3.4) is vector dissipative (resp., exponentially vector dissipative) with respect to the

vector hybrid supply rate (Sc(uc, yc),Sd(ud, yd)) if there exist a continuous, nonnegative-

definite vector function Vs = [vs1, . . . ,vsq]T : �→R
q
+, called a vector storage function, and

a class � function wc : R
q
+ →Rq such that Vs(0)= 0, wc(0)= 0, the zero solution r(t)≡ 0

to the comparison system (2.6) is Lyapunov (resp., asymptotically) stable, and the vector

hybrid dissipation inequality

Vs

(

x(T)
)

≤≤Vs

(

x
(

t0
))

+

∫ T

t0
wc

(

Vs

(

x(t)
))

dt+

∫ T

t0
Sc

(

uc(t), yc(t)
)

dt

+
∑

k∈Z[t0,T)

Sd

(

ud

(

tk
)

, yd

(

tk
))

, T ≥ t0,
(4.1)

is satisfied, where x(t), t ≥ t0, is the solution to (3.1), (3.2), (3.3), and (3.4) with uc ∈�c

and ud ∈�d. The large-scale impulsive dynamical system � given by (3.1), (3.2), (3.3),

and (3.4) is vector lossless with respect to the vector hybrid supply rate (Sc(uc, yc),Sd(ud, yd))

if the vector hybrid dissipation inequality is satisfied as an equality with the zero solution

r(t)≡ 0 to (2.6) being Lyapunov stable.
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Remark 4.2. If � is completely reachable and Vs(·) is continuously differentiable, then

(4.1) can be equivalently written as

V̇s

(

x(t)
)

≤≤wc

(

Vs

(

x(t)
))

+ Sc

(

uc(t), yc(t)
)

, tk < t ≤ tk+1,

Vs

(

x
(

tk
)

+Fd

(

x
(

tk
)

,ud

(

tk
)))

≤≤Vs

(

x
(

tk
))

+ Sd

(

ud

(

tk
)

, yd

(

tk
))

, k ∈ Z+,
(4.2)

with uc ∈�c and ud ∈�d.

Remark 4.3. If in Definition 4.1, the function wc : R
q
+ → Rq is such that wc(r) =Wr,

where W ∈ Rq×q, then W is essentially nonnegative and Definition 4.1 collapses to

Definition 3.2.

Theorem 4.4. Consider the large-scale impulsive dynamical system � given by (3.1), (3.2),

(3.3), and (3.4). Let Rci ∈ Smci , Sci ∈Rlci×mci , Qci ∈ Slci , Rdi ∈ Smdi , Sdi ∈Rldi×mdi , and Qdi ∈

Sldi , i= 1, . . . ,q. Then � is vector dissipative (resp., exponentially vector dissipative) with re-

spect to the quadratic hybrid supply rate (Sc(uc, yc),Sd(ud, yd)), where sci(uci, yci) =

yT
ciQciyci + 2yT

ciSciuci + uT
ciRciuci and sdi(udi, ydi) = yT

diQdiydi + 2yT
diSdiudi + uT

diRdiudi, i =

1, . . . ,q, if there exist functions Vs = [vs1, . . . ,vsq]T : Rn → R
q
+, wc = [wc1, . . . ,wcq]T : R

q
+ →

Rq, ℓci : Rn→Rsci , �ci : Rn→Rsci×mc , ℓdi : Rn→Rsdi , �di : Rn→Rsdi×md , P1i : Rn→R1×md ,

and P2i : Rn → Nmd such that vsi(·) is continuously differentiable, vsi(0) = 0, i = 1, . . . ,q,

wc ∈�, wc(0) = 0, the zero solution r(t) ≡ 0 to (2.6) is Lyapunov (resp., asymptotically)

stable,

vsi
(

x+ 
d(x) +Gd(x)ud

)

= vsi
(

x+ 
d(x)
)

+P1i(x)ud +uT
dP2i(x)ud, x ∈�x, ud ∈R

md ,
(4.3)

and, for all i= 1, . . . ,q,

0= v′si(x)
c(x)−hT
c (x)Q̂cihc(x)−wci

(

Vs(x)
)

+ ℓT
ci(x)ℓci(x), x �∈�x, (4.4)

0=
1

2
v′si(x)Gc(x)−hT

c (x)
(

Ŝci + Q̂ciJc(x)
)

+ ℓT
ci(x)�ci(x), x �∈�x, (4.5)

0= R̂ci + JT
c (x)Ŝci + ŜT

ciJc(x) + JT
c (x)Q̂ciJc(x)−�

T
ci(x)�ci(x), x �∈�x, (4.6)

0= vsi
(

x+ 
d(x)
)

−hT
d (x)Q̂dihd(x)− vsi(x) + ℓT

di(x)ℓdi(x), x ∈�x, (4.7)

0=
1

2
P1i(x)−hT

d (x)
(

Ŝdi + Q̂diJd(x)
)

+ ℓT
di(x)�di(x), x ∈�x, (4.8)

0= R̂di + JT
d (x)Ŝdi + ŜT

diJd(x) + JT
d (x)Q̂diJd(x)−P2i(x)−�

T
di(x)�di(x), x ∈�x. (4.9)

Proof. Suppose that there exist functions vsi : Rn →R+, ℓci : Rn →Rsci , �ci : Rn →Rsci×mc ,

ℓdi : Rn → Rsdi , �di : Rn → Rsdi×md , wc : R
q
+ → Rq, P1i : Rn → R1×md , and P2i : Rn → Nmd

such that vsi(·) is continuously differentiable and nonnegative-definite, vsi(0) = 0, i =
1, . . . ,q, wc(0)= 0, wc ∈�, the zero solution r(t)≡ 0 to (2.6) is Lyapunov (resp., asymp-

totically) stable, and (4.3), (4.4), (4.5), (4.6), (4.7), (4.8), and (4.9) are satisfied. Then for

any uc ∈�c, t, t̂ ∈R, tk < t ≤ t̂ ≤ tk+1, k ∈ Z+, and i= 1, . . . ,q, it follows from (4.4), (4.5),
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and (4.6) that

