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Abstract

We further explore a recent proposal that the vector mesons in QCD have a special role as
Chern-Simons fields on various QCD objects such as domain walls and the one flavored
baryons. We compute contributions to domain wall theories and to the baryon current
coming from a generalized Wess-Zumino term including vector mesons. The conditions
that lead to the expected Chern-Simons terms and the correct spectrum of baryons, co-
incide with the conditions for vector meson dominance. This observation provides a
theoretical explanation to the phenomenological principle of vector dominance, as well
as an experimental evidence for the identification of vector mesons as the Chern-Simons
fields. By deriving the Chern-Simons theories directly from an action, we obtain new
results about QCD domain walls. One conclusion is the existence of a first order phase
transition between domain walls as a function of the quarks’ masses. We also discuss
applications of our results to Seiberg duality between gluons and vector mesons and
provide new evidence supporting the duality.
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1 Introduction

QCD is a theory that we understand very well at the two edges of the RG flow. At very high
energies it is described as a weakly interacting SU(N) gauge theory coupled to N f fundamental
fermions. By assuming confinement and chiral symmetry breaking, the low energy theory
is described as an SU(N f ) non-linear sigma model with a level N Wess-Zumino (WZ) term
[1, 2]. The WZ term is fixed uniquely by anomaly matching conditions. This model and
in particular the WZ term are extremely successful in combining deep theoretical ideas with
concrete measurements. Once we leave the deep infrared (IR) limit and increase the energy,
we lose theoretical control over the physics. In addition to higher derivatives terms, a zoo of
mesons come back to life, which results in many possible interactions. Ideally, we would like
to find theoretical arguments that reveal a hidden order in the theory and restrict the space of
couplings. In particular, we will be interested here in the effective theory containing in addition
to pions, also the η′ field and the U(N f ) vector mesons known asρ andωwhich we will denote
collectively by V . The most controlled way to add the η′ to the chiral Lagrangian is by taking
the large N limit. When N is large, the axial symmetry U(1)A becomes a good symmetry
of the theory. The spontaneous breaking of U(1)A leads to an extra Nambu-Goldstone (NG)
boson which is the η′ meson. Indeed, the mass of the η′ field is suppressed in the large N
limit, m2

η′ ∼
1
N [3, 4]. For the vector mesons, there are two phenomenological principles that

are commonly used when writing their effective theory. The first is the hidden local symmetry
(HLS) principle [5, 6]which will be reviewed in section 2, and the second is Vector Dominance
(VD) [7, 8] which will be reviewed in section 3. These two principles restrict the space of
couplings and increase the predictive power of the theory. Yet, a good theoretical explanation
for why these principles are correct is absent. Recently [9, 10], it has been conjectured that
the vector mesons have a special role as the Chern-Simons (CS) vector fields on various QCD
objects, such as domain walls (DWs), interfaces, and N f = 1 baryons. In this work we show
that the identification of the vector mesons as the CS fields is intimately related to HLS and
VD, at least in the large N limit. This story can be told in two ways,

1. Phenomenology→Theory: The effective theory for vector mesons can be written using
the assumptions of HLS and VD. The emergent theory on domain walls can be derived
classically from this effective Lagrangian. The emergent theory contains a CS term with
vector mesons as the vector fields. In addition, corrections to the baryon current can be
computed. The full baryon current reproduces the correct baryonic spectrum in the sense
that both skyrmions and the N f = 1 baryon introduced in [11] have charge 1 under it.
When telling the story in this direction, we can say that the experimental results prove
the conjecture that the vector mesons are indeed the CS fields.

2. Theory→Phenomenology: Assuming that the vector mesons are the CS fields, we can
demand that the low energy effective theory will reproduce the correct domain wall
theories and baryonic spectrum, as expected from theory. Then VD is automatically
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satisfied. When telling the story in this direction, we can say that our demand provides
a theoretical explanation to the 50 year old idea of VD.

The main actor in this story is the "hidden" part of the WZ action, we will denote by the hWZ
action. The hWZ action contains all the additional terms that are odd under the intrinsic parity
U → U†, when vector mesons are included. Here U ∈ U(N f ) is the matrix of pions+the η′

meson. Unlike the regular WZ term which is uniquely fixed by topology and anomalies, there
is a family of consistent hWZ actions, parametrized by three real numbers.1 When coupling
the theory to (background or dynamical) gauge field for some global U(1) symmetry, there
is an extra improvement term such that the hWZ action is then parametrized by four real
parameters. The hWZ action has been studied a lot mainly from the phenomenological point
of view. See for example [12] for a comprehensive review. The focus in the existing literature
is on the application of the hWZ action to processes odd under the intrinsic parity U → U†.
The full WZ action is the only part of the action violating the intrinsic parity, and as such, it
is solely responsible for all odd processes such as ω→ πππ, π0 → γγ where γ is the photon
field, and more. VD in this context is the observation that certain processes are dominated by
an exchange of an internal vector meson. This will happen if the direct vertices don’t appear
explicitly in the Lagrangian. In particular, we will be interested in a specific type of VD where
the following three vertices are absent: γγπ, γVπ, and Vπππ. This means for example that
the decay π0→ γγ is mediated by vector mesons π0→ V V → γγ. On the same way,ω→ πππ
is mediated byω→ ρπ→ πππ. The elimination of these three vertices gives three conditions,
which leave one free parameter in the hWZ action+photon consistent with this type of VD.

In this work, we study additional applications of the hWZ action such as its contribution
to the 3d effective theory on domain walls, and to the baryon current.

Baryon current: At low energies, the baryon current can be extracted from the WZ term
[2]. The hWZ term gives corrections to the skyrmion current that involve the vector mesons.
The correction is a total derivative and doesn’t contribute to the baryon charge of any smooth
configuration. The importance of these corrections comes when studying singular charged
configurations such as the N f = 1 baryons [10, 11]. The idea to derive the baryon current
for N f = 1 baryons from the hWZ action was also mentioned in [13, 14]. Very briefly, these
baryons are made out of a finite η′ = π disc with a U(1)N CS theory living on the disc. On
the ring that bounds the disc, η′ is not well defined which makes the configuration singular.
As in the quantum Hall effect, the CS field gives rise to a chiral edge mode on the ring. The
charge of the baryon comes from two orthogonal windings- η′ around the ring, and the edge
mode along the ring. For the baryon current derived from the full WZ term to reproduce the
correct baryonic spectrum, the CS fields should be identified with theω vector meson, and one
condition on the parameters of the hWZ action must be imposed. Surprisingly, this condition
is satisfied if one assumes VD.
η′ Domain walls: The vacuum of massive QCD at θ = π breaks time reversal symmetry,

which implies the existence of DWs connecting the two vacua [15]. Given the effective theory
of pions and vector mesons, the emergent theory on the DW can be extracted classically. First,
we can make connection with the N f = 1 baryons, by requiring that on the η′ = π DW, indeed
there will be an emergent U(1)N CS theory. This demand gives another condition on the
hWZ parameters. This condition is also satisfied if one assumes VD. The two other parameters
can be fixed by demanding that the emergent theory on the η′ = π wall will have the form
of a CS action also for N f ≥ 2. This gives two extra conditions. All together we have four
conditions based on theoretical arguments that fix the hWZ action+ external U(1) gauge field
completely.2 The three conditions for VD are contained inside these four conditions.

