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Vector Field Path Following

for Miniature Air Vehicles
Derek R. Nelson, D. Blake Barber, Timothy W. McLain, Senior Member, IEEE and

Randal W. Beard. Senior Member, IEEE

Abstract—In this paper, a method for accurate path following
for miniature air vehicles is developed. The method is based on
the notion of vector fields, which are used to generate desired
course inputs to inner-loop attitude control laws. Vector field path
following control laws are developed for straight-line paths and
circular arcs and orbits. Lyapunov stability arguments are used
to demonstrate asymptotic decay of path following errors in the
presence of constant wind disturbances. Experimental flight tests
have demonstrated mean path following errors on less than one
wingspan for straight-line and orbit paths, and less than three
wingspans for paths with frequent changes in direction.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs), large and small, have

demonstrated their usefulness in military applications. Fur-

thermore, there are numerous potential uses for UAVs in

civil and commercial applications and the prospects for broad

impact are strong. To extend the usefulness of UAVs beyond

their current applications, the capability to plan paths and to

follow them accurately is of great importance. Unlike piloted

vehicles, which rely on the pilot to navigate over demanding

terrain or to avoid obstructions, UAVs rely on automation

to provide this functionality. As applications such as urban

surveillance and rural search and rescue require UAVs to fly

down city streets surrounded by buildings or near the surface

of abruptly changing mountainous terrain, the ability to follow

pre-planned paths with precision is essential. For missions

involving cooperation among a team of UAVs, precise path

tracking is often crucial to achieving the cooperation objective.

For miniature aerial vehicles,1 such as those of primary

interest in this work, wind disturbances, dynamic character-

istics, and the quality of sensing and control all limit the

achievable tracking precision. For MAVs wind speeds are

commonly 20 to 60 percent of the desired airspeed. Effective

path tracking strategies must overcome the effect of this ever

present disturbance. For most fixed-wing MAVs, the minimum

turn radius is in the range of 10 to 50 m. This places a
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1We consider miniature aerial vehicles to be those with wingspans in the

0.3 m to 2 m range and micro aerial vehicles to be those with wingspans
under 0.3 m. Here the abbreviation MAV denotes miniature aerial vehicle.

fundamental limit on the spatial frequency of paths that can be

tracked. Thus, it is important that the path tracking algorithms

utilize the full capability of the MAV. Finally, high-resolution

state sensors with high-frequency updates are not typically

available for MAVs. Successful tracking approaches must

exploit fully those sensors that are readily available.

Several approaches have been proposed for UAV trajectory

tracking. An approach for tight tracking of curved trajectories

is presented in [1]. For straight-line paths, the approach

approximates PD control. For curved paths, an additional an-

ticipatory control element that improves the tracking capability

is implemented. The approach accommodates the addition of

an adaptive element to account for disturbances such as wind.

This approach is validated with flight experiments.

In [2], Kaminer et al. describe an integrated approach for

developing guidance and control algorithms for autonomous

vehicle trajectory tracking. Their approach builds upon the

theory of gain scheduling and produces controllers for tracking

trajectories that are defined in an inertial reference frame. The

approach is illustrated through simulations of a small UAV.

Implicit in the notion of trajectory tracking is that the

vehicle is commanded to be in a particular location at a

particular time and that this location typically varies in time,

thus causing the vehicle to move in the desired fashion. With

fixed-wing MAVs, the desired position is constantly moving

(at the desired ground speed). The approach of tracking a

moving point can result in significant problems for MAVs if

disturbances, such as those due to wind, are not accounted for

properly. If the MAV is flying into a strong wind (relative to its

commanded ground speed), the progression of the trajectory

point must be slowed accordingly. Similarly, if the MAV is

flying down wind, the speed of the tracking point must be

increased to keep the MAV from overrunning the desired

position. Given that wind disturbances vary and are often not

easily predicted, trajectory tracking can be very challenging

in anything other than calm conditions.

Rather than pursuing the trajectory tracking approach, this

paper explores path following where the objective is to be on

the path rather than at a certain point at a particular time.

With path following, the time dependence of the problem

is removed. In [3], [4], performance limits for reference-

tracking and path-following controllers are investigated and

the difference between them is highlighted. It is shown that

there is not a fundamental performance limitation for path

following for systems with unstable zero dynamics as there is

for reference tracking.

Building on the work presented in [5] on maneuver mod-
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ified trajectory tracking, Encarnação and Pascoal develop an

approach that combines the features of trajectory tracking and

path following for marine vehicles [6]. Similar to this work

is that of Skjetne, et al. [7] which develops an output maneu-

vering method composed of two tasks: forcing the output to

converge to the desired path and then satisfying a desired speed

assignment along the path. The method is demonstrated using

a marine vessel simulation. Ref. [8] presents a path following

method for UAVs that provides a constant line of sight between

the UAV and an observation target.

The work presented in this paper builds on the concept

of path following through the construction of vector fields

surrounding the path to be followed. The vectors of the

fields provide course commands to guide the MAV toward

the desired path. As with other path following methods, the

objective is not to track a moving point, but to get onto the path

while flying at a prescribed airspeed. A unique contribution

of this paper is the utilization of course measurements in the

path following control, which in combination with the vector

field strategy, guarantees that tracking errors asymptotically

approach zero even in the presence of constant wind distur-

bances. Implementation of the approach is feasible on small

MAVs and experimental results validate the potential value of

the approach for MAVs flying in windy conditions.

II. PROBLEM DESCRIPTION

The objective of this paper is to develop a method for

accurate path following for MAVs in the presence of wind.

The method calculates a vector field around the path to be

tracked. The vectors in the field are directed toward the path

to be followed and represent the desired direction of flight.