∫ t̂

t
sci
(

uci(σ), yci(σ)
)

dσ

=

∫ t̂

t

[

uT
c (σ)R̂ciuc(σ) + 2yT

c (σ)Ŝciuc(σ) + yT
c (σ)Q̂ciyc(σ)

]

dσ

=

∫ t̂

t

[

hT
c

(

x(σ)
)

Q̂cihc

(

x(σ)
)

+ 2hT
c

(

x(σ)
)(

Ŝci + Q̂ciJc
(

x(σ)
))

uc(σ)

+uT
c (σ)

(

JT
c

(

x(σ)
)

Q̂ciJc
(

x(σ)
)

+ JT
c

(

x(σ)
)

Ŝci

+ ŜT
ciJc
(

x(σ)
)

+ R̂ci
)

uc(σ)
]

dσ

=

∫ t̂

t

[

v′si
(

x(σ)
)(


c

(

x(σ)
)

+Gc

(

x(σ)
)

uc(σ)
)

+ ℓT
ci

(

x(σ)
)

ℓci
(

x(σ)
)

+ 2ℓT
ci

(

x(σ)
)

�ci
(

x(σ)
)

uc(σ)

+uT
c (σ)�

T
ci

(

x(σ)
)

�ci
(

x(σ)
)

uc(σ)−wci
(

Vs

(

x(σ)
))]

dσ

=

∫ t̂

t

[

v̇si
(

x(σ)
)

+
[

ℓci
(

x(σ)
)

+ �ci
(

x(σ)
)

uc(σ)
]T

×
[

ℓci
(

x(σ)
)

+ �ci
(

x(σ)
)

uc(σ)
]

−wci
(

Vs

(

x(σ)
))]

dσ

≥ vsi
(

x(t̂)
)

− vsi
(

x(t)
)

−

∫ t̂

t
wci
(

Vs

(

x(σ)
))

dσ ,

(4.10)

where x(σ), σ ∈ (tk, tk+1], satisfies (3.1). Next, for any ud ∈ Rmd , tk ∈ R, and k ∈ Z+, it

follows from (4.3), (4.7), (4.8), and (4.9) that

vsi
(

x+ 
d(x) +Gd(x)ud

)

− vsi(x)

= vsi
(

x+ 
d(x)
)

− vsi(x) +P1i(x)ud +uT
dP2i(x)ud

= hT
d (x)Q̂dihd(x)− ℓT

di(x)ℓdi(x)

+ 2
[

hT
d (x)

(

Q̂diJd(x) + Ŝdi
)

− ℓT
di(x)�di(x)

]

ud

+uT
d

[

R̂di + ŜT
diJd(x) + JT

d (x)Ŝdi + JT
d (x)Q̂diJd(x)−�

T
di(x)�di(x)

]

ud

= sdi
(

udi, ydi
)

−
[

ℓdi(x) + �di(x)ud

]T[
ℓdi(x) + �di(x)ud

]

≤ sdi
(

udi, ydi
)

.

(4.11)

Now, using (4.10) and (4.11), the result is immediate from Remark 4.2 with vector storage

function Vs(x)= [vs1(x), . . . ,vsq(x)]T, x ∈Rn. �



Wassim M. Haddad et al. 251

Using (4.4), (4.5), (4.6), (4.7), (4.8), and (4.9), it follows that for T ≥ t0 ≥ 0, k ∈ Z[t0,T),

and i= 1, . . . ,q,

∫ T

t0
sci
(

uci(t), yci(t)
)

dt+

∫ T

t0
wci
(

Vs

(

x(t)
))

dt+
∑

k∈Z[t0,T)

sdi
(

ud

(

tk
)

, yd

(

tk
))

= vsi
(

x(T)
)

− vsi
(

x
(

t0
))

+

∫ T

t0

[

ℓci
(

x(t)
)

+ �ci
(

x(t)
)

uc(t)
]T[

ℓci
(

x(t)
)

+ �ci
(

x(t)
)

uc(t)
]

dt

+
∑

k∈Z[t0,T)

[

ℓdi
(

x
(

tk
))

+ �di
(

x
(

tk
))

ud

(

tk
)]T[

ℓdi
(

x
(

tk
))

+ �di
(

x
(

tk
))

ud

(

tk
)]

,

(4.12)

where Vs(x)= [vs1(x), . . . ,vsq(x)]T, x ∈ Rn, which can be interpreted as a generalized en-

ergy balance equation for the ith impulsive subsystem of �, where vsi(x(T))− vsi(x(t0))

is the stored or accumulated generalized energy of the ith impulsive subsystem, the two

path dependent terms on the left-hand side are, respectively, the external supplied en-

ergy to the ith subsystem over the continuous-time dynamics and the energy gained over

the continuous-time dynamics by the ith subsystem from the net energy flow between all

subsystems due to subsystem coupling, the last discrete term on the left-hand side corre-

sponds to the external supplied energy to the ith subsystem at the resetting instants, the

second path-dependent term on the right-hand side corresponds to the dissipated en-

ergy from the ith impulsive subsystem over the continuous-time dynamics, and the last

discrete term on the right-hand side corresponds to the dissipated energy from the ith
impulsive subsystem at the resetting instants. Equivalently, (4.12) can be rewritten as

v̇si
(

x(t)
)

= sci
(

uci(t), yci(t)
)

+wci
(

Vs

(

x(t)
))

−
[

ℓci
(

x(t)
)

+ �ci
(

x(t)
)

uc(t)
]T[

ℓci
(

x(t)
)

+ �ci
(

x(t)
)

uc(t)
]

,

tk < t ≤ tk+1, i= 1, . . . ,q,

(4.13)

vsi
(

x
(

tk
)

+ 
d

(

x
(

tk
))

+Gd

(

x
(

tk
))

ud

(

tk
))

− vsi
(

x
(

tk
))

= sdi
(

ud

(

tk
)

, yd

(

tk
))

−
[

ℓdi
(

x
(

tk
))

+ �di
(

x
(

tk
))

ud

(

tk
)]T

×
[

ℓdi
(

x
(

tk
))

+ �di
(

x
(

tk
))

ud

(

tk
)]

, k ∈ Z+,

(4.14)

which yields a set of q generalized energy conservation equations for the large-scale im-

pulsive dynamical system �. Specifically, (4.13) shows that the rate of change in general-

ized energy, or generalized power, over the time interval t ∈ (tk, tk+1] for the ith subsystem

of � is equal to the generalized system power input to the ith subsystem plus the instan-

taneous rate of energy supplied to the ith subsystem from the net energy flow between

all subsystems minus the internal generalized system power dissipated from the ith sub-

system, while (4.14) shows that the change of energy at the resetting times tk, k ∈ Z+, is
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equal to the external generalized system supplied energy at the resetting times minus the

generalized dissipated energy at the resetting times.