1This is true in the large N limit. At finite N one can write also multi-trace operators and the freedom is larger.
We will comment about it in section 7.

2Notice that the external U(1) gauge field was the photon when discussing VD, and a background field for
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In addition to establishing the relation between VD, DW, and Baryons, the identification of
vector mesons as the CS fields on DWs has several interesting consequences:

Phase transitions of DWs: It is an open question whether the Yang-Mills (YM) DW is con-
nected continuously to the m � Λ DW in QCD or not. If the answer is positive, one could
expect to be able to find a 3d theory describing the DW for any value of the quarks’ masses
[15].3 The other option is that there is a first order phase transition between DWs such that
the YM DW is connected continuously to some metastable DW when m� Λ. We will argue
that this is indeed the case and the YM DW is connected continuously to the η′ = π DW which
is metastable when m � Λ. This can be done by studying the contribution to DW theories
coming from the hWZ action. The result contradicts the proposal of [15] which is based on
the assumption of no phase transition. We will also provide additional arguments supporting
the phase transition scenario and give a new proposal for the DW theory.

Mesons-Gluons Duality: Another application is related to a conjectured Seiberg-like duality
between gluons and vector mesons [9, 10, 17–19]. Very roughly, the idea is as follows. You
start at high energies from an SU(N) gauge theory of gluons coupled to N f quarks. As the
energy is lowered, the theory becomes strongly coupled until at some point a dual description
of the theory appears. The dual description contains U(N f ) gauge theory coupled to some
matter. The U(N f ) gauge fields become massive via the Higgs mechanism and are identified
with the vector mesons. The question is to what extent this duality is correct. The fact that
the two theories flow to the same chiral Lagrangian in the deep IR is known. Assuming the
hidden local symmetry principle is correct, the two theories give rise to the same physics also
above the deep IR when the vector mesons are treated as dynamical. Can we push this duality
even higher along the RG flow? is there a point (presumably related to the chiral restoration
point) where the Higgs vev goes to zero, and the vector mesons become true massless gauge
fields? It is very tempting to relate this duality to CS dualities on the DWs. Dualities of the
form

U(N f )N ' SU(N)−N f
, (1.1)

can be used to map the U(N f ) vector mesons to the SU(N) gluons on the domain wall.
The outline of the paper is as follows. In section 2 we will review the idea of HLS and

introduce the hWZ action. In section 3 we will review the conditions on the hWZ parameters
for the type of VD we impose. This computation already appeared in [12]. In section 4 we
compute corrections to the skyrmion current coming from the hWZ action. We will find the
condition that reproduces the correct baryonic spectrum and show that it agrees with VD. In
section 5 we study domain walls. We start from DWs in N f = 1 QCD in 5.1, then move on to
N f ≥ 2 QCD in 5.2. In section 6 we review the mechanism for generating the cusp potential
of η′ [20] and discuss the conjecture for the dual description using vector mesons. We finish
with a summary of the conditions on the hWZ parameters and some comments about finite N
in section 7. Some technical computations appear in the appendix A.

After the first version of this paper appeared, there appeared a preprint [21] in which the
authors claim they disagree with the proposal made in this work. We comment about the
differences and similarities between the two proposals in appendix B.

U(1)B when deriving the baryon current.
3There is also the possibility that the 3d theory on the DW is not well defined everywhere. This can happen

if the bulk excitations are comparable or lighter than the DW excitations, and the interactions between them are
not suppressed in any sense. See [16] for a general discussion on this point. We ignore this issue throughout the
paper.
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2 Generalized WZ term from hidden local symmetry

We will begin this section by presenting the hWZ action. Recall that the WZ term can be written
as [2]

SW Z ,U = −
iN

240π2

∫

B5

ΓU , (2.1)

with
ΓU = dUU†dUU†dUU†dUU†dUU† , (2.2)

where U ∈ SU(N f ) is the matrix of pions. Here and later, there is an implicit trace in flavor
space, and all the forms are assumed to be contracted with the ∧ product. The integration
is over a 5 dimensional manifold B5 whose boundary is the 4 dimensional world M4 = ∂B5.
Miraculously, the theory doesn’t depend on the fifth dimension for every N ∈ Z in (2.1), thanks
to

−
in

240π2

∫

M5

ΓU = 2πZ ∀ n ∈ Z , (2.3)

for every closed manifold M5. The integer is fixed to be the number of colors N by anomaly
matching conditions. While (2.1) is uniquely fixed at low energies, we want to study a more
fundamental theory and include in addition to pions, also the vector mesons. Any consistent
action that reduces to (2.1) when integrating out the vector mesons, is a possible "orange"
completion (as opposed to uv completion here we are just a little bit above the infrared). We
will introduce the vector mesons into the chiral Lagrangian using the idea of hidden local
symmetry and classify the space of allowed completions for the WZ term. In the next sections,
we will use various theoretical arguments to fix the WZ term completely.

In the hidden local symmetry principle, we write U as a product of two unitary matrices

U = ξ†
LξR , (2.4)

where the redundant transformations ξR,L → hξR,L with h ∈ SU(N f ) are coupled to dynamical
gauge fields V which transform as V → hVh† + ihdh†. In addition, the global
SU(N f )L × SU(N f )R symmetries act as

ξR→ ξR g†
R , ξL → ξL g†

L . (2.5)

We also introduce the covariant derivative and the field strength

DξIξ
†
I = dξIξ

†
I − iV , F = dV − iV 2 . (2.6)

A convenient shorthand notation we will use throughout the paper is

R= dξRξ
†
R , L = dξLξ

†
L , RD = DξRξ

†
R , LD = DξLξ

†
L . (2.7)

The most general two derivatives Lagrangian consistent with the above symmetries is

L=
F2
π

4
tr (∂µ(ξ

†
RξL)∂

µ(ξ†
LξR))−

aF2
π

4
tr [DµξLξ

†
L + DµξRξ

†
R]

2 −
1

4g2
F2
µν , (2.8)

where a is some dimensionless free parameter and g is the coupling constant.
In the unitary gauge ξR = ξ

†
L = ξ, U = ξ2, this is written as

L=
F2
π

4
tr (∂µU†∂ µU)−

aF2
π

4
tr [∂µξξ

† + ∂µξ
†ξ− 2iVµ]

2 −
1

4g2
F2
µν . (2.9)
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In addition to the usual kinetic terms for the pions and the vector fields, the Lagrangian con-
tains a mass term for the vector fields with m2

V ∼ ag2F2
π, and interactions between the vectors

and the pions. Now we will present the most general hWZ action in the theory. By hWZ ac-
tion we mean all the terms whose Lorentz indices are contracted using the ε tensor, similar
to (2.1). In addition, we demand that the action is gauge invariant under the hidden gauge
transformations, consistent with the global symmetries (2.5) and with time reversal symmetry
that acts on the fields as

U ↔ U† , ξL ↔ ξR , V → V . (2.10)

We will also simplify the action by taking the large N limit in which only single trace (in flavor
space) operators are considered. The most general hWZ Lagrangian that can be added to (2.1)
is [12]

LhW Z =
N

16π2

3
∑

i=1

ciLi ,

L1 = i(LDR3
D − RD L3

D) , L2 = i LDRD LDRD , L3 = F(RD LD − LDRD) ,

(2.11)

with ci ∈ R. It is straight forward to verify that in the deep IR, upon integrating out the vector
mesons by replacing V → 1

2i (R+ L), LhW Z → 0 and we are left only with (2.1) as expected.
Explicitly, we can write (2.11) as

L1 =i LR3 − iRL3 + V (R3 − L3 + L2R− R2 L − LRL + RL2 + RLR− LR2)

− 2iV 2(LR− RL)− iVRVR+ iV LV L − 2V 3(R− L) ,

L2 =i LRLR+ 2V (RLR− LRL)− 2iV 2(LR− RL)− iVRVR+ iV LV L − 2V 3(R− L) ,

L3 =(dV − iV 2)(RL − LR) + i(dV V + V dV )(R− L) + 2V 3(R− L) .