Remark 4.5. Note that if � with (uc(t),ud(tk)) ≡ (0,0) is vector dissipative (resp., ex-

ponentially vector dissipative) with respect to the quadratic hybrid supply rate, where

Qci ≤ 0, Qdi ≤ 0, i= 1, . . . ,q, then it follows from the vector hybrid dissipation inequality

that for all k ∈ Z+,

V̇s

(

x(t)
)

≤≤wc

(

Vs

(

x(t)
))

+ Sc

(

0, yc(t)
)

≤≤wc

(

Vs

(

x(t)
))

, tk < t ≤ tk+1,

Vs

(

x
(

tk
)

+ 
d

(

x
(

tk
)))

−Vs

(

x
(

tk
))

≤≤ Sd

(

0, yd

(

tk
))

≤≤ 0,
(4.15)

where Sc(0, yc) = [sc1(0, yc1), . . . ,scq(0, ycq)]T, Sd(0, yd) = [sd1(0, yd1), . . . ,sdq(0, ydq)]T,

sci(0, yci(t)) = yT
ci(t)Qciyci(t) ≤ 0, sdi(0, ydi(tk)) = yT

di(tk)Qdiydi(tk) ≤ 0, tk < t ≤ tk+1, k ∈
Z+, i= 1, . . . ,q, and x(t), t ≥ t0, is the solution to (3.1), (3.2), (3.3), and (3.4) with (uc(t),

ud(tk))≡ (0,0). If, in addition, there exists p ∈R
q
+ such that pTVs(x), x ∈Rn, is positive-

definite, then it follows from Theorem 2.7 that the undisturbed ((uc(t),ud(tk)) ≡ (0,0))

large-scale impulsive dynamical system (3.1), (3.2), (3.3), and (3.4) is Lyapunov (resp.,

asymptotically) stable.

Next, we consider a specialization of Theorem 4.4 wherein � is a linear impulsive dy-

namical system. Specifically, we assume that wc ∈� is linear so that wc(r)=Wr, where

W ∈ Rq×q is essentially nonnegative, and consider the large-scale linear impulsive dy-

namical system � given by

ẋ(t)=Acx(t) +Bcuc(t), x(t) �∈�x,

∆x(t)=
(

Ad− In
)

x(t) +Bdud(t), x(t)∈�x,

yc(t)= Ccx(t) +Dcuc(t), x(t) �∈�x,

yd(t)= Cdx(t) +Ddud(t), x(t)∈�x,

(4.16)

where Ac ∈ Rn×n and is partitioned as Ac � [Aci j], i, j = 1, . . . ,q, Aci j ∈ Rni×n j ,
∑q

i=1ni
= n, Bc = block-diag[Bc1, . . . ,Bcq], Cc = block-diag[Cc1, . . . ,Ccq], Dc = block-diag[Dc1,

. . . ,Dcq], Bci ∈ Rni×mci , Cci ∈ Rlci×ni , Dci ∈ Rlci×mci ; and Ad ∈ Rn×n and is partitioned as

Ad � [Adi j], i, j = 1, . . . ,q, Adi j ∈ Rni×n j , Bd = block-diag[Bd1, . . . ,Bdq], Cd =

block-diag[Cd1, . . . ,Cdq], Dd = block-diag[Dd1, . . . ,Ddq], Bdi ∈Rni×mdi , Cdi ∈Rldi×ni , Ddi ∈

Rldi×mdi , and i= 1, . . . ,q.

Corollary 4.6. Consider the large-scale linear impulsive dynamical system � given by

(4.16). Let Rci ∈ Smci , Sci ∈ Rlci×mci , Qci ∈ Slci , Rdi ∈ Smdi , Sdi ∈ Rldi×mdi , and Qdi ∈ Sldi ,

i = 1, . . . ,q. Then � is vector dissipative (resp., exponentially vector dissipative) with re-

spect to the vector hybrid supply rate (Sc(uc, yc),Sd(ud, yd)), where sci(uci, yci)= uT
ciRciuci +

2yT
ciSciuci + yT

ciQciyci and sdi(udi, ydi) = uT
diRdiudi + 2yT

diSdiudi + yT
diQdiydi, i = 1, . . . ,q, if

there exist W ∈ Rq×q, Pi ∈ Nn, Lci ∈ Rsci×n, Zci ∈ Rsci×mc , Ldi ∈ Rsdi×n, and Zdi ∈ Rsdi×md ,

i= 1, . . . ,q, such that W is essentially nonnegative and semistable (resp., asymptotically
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stable), and, for all i= 1, . . . ,q,

0= xT

(

AT
c Pi +PiAc−CT

c Q̂ciCc−

q
∑

j=1

W(i, j)P j +LT
ciLci

)

x, x �∈�x, (4.17)

0= xT
(

PiBc−CT
c

(

Ŝci + Q̂ciDc

)

+LT
ciZci

)

, x �∈�x, (4.18)

0= R̂ci +DT
c Ŝci + ŜT

ciDc +DT
c Q̂ciDc−ZT

ciZci, (4.19)

0= xT
(

AT
dPiAd−CT

d Q̂diCd−Pi +LT
diLdi

)

x, x ∈�x, (4.20)

0= xT
(

AT
dPiBd−CT

d

(

Ŝdi + Q̂diDd

)

+LT
diZdi

)

, x ∈�x, (4.21)

0= R̂di +DT
d Ŝdi + ŜT

diDd +DT
d Q̂diDd−BT

dPiBd−ZT
diZdi. (4.22)

Proof. The proof follows from Theorem 4.4 with 
c(x) = Acx, Gc(x) = Bc, hc(x) = Ccx,

Jc(x) = Dc, wc(r) = Wr, ℓci(x) = Lcix, �ci(x) = Zci, 
d(x) = (Ad − I)x, Gd(x) = Bd,

hd(x) = Cdx, Jd(x) = Dd, ℓdi(x) = Ldix, �di(x) = Zdi, P1i(x) = 2xTAT
dPiBd, P2i(x) =

BT
dPiBd, and vsi(x)= xTPix, i= 1, . . . ,q. �

Remark 4.7. Note that (4.17), (4.18), (4.19), (4.20), (4.21), and (4.22) are implied by

[

�ci �ci

�
T
ci �ci

]

=−

[

LT
ci

ZT
ci

]

[

Lci Zci

]

≤ 0,

[

�di �di

�
T
di �di

]

=−

[

LT
di

ZT
di

]

[

Ldi Zdi

]

≤ 0, i= 1, . . . ,q,

(4.23)

where, for all i= 1, . . . ,q,

�ci = AT
c Pi +PiAc−CT

c Q̂ciCc−

q
∑

j=1

W(i, j)P j ,

�ci = PiBc−CT
c

(

Ŝci + Q̂ciDc

)

,

�ci =−
(

R̂ci +DT
c Ŝci + ŜT

ciDc +DT
c Q̂ciDc

)

,

�di = AT
dPiAd−CT

d Q̂diCd−Pi,

�di = AT
dPiBd−CT

d

(

Ŝdi + Q̂diDd

)

,

�di =−
(

R̂di +DT
d Ŝdi + ŜT

diDd +DT
d Q̂diDd−BT

dPiBd

)

.

(4.24)

Hence, vector dissipativity of large-scale linear impulsive dynamical systems with respect

to quadratic hybrid supply rates can be characterized via (cascade) linear matrix inequal-

ities (LMIs) [6].

Next, we extend the notions of passivity and nonexpansivity to vector passivity and

vector nonexpansivity.
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Definition 4.8. The large-scale impulsive dynamical system � given by (3.1), (3.2), (3.3),

and (3.4) with mci = lci, mdi = ldi, i = 1, . . . ,q, is vector passive (resp., vector exponen-

tially passive) if it is vector dissipative (resp., exponentially vector dissipative) with re-

spect to the vector hybrid supply rate (Sc(uc, yc),Sd(ud, yd)), where sci(uci, yci) = 2yT
ciuci

and sdi(udi, ydi)= 2yT
diudi, i= 1, . . . ,q.

Definition 4.9. The large-scale impulsive dynamical system � given by (3.1), (3.2), (3.3),

and (3.4) is vector nonexpansive (resp., vector exponentially nonexpansive) if it is vec-

tor dissipative (resp., exponentially vector dissipative) with respect to the vector hybrid

supply rate (Sc(uc, yc),Sd(ud, yd)), where sci(uci, yci) = γ2
ciu

T
ciuci − yT

ciyci and sdi(udi, ydi) =

γ2
diu

T
diudi− yT

diydi, i= 1, . . . ,q, and γci > 0, γdi > 0, i= 1, . . . ,q, are given.

Remark 4.10. Note that a mixed vector passive-nonexpansive formulation of � can also

be considered. Specifically, one can consider large-scale impulsive dynamical systems �

which are vector dissipative with respect to hybrid vector supply rates (Sc(uc, yc),Sd(ud,

yd)), where sci(uci, yci) = 2yT
ciuci, sdi(udi, ydi) = 2yT

diudi, i ∈ Zp, sc j(uc j , yc j) = γ2
c ju

T
c juc j −

yT
c j yc j , γc j > 0, sd j(ud j , yd j)= γ2

d ju
T
d jud j − yT

d j yd j , γd j > 0, j ∈ Zne, Zp∩Zne =∅, and Zp∪

Zne = {1, . . . ,q}. Furthermore, hybrid supply rates for vector input strict passivity, vector

output strict passivity, and vector input-output strict passivity generalizing the passivity

notions given in [14] can also be considered. However, for simplicity of exposition, we do

not do so here.

The next result presents constructive sufficient conditions guaranteeing vector dissi-

pativity of � with respect to a quadratic hybrid supply rate for the case where the vec-

tor storage function Vs(x), x ∈Rn, is component decoupled; that is, Vs(x)= [vs1(x1), . . . ,
vsq(xq)]T, x ∈Rn.

Theorem 4.11. Consider the large-scale impulsive dynamical system � given by (3.1),

(3.2), (3.3), and (3.4). Assume that there exist functions Vs = [vs1, . . . ,vsq]T : Rn → R
q
+,

wc = [wc1, . . . ,wcq]T : R
q
+ → Rq, ℓci : Rn → Rsci , �ci : Rn → Rsci×mci , ℓdi : Rn → Rsdi , �di :

Rn → Rsdi×mdi , P1i : Rn → R1×mdi , P2i : Rn → Nmdi such that vsi(·) is continuously differen-

tiable, vsi(0)= 0, i= 1, . . . ,q, wc ∈�, wc(0)= 0, the zero solution r(t)≡ 0 to (2.6) is Lya-

punov (resp., asymptotically) stable, and, for all x ∈Rn and i= 1, . . . ,q,

0≤ vsi
(

xi + 
di(x)
)

− vsi
(

xi + 
di(x) +Gdi
(

xi
)

udi
)

+P1i(x)udi +uT
diP2i(x)udi, x ∈�x, udi ∈R

mdi ,

0≥ v′si
(

xi
)


ci(x)−hT
ci

(

xi
)

Qcihci
(

xi
)

−wci
(

Vs(x)
)

+ ℓT
ci

(

xi
)

ℓci
(

xi
)

, x �∈�x,

0=
1

2
v′si
(

xi
)

Gci
(

xi
)

−hT
ci

(

xi
)(

Sci +QciJci
(

xi
))

+ ℓT
ci

(

xi
)

�ci
(

xi
)

, x �∈�x,

0≤ Rci + JT
ci

(

xi
)

Sci + ST
ciJci
(

xi
)

+ JT
ci

(

xi
)

QciJci
(

xi
)

−�
T
ci

(

xi
)

�ci
(

xi
)

, x �∈�x,

0≥ vsi
(

xi + 
di(x)
)

−hT
di

(

xi
)

Qdihdi
(

xi
)

− vsi
(

xi
)

+ ℓT
di

(

xi
)

ℓdi
(

xi
)

, x ∈�x,

0=
1

2
P1i(x)−hT

di

(

xi
)(

Sdi +QdiJdi
(

xi
))

+ ℓT
di

(

xi
)

�di
(

xi
)

, x ∈�x,
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0≤ Rdi + JT
di

(

xi
)

Sdi + ST
diJdi

(

xi
)

+ JT
di

(

xi
)

QdiJdi
(

xi
)

−P2i(x)−�
T
di

(

xi
)

�di
(

xi
)

, x ∈�x.