(2.12)

In this prescription, there is a family of consistent hWZ actions parameterized by three
real numbers {ci}. In addition, we can couple the theory to a U(1) (dynamical or background)
gauge field for some global U(1),

ξR,L → ξR,Le−iQα , A→ A− dα . (2.13)

Here Q is the diagonal matrix of charges, and A is the gauge field. Two important cases we
will discuss are when A is the photon (see section 3), and when A is a background U(1)B field
(see section 4). When A is included, we need to redefine the covariant derivative accordingly,

RA = RD − iAξRQξ†
R , LA = LD − iAξLQξ†

L . (2.14)

The WZ action is modified due to this gauging in several ways. First, all the covariant deriva-
tives in (2.11) should be replaced with RD, LD → RA, LA. Second, there are two (not gauge
invariant) four dimensional terms that should be added to (2.1) in order to maintain gauge
invariance as was shown in [2]. Notice that the derivatives in (2.1) are not replaced by co-
variant derivatives in this formalism. Third, there is a freedom to add to the hWZ action, the
gauge invariant 4d term

−
Nc4

32π2
dAQ[ξ†

R(RALA− LARA)ξR + ξ
†
L(RALA− LARA)ξL] , (2.15)

with c4 ∈ R.
Understanding which completion is the correct one is important both from the theoretical

and phenomenological point of view. Our proposal for the hWZ action is

c1 =
2
3

, c2 = −
1
3

, c3 = 1 , c4 = 1 . (2.16)

In the next sections we will discuss some of the applications of the hWZ action and motivate
the choice of (2.16).
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3 Intrinsic parity and vector dominance

One of the most important features of the WZ term is that this is the only term that breaks
the intrinsic parity U → U†. As a result, various odd processes in QCD are fixed by the WZ
term. The most famous are the scattering of two kaons to three pions K+K−→ π+π−π0, the
decay of π0 to two photons π0→ γγ, and the 4-vertex involving γπ+π−π0. These three don’t
involve vector mesons as one of the external particles, and the leading contribution indeed
comes from ΓU coupled to the photon.[2] Other processes that contain vector mesons are for
example ω→ π+π−π0 and ω→ γπ0.

Vector dominance (VD) [7] is a related phenomenological principle that states that when
vector mesons are included, some vertices don’t appear explicitly in the Lagrangian and the
contribution to them is dominated by an exchange of internal vector meson. The study of VD
from the hWZ action was considered a lot in the literature, see for example [8, 12]. In this
section we will show that (2.16) implies VD for the vertices Vπππ, AAπ and AVπ, where A in
this section plays the role of the photon. We are interested in studying the effective vertices
obtained from expanding U around the identity,

U = 1+
2iΠ
Fπ
+ ... , R= −L =

idΠ
Fπ
+ ... . (3.1)

As was shown in [2], expanding the gauged version of (2.1) results in

2N
15π2F5

π

ΠdΠdΠdΠdΠ+
iN

3π2F3
π

AQdΠdΠdΠ−
N

4π2Fπ
AdAQ2dΠ . (3.2)

Together with (2.11) and (2.15) we get

N(8− 15c1 + 15c2)
60π2F5

π

Π(dΠ)4 +
iN

4π2F3
π

(c2 − c1 + c3)V (dΠ)
3 −

iN
4π2Fπ

(c1 + c2 − c3)V
3dΠ

−
N

8π2Fπ
c3(dV V + V dV )dΠ+

iN(4− 3c1 + 3c2 − 3c4)
12π2F3

π

AQ(dΠ)3 −
N(1− c4)

4π2Fπ
AdAQ2dΠ

−
iN(2c1 + 2c2 − c3)

8π2Fπ
AQ(V 2dΠ+ dΠV 2)

+
iN(c1 + c2)

4π2Fπ
AQV dΠV −

N(c3 − c4)
8π2Fπ

AQ(dΠdV + dΠdV ) .

(3.3)
The vertices AAΠ, AVΠ, VΠΠΠ vanish for c4 = 1, c3 = c4, c1− c2 = c3 respectively. The three
conditions together fix three out of the four free parameters,

c1 − c2 = c3 = c4 = 1 . (3.4)

Notice that (2.16) is consistent with these three demands with the specific choice of
c1 =

2
3 , c2 = −

1
3 . This type of VD means for example that the π0 → γγ decay is medi-

ated by vector mesons: π0 → V V → γγ. Another example is ω → πππ. Since there is no
direct vertex, the process is dominated byω→ ρπ→ πππ. This type of VD is consistent with
the experimental results for π0→ γγ, ω→ π0γ and ω→ π+π−π0. See section (3.8) of [12]
for the detailed computation.

4 Derivation of the baryon current

Another application of the WZ action is the derivation of the skyrmion current as the low
energy description of the baryon current. We are going to follow the same procedure and
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apply it on our hWZ action. The prescription of [2] to derive the baryon current is as follows:

1. Compute the Noether current for a general vector-like U(1) symmetry that acts as

U → eiQαUe−iQα . (4.1)

This can be done by coupling the symmetry to a gauge field A and reading the current
from the term −AµJµ in the Lagrangian.

2. After deriving Jµ, plug in Q = 1
N . U is invariant under this transformation

U → eiα/N Ue−iα/N = U . Therefore, most of the contributions to Jµ will vanish.

3. The only exception is the contribution coming from the 5d WZ term. This is due to some
extra integration by parts when going from 5d to its 4d boundary which changes the
relative sign between two terms.

4. As a result, the baryon current is given by the skyrmion current

Sµ =
1

24π2
εµνρσ t r(∂νUU†∂ρUU†∂σUU†) . (4.2)

One might be suspicious about the degree of rigorousness of this derivation, since U is not
charged under U(1)B and this "limit" Q → 1

N is ambiguous. However, at least in the large N
limit we can justify this derivation. The reason is that in the large N limit, U ∈ U(N f ) and
we can take t r(Q) 6= 0. In this case, we can really approach Q→ 1

N continuously, and get the
skyrmion current no matter how the limit is taken.

We can repeat this procedure for the hWZ action by computing the current associated with
the transformation

ξR,L → ξR,Le−iQα⇒ U = ξ†
LξR→ eiQαUe−iQα , (4.3)

and take Q = 1
N in the end. At this point the covariant derivative of ξR,L is

DµξR,L = ∂µξR,L − iVµξR,L − iAµξR,LQ . (4.4)

We also accompany this transformation with the gauge transformation

ξR,L → e
i
N αξR,L , (4.5)

such that ξR,L are themselves invariant under U(1)B. This is done by modifying V → V − 1
N A

such that the covariant derivative now becomes

DµξR,L = ∂µξR,L − iVµξR,L +
i
N

AµξR,L − iAµξR,LQ −→Q→ 1
N
∂µξR,L − iVµξR,L . (4.6)

Indeed, with this choice the U(1)B gauge field doesn’t appear in the covariant derivative of
ξR,L . Now we can compute the baryon current. We already know that (2.1) gives rise to
the skyrmion current (4.2). We will compute the contribution from the hWZ action (2.11)
including the improvement term (2.15). The terms proportional to c1 and c2 in (2.11) don’t
contribute to the baryon current because A doesn’t appear in the covariant derivatives RD, LD
as explained above. We do get contributions from L3 due to the shift V → V− 1

N A. In addition,
the improvement term contains A explicitly. Together, we have

−
c3 + c4

16π2
Ad(RD LD − LDRD)

= −
c3 + c4

8π2
A(R2 L − RL2 + idV (R− L)− iV (R2 − L2)) ,

(4.7)
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such that the current is

B =
1

24π2
(dUU†)3 +

c3 + c4

8π2
(R2 L − RL2 + idV (R− L)− iV (R2 − L2)) . (4.8)

Using (dUU†)3 = (R− L)3 we can write,

B = S + (c3 + c4)(H − S) , (4.9)

where

H =
1

24π2

�

R3
D − L3

D + 3iF(RD − LD)
�

, (4.10)

is the hidden baryon current defined in [10].
In the mV →∞ limit, we can integrate out the vector mesons and get

H →
1

24π2
(R− L)3 = S ⇒ B→ S , (4.11)

as expected. In addition, it has been shown in [10] that H and S differ only by a total derivative
term and therefore give rise to the same charge for any smooth configuration. Except for
the definition of the current density, the physical difference between S and B comes when
computing the baryon charge of singular configurations, such as the N f = 1 baryons [10, 11].
In particular, for N f = 1, the baryon current B can be written as

B(N f =1) = −
c3 + c4

8π2
dωdη′ , (4.12)

where ω = t r(V ) , eiη′ = det(U) are the fields that survive when we take N f = 1. In section
3, VD led us to choose c3 = c4 = 1. With this choice, B = 2H −S and at N f = 1 it simplifies to

B(N f =1) = −
1

4π2
dωdη′ . (4.13)

An example of a charged configuration is the N f = 1 baryon introduced in [11]. This is a
configuration constructed out of a finite η′ = π domain wall. On the boundary of the domain
wall, η′ is not well defined and the chiral condensate is expected to vanish. η′ winds once
around the ring that forms the boundary of the domain wall

∮

dη′ = 2π. Due to a conjectured
emergent U(1)N CS theory on the domain wall, this system behaves as a boundary CS theory.
The boundary is expected to carry edge modes, similar to the quantum Hall effect. The baryon
charge of this configuration comes from the two orthogonal windings- the winding ofη′ around
the ring, and the winding of the CS field along the ring (the edge mode). (4.13) hints that the
CS field on the DW is actually the ω vector meson. Indeed, configurations characterized by
two orthogonal windings of the form

∮

η′ = 2πZ ,

∮

ω= 2πZ , (4.14)

have integer baryon charge under (4.13),4

−
1

4π2

∫

dωdη′ ∈ Z , (4.15)

where the integration is over the 3d space.
This quantization of charge fails to work for generic c3,4 in (4.12). The charge is properly

quantized for c3+ c4 = 2. In the next sections we will also show that the identification of ω as
the U(1)N CS field on the η′ = π DW fixes c3 = 1. The two demands together fix c3 = c4 = 1.
Surprisingly, these are exactly the same parameters that give rise to VD.

4In [10] it was assumed that the baryon current is H which reduces at N f = 1 to H(Nf = 1) = − 1
8π2 dωdη′.

This led to some confusion regarding the minimal charge and the validity of (4.14). Here we find that the correct
current is actually 2H − S, which solves the mentioned confusions.
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5 Domain walls

In this section we will discuss QCD domain walls. Using the HLS Lagrangian with the hWZ
action (2.12), we can study the DW theories when the vector mesons are included. Following
[15], we will separate our discussion to N f = 1 and N f ≥ 2. The different types of domain
walls are described in the next sections.

5.1 Nf = 1 domain wall

In this section we will study domain wall configurations in N f = 1 QCD with θ = π where we
take the quark’s mass m to be real and positive. In the large N small m/Λ limits, we can write
an effective Lagrangian for η′[20, 22]

Lη′ =
F2
π

2
(∂ η′)2 +mΛF2

πcos(η′ + θ )−
1
2

F2
πM2

η′η
′2 + ... , (5.1)

with
F2
π ∼ O(N) , Λ∼ O(1) , M2

η′ ∼ O(N−1) . (5.2)

For generic θ this potential has a unique global minimum, but for θ = π and m > m0 =
M2
η′

Λ

there are two degenerate vacua related by time reversal symmetry η′ → −η′. The vacua are
solutions to

msin(η′) = m0η
′ . (5.3)

For m close to m0 we can expand in small η′ and find the vacua

η′20 ' 6(1−m0/m) . (5.4)

On the other hand when m0� m� Λ, we can expand close to ±π and find

η′0 = ±π(1−m0/m) + ... . (5.5)

In the regime where (5.1) is valid, we see that as we increase m (but keeping m� Λ), the vacua
move from 0 towards±π. There are two topologically distinct trajectories that connect the two
vacua. The first is the one that goes through η′ = 0 and the second crosses the cusp at η′ = π.
It was argued in [15] that the tension coming from crossing the cusp is Tcusp ∼ NΛ3. Explicit
classical computation shows that the tension of the domain wall that goes through η′ = 0 is
at most ∼ Nm

1
2Λ

5
2 which is smaller than Tcusp and therefore is energetically favorable. The

theory on this domain wall can be extracted explicitly from (5.1) and is trivial (i.e. contains
only the center of mass coordinate). Even though it is not the minimal tension configuration,
the DW that goes through the cusp can still be considered as a metastable DW. The theory on
it cannot be extracted from (5.1) due to the cusp. One of the things that can be done is to
remove the cusp by integrating back in the fields that generate it. The cusp is a consequence of
heavy fields that jump from one vacuum to the other. In the effective theory that contains both
η′ and the heavy fields, the cusp doesn’t appear in the Lagrangian and the emergent theory
on the η′ = π DW can be read off directly from this effective theory. According to a conjecture
made in [10], these fields are the vector mesons. We will elaborate more about this conjecture
and the motivation behind it in section 6. For now, we will simply assume that this conjecture
is correct. In that case, the theory on the DW can be read off from the effective theory of ξR,L
and V . In this formalism, the relevant domain wall configuration is of the form

η′ = η′(z) , lim
z→−∞

η′(z) = 0 , lim
z→+∞

η′(z) = 2π . (5.6)
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Plugging it into the N f = 1 version of (2.11), we get on the domain wall (after throwing a full
derivative term)

LDW =
Nc3

4π
ωdω , (5.7)

in addition, there is a mass term for ω coming from (2.9). We see that by choosing c3 = 1,
the theory on this domain wall is U(1)N Chern-Simons-Higgs theory. Surprisingly, c3 = 1 is
the value predicted by VD. The emergence of an U(1)N CS theory on the η′ = π DW is also
needed for the correct construction of the N f = 1 baryon [11] as explained in section 4.