(4.25)

Then � is vector dissipative (resp., exponentially vector dissipative) with respect to the vector

hybrid supply rate (Sc(uc, yc),Sd(ud, yd)), where sci(uci, yci) = uT
ciRciuci + 2yT

ciSciuci +

yT
ciQciyci and sdi(udi, ydi)= uT

diRdiudi + 2yT
diSdiudi + yT

diQdiydi, i= 1, . . . ,q.

Proof. The proof is similar to the proof of Theorem 4.4 and hence is omitted. �

Finally, we provide necessary and sufficient conditions for the case where the large-

scale impulsive dynamical system � is vector lossless with respect to a quadratic hybrid

supply rate.

Theorem 4.12. Consider the large-scale impulsive dynamical system � given by (3.1),

(3.2), (3.3), and (3.4). Let Rci ∈ Smci , Sci ∈ Rlci×mci , Qci ∈ Slci , Rdi ∈ Smdi , Sdi ∈ Rldi×mdi ,

and Qdi ∈ Sldi , i = 1, . . . ,q. Then � is vector lossless with respect to the quadratic hybrid

supply rate (Sc(uc, yc),Sd(ud, yd)), where sci(uci, yci) = uT
ciRciuci + 2yT

ciSciuci + yT
ciQciyci and

sdi(udi, ydi) = uT
diRdiudi + 2yT

diSdiudi + yT
diQdiydi, i = 1, . . . ,q, if and only if there exist func-

tions Vs = [vs1, . . . ,vsq]T : Rn → R
q
+, P1i : Rn → R1×md , P2i : Rn → Nmd , and wc = [wc1, . . . ,

wcq]T : R
q
+ →Rq such that vsi(·) is continuously differentiable, vsi(0)= 0, i= 1, . . . ,q, wc ∈

�, wc(0) = 0, the zero solution r(t) ≡ 0 to (2.6) is Lyapunov stable, and, for all x ∈ Rn,

i= 1, . . . ,q, (4.3) holds and

0= v′si(x)
c(x)−hT
c (x)Q̂cihc(x)−wci

(

Vs(x)
)

, x �∈�x, (4.26)

0=
1

2
v′si(x)Gc(x)−hT

c (x)
(

Ŝci + Q̂ciJc(x)
)

, x �∈�x, (4.27)

0= R̂ci + JT
c (x)Ŝci + ŜT

ciJc(x) + JT
c (x)Q̂ciJc(x), x �∈�x, (4.28)

0= vsi
(

x+ 
d(x)
)

−hT
d (x)Q̂dihd(x)− vsi(x), x ∈�x, (4.29)

0=
1

2
P1i(x)−hT

d (x)
(

Ŝdi + Q̂diJd(x)
)

, x ∈�x, (4.30)

0= R̂di + JT
d (x)Ŝdi + ŜT

diJd(x) + JT
d (x)Q̂diJd(x)−P2i(x), x ∈�x. (4.31)

Proof. Sufficiency follows as in the proof of Theorem 4.4. To show necessity, suppose that

� is lossless with respect to the quadratic hybrid supply rate (Sc(uc, yc),Sd(ud, yd)). Then,

there exist continuous functions Vs = [vs1, . . . ,vsq]T : Rn → R
q
+ and wc = [wc1, . . . ,wcq]T :

R
q
+ →Rq such that Vs(0)= 0, the zero solution r(t)≡ 0 to (2.6) is Lyapunov stable, and,

for all k ∈ Z+, i= 1, . . . ,q,

vsi
(

x(t̂)
)

− vsi
(

x(t)
)

=

∫ t̂

t
sci
(

uci(σ), yci(σ)
)

dσ

+

∫ t̂

t
wci
(

Vs

(

x(σ)
))

dσ , tk < t ≤ t̂ ≤ tk+1,

(4.32)

vsi
(

x
(

tk
)

+ 
d

(

x
(

tk
))

+Gd

(

x
(

tk
))

ud

(

tk
))

= vsi
(

x
(

tk
))

+ sdi
(

udi
(

tk
)

, ydi
(

tk
))

. (4.33)
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Now, dividing (4.32) by t̂− t+ and letting t̂→ t+, (4.32) is equivalent to

v̇si
(

x(t)
)

= v′si
(

x(t)
)[


c

(

x(t)
)

+Gc

(

x(t)
)

uc(t)
]

= sci
(

uci(t), yci(t)
)

+wci
(

Vs

(

x(t)
))

, tk < t ≤ tk+1.
(4.34)

Next, with t = t0, it follows from (4.34) that

v′si
(

x0

)[


c

(

x0

)

+Gc

(

x0

)

uc

(

t0
)]

= sci
(

uci
(

t0
)

, yci
(

t0
))

+wci
(

Vs

(

x0

))

, x0 �∈�x, uc

(

t0
)

∈R
mc .

(4.35)

Since x0 �∈�x is arbitrary, it follows that

v′si(x)
[


c(x) +Gc(x)uc

]

=wci
(

Vs(x)
)

+uT
c R̂ciuc + 2yT

c Ŝciuc + yT
c Q̂ciyc

=wci
(

Vs(x)
)

+hT
c (x)Q̂cihc(x) + 2hT

c (x)
(

Q̂ciJc(x) + Ŝci
)

uc

+uT
c

(

R̂ci + ŜT
ciJc(x) + JT

c (x)Ŝci + JT
c (x)Q̂ciJc(x)

)

uc, x ∈R
n, uc ∈R

mc .