This is valid in the m � Λ limit. We can also study the opposite limit Λ � m which is
approximately pure YM at θ = π. The domain wall in this case is [23] U(1)N ' SU(N)−1
pure CS theory. An interesting question is how the two limits are connected. In [15] it was
suggested that the theory on the DW can be described for every value of m as U(1)N CS theory
coupled to one fundamental scalar. When the mass of the scalar is very large and positive, we
can integrate it out and the theory is simply U(1)N as in pure YM. When the mass of the scalar
is very large and negative we are in the Higgs phase which is gapped at low energies. The
authors of [15] identified this Higgs phase as the theory on the trivial DW that goes through
η′ = 0. We suggest to slightly modify their proposal and identify the Higgs phase as the theory
on the DW that goes through the cusp (5.7). This modification means that the pure YM DW is
continuously connected to the metastable DW at small mass which implies a first order phase
transition between the two domain walls. If this is correct, than there should be a critical mass
mc ∼ Λ in which the two tensions are equal. Except for the appearance of a U(1)N CSH theory
(5.7) on the DW when crossing the cusp, the existence of a phase transition can be motivated
as follows. First, we see that the tension difference between the two domain walls decreases
as the mass increases which makes the scenario of phase transition plausible (see figure 1).
When η′0→±π, the tension of the DW that goes through the cusp is not expected to depend
on m, unlike the one that goes through η′ = 0. Therefore, when the mass is very large, the
tension of the cusped DW is expected to remain finite, while the tension of the η′ = 0 DW is
expected to diverge. This makes it very plausible that a phase transition between the two DWs
indeed happens. Another argument comes from the relation between shifts of θ to shifts of η′

and the cusp at θ = π to the cusp at η′ = π. The pure YM DW exists on the cusp at θ = π. We
can also think of it as an interface interpolating from θ = π−ε on one side to θ = π+ε on the
other side. In the ε→ 0 limit, this interface is exactly the θ = π DW. Similarly, the two vacua
of the η′ potential asymptote to η′ = ±π as the mass is taken to be large. Even though we
know what happens only in the two limits m� Λ, and m� Λ, the most natural picture is that
the pure YM DW is connected continuously to the DW that goes through the cusp. The theory
on this DW can be described as a U(1)N CS theory that flows smoothly from the topological
phase at m →∞ to the Higgs phase at m → 0. We will finish this section with a comment
about different types of phase transitions involved in this game. We discussed a 4d phase
transition between the two DWs. Another type of phase transition is a 3d phase transition that
happens on a specific DW. For example, the 3d U(1)N+ fundamental scalar theory has a phase
transition between the topological and the Higgs phases as one varies the mass of the scalar.
It is not clear if the 3d phase transition which is predicted to occur on the cusped DW, happens
when this DW is stable or only metastable. This is a hard question about the m∼ Λ regime of
QCD and we leave it open for now.

5.2 The pionic Nf ≥ 2 domain wall

In this section we will study the N f ≥ 2 pionic domain wall. The theory we study is θ = π
QCD with N f ≥ 2 and equal small mass for all the quarks 0 < m� Λ. For simplicity, we will
also ignore η′ as it is not going to play any role in this domain wall. As was shown in [15],
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Figure 1: The η′ potential at θ = π for small and large values of the masses. At small
mass, it is energetically favorable to avoid the cusp. As the mass increases, the tension dif-
ference between the two domain walls decreases and we conjecture that above some critical
mass m > mc ∼ Λ it is favorable to cross the cusp. Therefore the cusped DW is connected
continuously to the YM DW.

this theory has two degenerate vacua related by time reversal given by

U1 = 1 , U2 = e−2πi/N f . (5.8)

We can impose the boundary conditions

lim
z→−∞

U = 1 , lim
z→∞

U = e−2πi/N f . (5.9)

The minimal tension configuration satisfying the boundary conditions is of the form

UDW =

�

eiα

ei(1−N f )α

�

, lim
z→−∞

α(z) = 0 , lim
z→+∞

α(z) = −
2π
N f

, (5.10)

where the first entry in UDW represents an (N f − 1) × (N f − 1) block. This configuration
breaks SU(N f )V → S[U(N f − 1)× U(1)]. Therefore, the theory on the domain wall contains

a CPN f −1 =
SU(N f )

S[U(N f −1)×U(1)] sigma model. In addition, the sigma model inherits a level N WZ

term from the 4d WZ term. The authors of [15] identified this theory with the low energy limit
of U(1)N CS theory coupled to N f fundamental scalars in the Higgs phase. The sigma model
is a result of the same symmetry breaking pattern SU(N f )→ S[U(N f −1)×U(1)], and the WZ
term comes from the CS term when integrating out the vector fields. There is a conjectured
dual description to this theory in terms of SU(N)N f /2−1 CS coupled to N f fundamental fermions
[24]. These theories

U(1)N + N f φ ' SU(N)N f /2−1 + N f ψ , (5.11)
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in the large mass limit (positive for scalars, negative for the fermions in this convention) be-
come

U(1)N ' SU(N)−1 , (5.12)

which is the θ = π domain wall theory in pure YM [23]. Therefore, they proposed that
(5.11) describes the theory on the domain wall for every value of the quarks mass. Using
the HLS Lagrangian together with the hWZ action, we can find the DW theory in a regime
where the vector fields are treated as dynamical. As we will see, this results in the CPN f −1

sigma model coupled to U(N f − 1) massive vector fields. The emergent U(N f − 1) CS term
on the DW contributes to the WZ term of the sigma model, in contradiction to the proposal of
[15]. Their conjecture was based on the assumption that theCPN f −1 at small mass is connected
continuously to the pure YM DW at m→∞, and therefore the DW theory should be described
by a 3d DW theory with the two phases on the edges of its parameter space. As in 5.1, we will
argue that there is a first order phase transition between topologically distinct DWs, and that
the YM DW is not connected continuously to the CPN f −1 DW but to some metastable DW at
small mass. We will start from analyzing the kinetic terms of the HLS Lagrangian

L2 =
F2
π

4
t r(∂ U∂ U†)−

aF2
π

4
t r(∂ ξRξ

†
R + ∂ ξLξ

†
L − 2iV )2 . (5.13)

A general expansion around (5.10) that doesn’t change the boundary conditions can be written
as

U = gUDW g† , g ∈ SU(N f ) . (5.14)

At low energies we can expand

g = 1+ i

�

0 σ

σ† 0

�

−
1
2

�

σσ† 0
0 σ†σ

�

+O(σ3) , (5.15)

where σ(xµ 6= z) is an N f −1 dimensional vector parametrizing the coordinates on the CPN f −1

manifold around (5.10). The first kinetic term on the DW becomes

F2
π

4

∫

dzt r(∂ U∂ U†) = 2F2
π

∫

dzsin2(N f α/2)∂ σ
†∂ σ+O(σ4) . (5.16)

To study the second kinetic term, we first need to find a good expansion for ξR,L and V .
Demanding that U = ξ†

LξR we can write in general

ξR = hξDW g† , ξL = hξ†
DW g† , ξDW = U

1
2
DW . (5.17)

This implies

∂µξRξ
†
R + ∂µξLξ

†
L = h[ξDW∂ g† gξ†

DW + ξ
†
DW∂ g† gξDW − 2∂ h†h]h†

= h

�

−2icos(N f α/2)

�

0 ∂ σ

∂ σ† 0

�

− 2∂ h†h

�

h† +O(σ2) .
(5.18)

A convenient choice for h is the gauge in which the linear term O(σ) in (5.18) vanishes. This
is achieved by choosing

h= 1+ icos(N f α/2)

�

0 σ

σ† 0

�

−
1
2

cos2(N f α/2)

�

σσ†

σ†σ

�

+ ...