(4.36)

Now, equating coefficients of equal powers yields (4.26), (4.27), and (4.28). Next, it fol-

lows from (4.33) with k = 1 that

vsi
(

x
(

t1
)

+ 
d

(

x
(

t1
))

+Gd

(

x
(

t1
))

ud

(

t1
))

= vsi
(

x
(

t1
))

+ sdi
(

udi
(

t1
)

, ydi
(

t1
))

. (4.37)

Now, since the continuous-time dynamics (3.1) are Lipschitz, it follows that for arbitrary

x ∈�x, there exists x0 �∈�x such that x(t1)= x. Hence, it follows from (4.37) that

vsi
(

x+ 
d(x) +Gd(x)ud

)

= vsi(x) +uT
d R̂diud + 2yT

d Ŝdiud + yT
d Q̂diyd

= vsi(x) +hT
d (x)Q̂dihd(x) + 2hT

d (x)
(

Q̂diJd(x) + Ŝdi
)

ud

+uT
d

(

R̂di + ŜT
diJd(x) + JT

d (x)Ŝdi + JT
d (x)Q̂diJd(x)

)

ud, x ∈R
n, ud ∈R

md .

(4.38)

Since the right-hand side of (4.38) is quadratic in ud, it follows that vsi(x + 
d(x) +

Gd(x)ud) is quadratic in ud and hence there exist P1i : Rn → R1×md and P2i : Rn → Nmd

such that

vsi
(

x+ 
d(x) +Gd(x)ud

)

= vsi
(

x+ 
d(x)
)

+P1i(x)ud +uT
dP2i(x)ud, x ∈R

n, ud ∈R
md .

(4.39)

Now, using (4.39) and equating coefficients of equal powers in (4.38) yields (4.29), (4.30),

and (4.31). �

5. Stability of feedback interconnections of large-scale impulsive

dynamical systems

In this section, we consider stability of feedback interconnections of large-scale impulsive

dynamical systems. Specifically, for the large-scale impulsive dynamical system � given by
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(3.1), (3.2), (3.3), and (3.4), we consider either a dynamic or a static large-scale feedback

system �c. Then by appropriately combining vector storage functions for each system, we

show stability of the feedback interconnection. We begin by considering the large-scale

impulsive dynamical system (3.1), (3.2), (3.3), and (3.4) with the large-scale feedback

system �c given by

ẋc(t)= Fcc

(

xc(t),ucc(t)
)

, xc

(

t0
)

= xc0,
(

xc(t),ucc(t)
)

�∈�c,

∆xc(t)= Fdc

(

xc(t),udc(t)
)

,
(

xc(t),ucc(t)
)

∈�c,

ycc(t)=Hcc

(

xc(t),ucc(t)
)

,
(

xc(t),ucc(t)
)

�∈�c,

ydc(t)=Hdc

(

xc(t),udc(t)
)

,
(

xc(t),ucc(t)
)

∈�c,

(5.1)

where Fcc : Rnc ×�cc → Rnc , Fdc : Rnc ×�dc → Rnc , Hcc : Rnc ×�cc → 	cc, Hdc : Rnc ×

�dc → 	dc, Fcc � [FT
cc1, . . . ,FT

ccq]T, Fdc � [FT
dc1, . . . ,FT

dcq]T, Hcc � [HT
cc1, . . . ,HT

ccq]T, Hdc �

[HT
dc1, . . . ,HT

dcq]T, �cc ⊆ Rlc , �dc ⊆ Rld , 	cc ⊆ Rmc , and 	dc ⊆ Rmd . Moreover, for all i =
1, . . . ,q, we assume that

Fcci
(

xc,ucci
)

= fcci
(

xci
)

+ �cci
(

xc

)

+Gcci
(

xci
)

ucci,

Fdci
(

xc,udci
)

= fdci
(

xci
)

+ �dci
(

xc

)

+Gdci
(

xci
)

udci,

Hcci
(

xci,ucci
)

= hcci
(

xci
)

+ Jcci
(

xci
)

ucci,

Hdci
(

xci,udci
)

= hdci
(

xci
)

+ Jdci
(

xci
)

udci,

(5.2)

where ucci ∈ �cci ⊆ Rlci , udci ∈ �dci ⊆ Rldi , ycci � Hcci(xci,ucci) ∈ 	cci ⊆ Rmci , ydci �

Hdci(xci,udci) ∈	dci ⊆ Rmdi , fcci : Rnci → Rnci and �cci : Rnc → Rnci satisfy fcci(0) = 0 and

�cci(0) = 0, fdci : Rnci → Rnci , �dci : Rnc → Rnci , Gcci : Rnci → Rnci×lci , Gdci : Rnci → Rnci×ldi ,

hcci : Rnci →Rmci and satisfies hcci(0)= 0, hdci : Rnci →Rmdi , Jcci : Rnci →Rmci×lci , Jdci : Rnci →

Rmdi×ldi , and
∑q

i=1nci = nc. Furthermore, we define the composite input and composite

output for the system �c as ucc � [uT
cc1, . . . ,uT

ccq]T, udc � [uT
dc1, . . . ,uT

dcq]T, ycc � [yT
cc1, . . . ,

yT
ccq]T, and ydc � [yT

dc1, . . . , yT
dcq]T, respectively. In this case, �cc =�cc1×· · ·×�ccq, �dc

=�dc1 × · · ·×�dcq, 	cc =	cc1 × · · ·×	ccq, and 	dc =	dc1 × · · ·×	dcq. Note that

with the feedback interconnection given by Figure 5.1, (ucc,udc)= (yc, yd) and (ycc, ydc)=

(−uc,−ud). We assume that the negative feedback interconnection of � and �c is well

posed; that is, det(Imci + Jcci(xci)Jci(xi)) �= 0, det(Imdi + Jdci(xci)Jdi(xi)) �= 0, for all xi ∈ Rni ,

xci ∈ Rnci , and i = 1, . . . ,q. Next, we assume that the set �c � �cxc ×�cucc = {(xc,ucc) :

c(xc,ucc)= 0}, where c : Rnc ×�cc →R, and define the closed-loop resetting set

�̃x̃ � �x ×�cxc ∪
{(

x,xc

)

:
(

�cc

(

x,xc

)

,�c

(

x,xc

))

∈�cucc ×�uc

}

, (5.3)

where �cc(·,·) and �c(·,·) are functions of x and xc arising from the algebraic loops

due to ucc and uc, respectively. Note that since the feedback interconnection of � and

�c is well posed, it follows that �̃x̃ is well defined and depends on the closed-loop states

x̃ � [xT xT
c ]T. Furthermore, we assume that for the large-scale systems � and �c, the

conditions of Theorem 3.9 are satisfied; that is, if Vs(x), x ∈Rn, and Vcs(xc), xc ∈Rnc , are

vector storage functions for � and �c, respectively, then there exist p ∈ R
q
+ and pc ∈ R

q
+
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�

�c
+

−

Figure 5.1. Feedback interconnection of large-scale systems � and �c.

such that the functions vs(x) = pTVs(x), x ∈ Rn, and vcs(xc) = pT
c Vcs(xc), xc ∈ Rnc , are

positive-definite. The following result gives sufficient conditions for Lyapunov and as-

ymptotic stability of the feedback interconnection given by Figure 5.1. For the statement

of this result, let �c
x0,uc

denote the set of resetting times of �, let �x0,uc denote the com-

plement of �c
x0,uc

, that is, [0,∞)\�c
x0,uc

, let �c
xc0,ucc

denote the set of resetting times of �c,

and let �xc0,ucc denote the complement of �c
xc0,ucc

, that is, [0,∞)\�c
xc0,ucc

.

Theorem 5.1. Consider the large-scale impulsive dynamical systems � and �c given by

(3.1), (3.2), (3.3), and (3.4) and (5.1), respectively. Assume that � and �c are vector

dissipative with respect to the vector hybrid supply rates (Sc(uc, yc),Sd(ud, yd)) and

(Scc(ucc, ycc),Sdc(udc, ydc)), and with continuously differentiable vector storage functions

Vs(·) and Vcs(·) and dissipation matrices W ∈Rq×q and Wc ∈Rq×q, respectively.

(i) If there exists Σ � diag[σ1, . . . ,σq] > 0 such that Sc(uc, yc) + ΣScc(ucc, ycc) ≤≤ 0,

Sd(ud, yd) +ΣSdc(udc, ydc) ≤≤ 0, and W̃ ∈ Rq×q is semistable (resp., asymptotically

stable), where W̃(i, j) � max{W(i, j), (ΣWcΣ
−1)(i, j)} = max{W(i, j), (σi/σ j)Wc(i, j)},

i, j = 1, . . . ,q, then the negative feedback interconnection of � and �c is Lyapunov

(resp., asymptotically) stable.

(ii) Let Qci ∈ Slci , Sci ∈ Rlci×mci , Rci ∈ Smci , Qdi ∈ Sldi , Sdi ∈ Rldi×mdi , Rdi ∈ Smdi , Qcci ∈

Smci ,Scci ∈Rmci×lci , Rcci ∈ Slci , Qdci ∈ Smdi ,Sdci ∈Rmdi×ldi , and Rdci ∈ Sldi , and suppose

Sc(uc, yc) = [sc1(uc1, yc1), . . . ,scq(ucq, ycq)]T, Sd(ud, yd) = [sd1(ud1, yd1), . . . ,sdq(udq,

ydq)]T, Scc(ucc, ycc) = [scc1(ucc1, ycc1), . . . ,sccq(uccq, yccq)]T, and Sdc(udc, ydc) =

[sdc1(udc1, ydc1), . . . ,sdcq(udcq, ydcq)]T, where sci(uci, yci) = uT
ciRciuci + 2yT

ciSciuci +

yT
ciQciyci, sdi(udi, ydi)= uT

diRdiudi + 2yT
diSdiudi + yT

diQdiydi, scci(ucci, ycci)= uT
cciRcciucci

+ 2yT
cciScciucci + yT

cciQcciycci, and sdci(udci, ydci) = uT
dciRdciudci + 2yT

dciSdciudci +

yT
dciQdciydci, i = 1, . . . ,q. If there exists Σ � diag[σ1, . . . ,σq] > 0 such that for all i =

1, . . . ,q,

Q̃ci �

[

Qci + σiRcci −Sci + σiS
T
cci

−ST
ci + σiScci Rci + σiQcci

]

≤ 0,

Q̃di �

[

Qdi + σiRdci −Sdi + σiS
T
dci

−ST
di + σiSdci Rdi + σiQdci

]

≤ 0,

(5.4)
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and W̃ ∈Rq×q is semistable (resp., asymptotically stable), where W̃(i, j) � max{W(i, j),

(ΣWcΣ
−1)(i, j)} = max{W(i, j), (σi/σ j)Wc(i, j)}, i, j = 1, . . . ,q, then the negative feed-

back interconnection of � and �c is Lyapunov (resp., asymptotically) stable.

Proof. Let �̃c � �c
x0,uc

∪�c
xc0,ucc

and tk ∈ �̃c, k ∈ Z+. First, note that it follows from as-

sumptions (A1) and (A2) that the resetting times tk(= τk(x̃0)) for the feedback system are

well defined and distinct for every closed-loop trajectory.

(i) Consider the vector Lyapunov function candidate V(x,xc) = Vs(x) + ΣVcs(xc),

(x,xc)∈Rn×Rnc , and note that the corresponding vector Lyapunov derivative ofV(x,xc)

along the state trajectories (x(t),xc(t)), t ∈ (tk, tk+1), is given by

V̇
(

x(t),xc(t)
)

= V̇s

(

x(t)
)

+ΣV̇cs

(

xc(t)
)

≤≤ Sc

(

uc(t), yc(t)
)

+ΣScc

(

ucc(t), ycc(t)
)

+WVs

(

x(t)
)

+ΣWcVcs

(

xc(t)
)

≤≤WVs

(

x(t)
)

+ΣWcΣ
−1
ΣVcs

(

xc(t)
)

≤≤ W̃
(

Vs

(

x(t)
)

+ΣVcs

(

xc(t)
))

= W̃V
(

x(t),xc(t)
)

,
(

x(t),xc(t)
)

�∈ �̃x̃,

(5.5)

and the Lyapunov difference of V(x,xc) at the resetting times tk, k ∈ Z+, is given by

∆V
(

x
(

tk
)

,xc

(

tk
))

= ∆Vs

(

x
(

tk
))

+Σ∆Vcs

(

xc

(

tk
))

≤≤ Sd

(

ud

(

tk
)

, yd

(

tk
))

+ΣSdc

(

udc

(

tk
)

, ydc

(

tk
))

≤≤ 0,
(

x(t),xc(t)
)

∈ �̃x̃.