⇒ ∂ h†h= −icos(N f α/2)

�

0 ∂ σ

∂ σ† 0

�

+
1
2

cos2(N f α/2)

�

∂ σσ† −σ∂σ†

∂ σ†σ−σ†∂ σ

�

.

(5.19)
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With this choice, we get

h†(∂µξRξ
†
R + ∂µξLξ

†
L)h= sin2(N f α/2)

�

∂ σσ† −σ∂σ†

∂ σ†σ−σ†∂ σ

�

+O(σ3) . (5.20)

In addition, we take the ansatz V = f (z)

�

va vb

v†
b vc

�

, where limz→±∞ f (z) = 0 and va,b,c are

independent of z. f (z) can in principle be found by solving some differential equations. How-
ever, the exact form of f (z) will not be important for us since after integrating over z, the
effect of changing f (z) will just result in a different numerical factor that can be swallowed
into the 3d gauge coupling on the DW. Therefore, we allow ourselves to take for simplicity
f (z) = sin2(N f α/2) which gives the nicest form for the Lagrangian even though it is not
correct. With this ansatz we get

t r(∂ ξRξ
†
R + ∂ ξLξ

†
L − 2iV )2 = sin4(N f α/2)t r

�

∂ σσ† −σ∂σ† − 2iva −2ivb

−2iv†
b ∂ σ†σ−σ†∂ σ− 2ivc

�2

= −8sin4(N f α/2)v
†
bvb + sin4(N f α/2)[(∂ σσ

† −σ∂σ† − 2iva)
2 + (∂ σ†σ−σ†∂ σ− 2ivc)

2] .
(5.21)

We see that vb and t r(V ) = t r(va) + vc decouple so we can simply ignore them and set them

to zero. A simpler ansatz can then be used V = sin2(N f α/2)

�

v
−t r(v)

�

with v ∈ u(N f − 1).

The entire kinetic term (5.13) on the DW is

2F2
π

∫

dz
�

sin2(N f α/2)∂ σ
†∂ σ+

a
2

sin4(N f α/2)[t r(v2) + t r(v)2

+ i t r((v + t r(v))(∂ σσ† −σ∂σ†))]
�

+ ... . (5.22)

The ... contain higher order terms. The novel part is the interactions between σ and the
U(N f − 1) vector fields so we included them even though they are of order O(σ4) which we
threw.

Now we are ready to deal with the WZ term (2.1)+(2.11). The details of the computation
appear in appendix A and result in the emergent action on the DW,

9N(c1 − c2) + 3Nc3 − 8N
32π

σ†dσdσ†dσ+
3iN[2(1− 2N f )(c1 − c2)− c3]

64πN f
dσ†dσt r(v)

−
3iN[2(1+ N f )(c1 − c2) + (N f − 1)c3]

64πN f
dσ†vdσ−

3Nc3

64πN f
[t r(vdv) + (1− N f )t r(v)t r(dv)] .

(5.23)
For the specific choice of c1 − c2 = c3 = 1 we get

N
8π
σ†dσdσ†dσ+

3iN(1− 4N f )

64πN f
dσ†dσt r(v)−

3iN(1+ 3N f )

64πN f
dσ†vdσ

−
3N

64πN f
[t r(vdv) + (1− N f )t r(v)t r(dv)] +O(σ6) .

(5.24)

One can check that if we integrate out the vector fields by plugging v = −idσσ† + ... we get
the required level N WZ term,

−
N
4π
σ†dσdσ†dσ+ ... . (5.25)

14

https://scipost.org
https://scipost.org/SciPostPhys.10.6.138


SciPost Phys. 10, 138 (2021)

We can ask about the interpretation of this result. The full DW theory, whatever it is, should
be consistent with the above 3d Lagrangian. This excludes for example the conjecture of [15]
because it doesn’t contain any U(N f −1) vector fields. According to their conjecture, the level
N WZ term on the DW comes from integrating out a Higgsed U(1)N vector field, which is
not what we get here. As in the previous section, also here their conjecture relied on the
assumption that there is no phase transition between the DWs. However, all the arguments
given in 5.1 in favour of a phase transition apply also here. If this is indeed the case and such
a phase transition happens, we don’t expect to find a 3d theory that connects the m� Λ and
m � Λ DWs. In any case, we can still ask what the 3d theory in the m � Λ is. A natural
guess can be U(N f −1) gauge theory coupled to N f fundamental scalars. Assuming that in the
deep Higgs phase the vacuum falls into the maximally flavor-color locking phase [25], the low
energy theory has an expansion as CPN f −1 sigma model interacting with massive U(N f − 1)
vector fields which is very similar to what we obtained. However there are several problems
with this identification. The first is that the separation between t r(v) and v in our expansion
is different than what expected from the above proposal. This problem is already at the level
of the kinetic term and doesn’t depend on the details of the topological term. The second
problem is that it looks like the induced CS term has a fractional level, and all the other terms
in (5.24) don’t seem to come from any reasonable (and not irrelevant) term in the uv. This
is a problem with the identification of this phase as the Higgs phase of the U(N f − 1) gauge
theory mentioned above. However, there is no problem with gauge invariance. The reason
is that the full action (5.24) is gauge invariant even though each term independently (such
as the CS term) is not. This is guaranteed since (5.24) was derived from the gauge invariant
hWZ action and can be checked explicitly. Can we find another candidate for the DW theory?
Actually, there is no good reason why a description in terms of some 3d uv complete theory
should even exist. The 4d parent theory by itself is not described as a uv complete theory but
as a non-linear sigma model, so it is possible and likely that the DW theory is also described
in this way.

6 The cusp potential and a gluons-mesons duality

In this section we will also take the large N limit in which the matrices U ,ξR,L and the vector
fields V are U(N f ) valued. When N →∞, U(1)A becomes a good symmetry of the theory. As
a result, η′, which we define as eiη′ ≡ det U , becomes a massless NG boson associated with
the breaking of U(1)A. The potential for the η′ is suppressed in the large N limit. The leading
part in its potential takes the form, [20, 22]

Vη′ =
1
2

F2
πM2

η′ min
k∈Z
(η′ − 2πk)2 + ... , (6.1)

where F2
π ∼ N , M2

η′ ∼
1
N .5 The potential is locally quadratic but has a cusp whenever η′ = π

mod 2π. The cusp represents a phase transition between two branches. As one crosses the
cusp, some heavy fields jump from one vacuum to another. This behavior has several important
consequences:

1. It is possible to eliminate the cusp by “integrating in” the heavy fields that generated it.
In other words, in the effective theory that contains both η′ and those heavy fields, the
potential for η′ doesn’t appear explicitly in the Lagrangian.