(5.6)

Next, since for Vs(x), x ∈ Rn, and Vcs(xc), xc ∈ Rnc , there exist, by assumption, p ∈ R
q
+

and pc ∈ R
q
+ such that the functions vs(x) = pTVs(x), x ∈ Rn, and vcs(xc) = pT

c Vcs(xc),

xc ∈ Rnc , are positive-definite, and noting that vcs(xc)≤maxi=1,...,q{pci}eTVcs(xc), where

pci is the ith element of pc and e � [1, . . . ,1]T, it follows that eTVcs(xc), xc ∈ Rnc , is

positive-definite. Now, since mini=1,...,q{piσi}eTVcs(xc) ≤ pTΣVcs(xc), it follows that

pTΣVcs(xc), xc ∈Rnc , is positive-definite. Hence, the function v(x,xc)= pTV(x,xc), (x,xc)

∈Rn×Rnc , is positive-definite. Now, the result is a direct consequence of Theorem 2.7.

(ii) The proof follows from (i) by noting that, for all i= 1, . . . ,q,

sci
(

uci, yci
)

+ σiscci
(

ucci, ycci
)

=

[

yc

ycc

]T

Q̃ci

[

yc

ycc

]

,

sdi
(

udi, ydi
)

+ σisdci
(

udci, ydci
)

=

[

yd

ydc

]T

Q̃di

[

yd

ydc

]

,

(5.7)

and hence Sc(uc, yc) +ΣScc(ucc, ycc)≤≤ 0 and Sd(ud, yd) +ΣSdc(udc, ydc)≤≤ 0. �
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For the next result, note that if the large-scale impulsive dynamical system � is vec-

tor dissipative with respect to the vector hybrid supply rate (Sc(uc, yc),Sd(ud, yd)), where

sci(uci, yci)= 2yT
ciuci and sdi(udi, ydi)= 2yT

diudi, i= 1, . . . ,q, then with κci(yci)=−κciyci and

κdi(ydi) = −κdiydi, where κci > 0, κdi > 0, i = 1, . . . ,q, it follows that sci(κci(yci), yci) =

−κciy
T
ciyci < 0 and sdi(κdi(ydi), ydi) = −κdiy

T
diydi < 0, yci �= 0, ydi �= 0, i = 1, . . . ,q. Alterna-

tively, if � is vector dissipative with respect to the vector hybrid supply rate (Sc(uc, yc),

Sd(ud, yd)), where sci(uci, yci)= γ2
ciu

T
ciuci− yT

ciyci and sdi(udi, ydi)= γ2
diu

T
diudi−yT

diydi, where

γci > 0, γdi > 0, i = 1, . . . ,q, then with κci(yci) = 0 and κdi(ydi) = 0, it follows that

sci(κci(yci), yci)=−y
T
ciyci < 0 and sdi(κdi(ydi), ydi)=−y

T
diydi < 0, yci �= 0, ydi �= 0, i= 1, . . . ,q.

Hence, if � is zero-state observable and the dissipation matrix W is such that there exist

α ≥ 0 and p ∈ R
q
+ such that (2.2) holds, then it follows from Theorem 3.9 that (scalar)

storage functions of the form vs(x) = pTVs(x), x ∈ Rn, where Vs(·) is a vector storage

function for �, are positive-definite. If � is exponentially vector dissipative, then p is

positive.

Corollary 5.2. Consider the large-scale impulsive dynamical systems � and �c given by

(3.1), (3.2), (3.3), and (3.4) and (5.1), respectively. Assume that � and �c are zero-state

observable and the dissipation matrices W ∈ Rq×q and Wc ∈ Rq×q are such that there ex-

ist, respectively, α ≥ 0, p ∈ R
q
+, αc ≥ 0, and pc ∈ R

q
+ such that (2.2) is satisfied. Then the

following statements hold:

(i) if � and �c are vector passive and W̃ ∈Rq×q is asymptotically stable, where W̃(i, j) �

max{W(i, j),Wc(i, j)}, i, j = 1, . . . ,q, then the negative feedback interconnection of �

and �c is asymptotically stable;

(ii) if � and �c are vector nonexpansive and W̃ ∈ Rq×q is asymptotically stable, where

W̃(i, j) � max{W(i, j),Wc(i, j)}, i, j = 1, . . . ,q, then the negative feedback interconnec-

tion of � and �c is asymptotically stable.

Proof. The proof is a direct consequence of Theorem 5.1. Specifically, (i) follows from

Theorem 5.1 with Rci = 0, Sci = Imci , Qci = 0, Rdi = 0, Sdi = Imdi , Qdi = 0, Rcci = 0, Scci =

Imci , Qcci = 0, Rdci = 0, Sdci = Imdi , Qdci = 0, i= 1, . . . ,q, and Σ= Iq, while (ii) follows from

Theorem 5.1 with Rci = γ2
ciImci , Sci = 0, Qci =−Ilci , Rdi = γ2

diImdi , Sdi = 0, Qdi =−Ildi , Rcci =

γ2
cciIlci , Scci = 0, Qcci = −Imci , Rdci = γ2

dciIldi , Sdci = 0, Qdci = −Imdi , i = 1, . . . ,q, and Σ = Iq.

�

6. Conclusion

In this paper, we extended the notion of hybrid dissipativity theory to vector hybrid dissi-

pativity theory. Specifically, using vector storage functions and hybrid supply rates, dissi-

pativity properties of composite large-scale impulsive dynamical systems are shown to be

determined from the dissipativity properties of the individual impulsive subsystems and

the nature of their interconnections. Furthermore, extended Kalman-Yakubovich-Popov

conditions, in terms of the local impulsive subsystem dynamics and the impulsive sub-

system interconnection constraints, characterizing vector dissipativeness via vector stor-

age functions, are derived. In addition, general stability criteria were given for feedback

interconnections of large-scale impulsive dynamical systems in terms of vector storage

functions serving as vector Lyapunov functions.
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