2. Any emergent CS theory that might appear on η′ = π wall (see section 5) or disc (see
section 4) comes from those heavy fields.

5This is 1
N suppressed with respect to the kinetic term 1

2 F2
π
(∂ η′)2.
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3. Combining the two, we can conclude that it should be possible to extract the CS theory
directly from the effective theory of both η′ and the heavy fields.

The conventional picture for the formation of the cusp potential was described in [20] (see
also [26]). We will start by reviewing it and show that it indeed satisfies the above properties.
Consider the gluonic topological density

q =
1

8π2
t r G ∧ G , (6.2)

where G is the field strength for the gluons. We can write an effective action for q and η′. The
coupling between η′ and q is fixed from the U(1)A axial anomaly, which implies6

η′→ η′ +α ⇒ L→ L+αq . (6.3)

This is satisfied by writing

Lqη′ = −
i
2

qt r(log(U)− log(U†)) = η′q . (6.4)

We can also add some general function of q, but in the large N limit, higher order terms are
suppressed and only the quadratic term q2 survives. The two terms together give the effective
theory for q,

Lq =
1

2F2
πM2

η′

q2 +η′q . (6.5)

At this point we can integrate q out. Locally, we can use the equation of motion, q = F2
πM2

η′η
′

and get

Lq→−
F2
πM2

η′

2
η′2 . (6.6)

Globally, we must also impose the 2π periodicity of η′ by taking into account the quantization
of the instanton number

∫

q ∈ Z. Demanding this we get (6.1).
Except for generating the cusp, (6.4) is also responsible for CS terms on η′ = π walls. This

can be seen by writing it as

1
8π2

η′G ∧ G = −
1

2π
dη′ ∧

1
4π

�

AdA−
2i
3

A3
�

+ d(...) , (6.7)

where we see that 1
2πdη′ is coupled to an SU(N)−1 CS term with gluons as the vector fields.

It is interesting to compare the coupling (6.7) to the way η′ couples to the vector mesons
via the hWZ action. While the η′ doesn’t enter into the regular WZ term (2.1), it does appear
explicitly in the hWZ term (2.12). Lets start from the case of N f = 1. In that case, only L3 in
(2.11) survives and we get (ignoring a total derivative term)

LhW Z = −
Nc3

8π2
η′dωdω=

1
2π

dη′ ∧
c3N
4π
ωdω . (6.8)

Here, 1
2πdη′ is coupled to a U(1)c3N CS term with ω as the vector field. For c3 = 1, the two

CS theories are dual to each other,7

SU(N)−1 ' U(1)N . (6.9)

6Notice a sign difference from [20]. There are several conventions for how U is defined in terms of its transfor-
mation law under the global symmetries. (6.3) is consistent with the convention in which the WZ term is defined
with a minus sign as in (2.1).

7To be more precise, the theory on the mesonic side is U(1)N CSH theory. Similarly, the theory on the glu-
onic side is SU(N)−1 strongly interacting with fermions in some way. So the duality is really some version of
SU(N)−1 + f ermions ' U(1)N + scalars.
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As we already mentioned, c3 = 1 is exactly the choice implied by VD and the required value
for the consistent construction of N f = 1 baryons. So far we discussed only the parameters
c3,4. This is because L1 = L2 = 0 for N f = 1 QCD. While we don’t have any good theoretical
argument that can restrict the values of c1,2 we want to make the following observation.

For N f ≥ 2 and general {ci}, η′ interacts with vector mesons and pions in quite a compli-
cated way,

Lη′ =
Nc1

32π2N f
dη′[LR2 + RL2 − 2iV (RL + LR)− 4iV (R2 + L2)− 6V 2(R+ L) + 4iV 3]

+
Nc2

16π2N f
dη′[L2R+ R2 L − 3V 2(R+ L)− iV (R2 + L2)− 2iV (RL + LR) + 2iV 3]

+
iN c3

16π2N f
dη′[V (R2 + L2)− 2iV dV − iV 2(R+ L)− 2V 3] .

(6.10)

However, given c3 = 1, there is a unique choice c2 = −
c3
3 , c1 =

2c3
3 that results in the nice

axion-like coupling,8

Lη′ = −
N

8π2N f
η′F2 =

1
2πN f

dη′ ∧
N
4π

�

V dV −
2i
3

V 3
�

. (6.11)

Again, this choice of parameters is consistent with VD. Unfortunately, we couldn’t find a good
theoretical argument that can explain this coincidence. We leave the discussion about N f ≥ 2
as an open curiosity.

7 Summary of ci conditions and finite N

In this work, we showed how the three concepts- vector dominance, baryon symmetry, Chern-
Simons theory- are related and originate from the same hidden Wess-Zumino action. The
relation holds in the large N limit where the action can be written as single trace in flavor
space over U(N f ) valued matrices. As was shown, the most general hWZ action coupled to
external U(1) vector-like gauge field contains 4 free real parameters, ci , i = 1, ..., 4. The first
theoretical constraints are based on N f = 1 physics. By requiring that the N f = 1 baryon will
have charge 1 under the baryon charge, we found c3+ c4 = 2. By requiring that the theory on
the η′ = π DW at N f = 1 will contain a U(1)N CS term (which is also a crucial ingredient in
the construction of the N f = 1 baryon), we found c3 = 1. These two demands are equivalent
to the vanishing of the two vertices AAΠ and AVΠ. Finally, by requiring that when adding more
flavors, the coupling of dη′ to the vector mesons will still have the structure of a CS term (or
equivalently, the coupling of η′ to the vector mesons will have the form of an axion coupling),
we found c1 =

2c3
3 , c2 = −

c3
3 , which is consistent with the vanishing of the vertex VΠΠΠ.

These theoretical demands fix completely the hWZ action and imply VD. This relation gives
a theoretical explanation of the phenomenological principle of VD. The conditions on c1,2 are
less motivated than the ones on c3,4. In any case, even if one throws them away, most of the
results of this paper are not affected.

At finite N , one can add multi-trace operators that distinguish between the SU(N f ) and
the U(1) parts and break the triple relation. This type of terms can be used to explain possible
violations of VD in the real world. The term that should remain as it is also at finite N , is

−
N

8π2
dη′ωdω . (7.1)

8This is after throwing away some total derivative terms.
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This can provide a non-trivial check of our conjecture by measuring the coefficient of this term
in real world QCD.9 Another type of corrections comes when interpreting the "h" in hWZ as
standing for "homogeneous". This means that we assumed that the coefficients ci don’t depend
on the so-called dilaton field, which is roughly speaking the radius of the target space [27–
29]. Corrections to the hWZ action that depend on the dilaton may serve as another source for
discrepancies between the measured hWZ action at low energies to the predicted hWZ action
at higher energies [14]. In particular for the N f = 1 baryons close to the singular ring, these
type of corrections might be quite important. We ignore these corrections completely in this
work and leave it as an open problem.
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A Some computations

In this appendix, we will compute the emergent action on the N f ≥ 2 pionic DW described
in section 5.2 coming from the hWZ action. We will write explicitly the results up to order
O(σ4) where V ∼ O(σ2). We will start from the regular WZ term (2.1). This computation
also appeared in [30]. We consider the DW configuration

U = gUDW g† , (A.1)

as in (5.14) and expand

g = 1+ i

�

0 σ

σ† 0

�

−
1
2

�

σσ† 0
0 σ†σ

�

+ ... . (A.2)

The action becomes

iN
48π2

∫

B5

∂zUU†(dUU†)4 =
N f N

3π2

∫

B5

∂zαsin4(N f α/2)dσ
†dσdσ†dσ+O(σ6) , (A.3)

where d now is the derivative in the directions transverse to z, and we used

∂zUU† = i∂zαgT g† , T =

�

1
1− N f

�

, dUU† = i

�

(1− eiN f α)dσ
(1− e−iN f α)dσ†

�

+ ....

(A.4)
The z integration can be evaluated using

∫ ∞

−∞
dz∂zαsin4(N f α/2) =

∫ −2π/N f

0

dαsin4(N f α/2) = −
3π
4N f

. (A.5)

9Notice that our definitions for η′ and ω as the U(1) ∈ U(N f ) fields differ from their definitions in real world
QCD, where η′ is the U(Nf = 3) singlet and ω is the U(Nf = 2) singlet.
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The emergent 3d term is then

−
N
4π
σ†dσdσ†dσ+O(σ6) , (A.6)

which is indeed a level N WZ term. Now we will perform the computation for the hWZ action
(2.11). Vz appears explicitly in (2.11) and we need find its value on the DW. The bulk kinetic
term in the z direction is proportional to (at leading order)

t r(Rz + Lz − 2iVz)
2 = t r

�

−iN f ∂zαsin(N f α/2)

�

σ

σ†

�

− 2iVz

�2

. (A.7)

Vz is a scalar on the DW and for simplicity we can plug in

Vz = −
N f

2
∂zαsin(N f α/2)

�

σ

σ†

�

, (A.8)

which is correct at low energies. Using the expansions of R, L, V on the DW as written in
section 5.2, we can write at leading order

RD = I0 + I1 , LD = −I0 + I1 , (A.9)

with

I0,z =
i
2
∂zαT , I1,z = 0 , I0,⊥ = sin(N f α/2)

�

dσ
−dσ†

�

,

I1,⊥ = sin2(N f α/2)

�

dσσ† − iv
−σ†dσ+ i t r(v)

�

.

(A.10)

It is straight forward to check that I4
0 = 0 , I1 I3

0 ∼ (σ
4) and all the other combinations are of

higher order. Therefore, it is enough to keep the I1 I3
0 terms from L1,2, which are

Nc1

16π2
L1 =

iN c1

4π2
I1 I3

0 +O(σ6) ,
Nc2

16π2
L2 = −

iN c2

4π2
I1 I3

0 +O(σ6) . (A.11)

After performing the integration over z as in (A.5), we get on the DW,

3N(c1 − c2)
32πN f

[3N fσ
†dσdσ†dσ+ (1− 2N f )idσ

†dσt r(v)− i(1+ N f )dσ
†vdσ] . (A.12)

Finally,

L3 = F(I0 I1 − I1 I0) = −d⊥Vz(I0,⊥ I1,⊥ − I1,⊥ I0,⊥) + d⊥V⊥(I0,z I1,⊥ + I1,⊥ I0,z) + ... , (A.13)

where we neglected the V 2(I0 I1 − I1 I0),∂zV⊥(I0,⊥ I1,⊥ − I1,⊥ I0,⊥) terms which are subleading
in σ and used I1,z = 0 as before. Explicit computation gives on the DW

−
3Nc3

64πN f
[i t r(v)dσ†dσ+ i(N f − 1)dσ†vdσ− 2N fσ

†dσdσ†dσ

+ t r(vdv) + (1− N f )t r(v)t r(dv)] +O(σ6) . (A.14)

A consistency check is that the entire contribution from the hWZ action vanishes when taking
v = −idσσ†. All together we get

9N(c1 − c2) + 3Nc3 − 8N
32π

σ†dσdσ†dσ+
3iN[2(1− 2N f )(c1 − c2)− c3]

64πN f
dσ†dσt r(v)

−
3iN[2(1+ N f )(c1 − c2) + (N f − 1)c3]

64πN f
dσ†vdσ−

3Nc3

64πN f
[t r(vdv) + (1− N f )t r(v)t r(dv)] .

(A.15)
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For the specific choice of c1 − c2 = c3 = 1 we get

N
8π
σ†dσdσ†dσ+

3iN(1− 4N f )

64πN f
dσ†dσt r(v)−

3iN(1+ 3N f )

64πN f
dσ†vdσ

−
3N

64πN f
[t r(vdv) + (1− N f )t r(v)t r(dv)] .

(A.16)

Notice that at least at leading order, the theory on the DW depends only on the combination
c1 − c2 and not on each one of them separately. This means that the result is not affected by
relaxing the demand c1 =

2
3 , c2 = −

1
3 .

B Comparison with "vector mesons on the wall"

In this appendix we comment about the proposal made in [21] and the apparent disagreement
with our paper. The authors of [21] describe the N f = 1 baryon as a finiteη= π pancake with a
U(1)N CS theory living on it. The charge of the baryon is given by the winding of the CS vector
field along the boundary of the pancake. This construction is very similar to the construction
of [10, 11] and to the one described in this work. The main difference is that we identified this
CS field with the ω vector meson, while in [21], the CS field was an emergent U(1)N vector
field bounded to the η′ = π DW. This field is denoted by c. However, we want to argue that
even though the two proposals sound very different, there is no clear contradiction between
the two. For this, we want to make the following observations. The baryon current in our setup
was derived explicitly from the Lagrangian (see section 4). The result B(N f =1) = − 1

4π2 dωdη′

supports the identification of ω with the vector field whose winding measures the baryon
charge of the pancake. In addition, we show that the hWZ action gives rise to a U(1)N CS
term on the pancake with ω as the CS field. These two results rely on a certain value of the
hWZ action parameters. In [21], the hWZ action is written with exactly the same parameters.
See equations (90-91) of [21]. This automatically implies that they get from the hWZ action
the same baryon current and the same CS term forω on the DW. However, it is claimed in [21]
that an extra contribution for the baryon current comes the pancake itself which cancels the
contribution from the hWZ action. See equation (81). Instead, the baryon charge is measured
by the winding of the emergent CS field c. However, the proposed effective theory on the
pancake is written in equation (76) (or equation (88) for N f = 1). It contains CS terms
both for c and ω, and a boundary term. The boundary conditions implied by this action fix
c+ω= 0 on the boundary. This means that (up to a sign), the winding of c equals the winding
ofω. Therefore, any configuration that carries some baryon charge when computed using the
current of [21], will carry the same baryon charge when computed using the current proposed
here. To summarize, we conclude that actually there is no clear physical disagreement between
the two papers.
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