The vectors in the field serve as course commands to the

MAV. The method is currently applicable to paths composed

of straight lines and arcs. This restriction is insignificant for

most practical applications. Figure 1 shows examples of vector

fields for linear and circular paths.
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Fig. 1. This figure illustrates the vector field idea for straight line and
circular path following. The the desired course of the MAV is specified the
by direction of the vector field.

The notion of vector fields is similar to that of potential

fields, which have been widely used as a tool for path planning

in the robotics community (see e.g., [9]). It has also been

suggested in [10] that potential fields can be used in UAV

navigation for obstacle and collision avoidance applications.

The method of [10] provides a way for groups of UAVs to use

the gradient of a potential field to navigate through heavily

populated areas safely while still aggressively approaching

their targets. Vector fields are different from potential fields

in that they do not necessarily represent the gradient of a

potential. Rather, the vector field simply indicates a desired

direction of travel. In [11], the concept of vector fields is used

to direct autonomous aircraft in the stand-off tracking of a

moving target. Precision tracking of a predefined path is not

considered. Instead, the vector field is utilized to direct a team

of two aircraft into an orbit around a moving target.

This paper considers the navigation of a fixed-wing MAV

with the assumption that altitude and airspeed (Va) are held

constant (or nearly so) by the control of the longitudinal

dynamics. The following is a simple model of the navigational

dynamics that will be used to study the path following behavior

of the proposed approach:

ẋ = Va cos √ + Wx (1)

ẏ = Va sin √ + Wy (2)

where (Wx,Wy) represent the x and y components of the

wind velocity. Heading (√) will be controlled by the vector

field path following approaches presented in this paper. An

alternative representation of these equations can be developed

by noting the relationship between groundspeed (Vg), airspeed

(Va), and wind speed (W ) as depicted in Figure 2:

ẋ = Vax + Wx = Vgx (3)

ẏ = Vay + Wy = Vgy. (4)

W

heading, ψ

Wx

Wy

course, χ

VgVa

ground track

Fig. 2. This figure shows the relationship between the airspeed Va, the
windspeed W , and ground speed Vg , as well as the relationship between
heading √ and course ¬.

Drawing on (3) and (4) and the definition of course (¬)

shown in Figure 2, (1) and (2) can be expressed as

ẋ = Vg cos ¬ (5)

ẏ = Vg sin¬ (6)
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The key distinction is that the equations of motion are ex-

pressed in terms of groundspeed and course and are indepen-

dent of the wind velocity. We will show that by using ground-

referenced measurements (i.e., course and groundspeed instead

of heading and airspeed) in conjunction with the vector field

approach to control the path of the vehicle, wind-disturbance

rejection is improved significantly, which is vitally important

for small, low-speed MAVs. We will assume that the MAV

is equipped with an autopilot that implements a course-hold

loop and that the resulting dynamics are represented by the

first-order system

¬̇ = Æ (¬c ° ¬) , (7)

where ¬c is the commanded course, and Æ is a known positive

constant that characterizes the speed of response of course-

hold autopilot loop.

In the development and analysis of the vector field approach

that follows, two primitive path types are considered: straight

lines and circular orbits. Circular arcs are treated similarly

to complete orbits. The approach is easily extended to paths

composed of multiple segments of arcs, orbits, and straight

lines.

III. TECHNICAL APPROACH

A. Straight Path Following

Consider the straight-line path shown in Figure 3. To follow

this path, a desired-course vector field is constructed. Let y be
the lateral distance of the MAV from the path, and let ¬ be the

difference between the direction of the path and the course of

the MAV. Our objective is to construct the vector field so that

when y is large the MAV is directed to approach the path with
course angle ¬1, and that as y approaches zero, the course
¬ also approaches zero. Toward that end, define the desired

course of the MAV as

¬d(y) = °¬1
2

º
tan°1(ky), (8)

where k is a positive constant that influences the rate of the
transition from ¬1 to zero. Figure 4 shows how the choice

of k affects the rate of transition. Large values of k result in
short, abrupt transitions, while small values of k cause long,
smooth transitions in the desired course.

If ¬1 is restricted to be in the range ¬1 2 (0, º

2
] then

clearly

°
º

2
< ¬1

2

º
tan°1(ky) <

º

2

for all values of y. Therefore since tan°1(·) is an odd function
and sin(·) is odd over (°º

2
, º

2
) we can use the Lyapunov

function W1(y) = 1

2
y2 to argue that if ¬ = ¬d(y), then y ! 0

asymptotically. Evaluating the Lie derivative of W1 under the

assumption that ¬ = ¬d(y) gives

Ẇ1 = Vgy sin(¬d(y))

= °Vgy sin

µ

¬1
2

º
tan°1(ky)

∂

,

which is less than zero for y 6= 0.

χ∞ y

χ
Vg

Fig. 3. Vector field for straight-line path following. Far away from the
waypoint path, the vector field is directed with an angle ¬∞ from the
perpendicular to the path.

−100 −50 0 50 100

lateral error, y (m)

k=1

k=0.5

k=0.2

k=0.1

k=0.05

k=0.02

Fig. 4. Vector fields for various values of k. Large values of k yield abrupt
transitions from ¬∞ to zero, while small values of k give smooth transitions.

In this paper we use a sliding mode approach to render the

set

S = {(y, ¬) : ¬ = ¬d(y)}

positively invariant and to ensure that the system trajectory

reaches S in finite time. Let ¬̃
4
= ¬ ° ¬d(y) and differentiate

to obtain

˙̃¬ = ¬̇ ° ¬̇d(y)

= Æ(¬c ° ¬) + ¬1
2

º

k

1 + (ky)2
Vg sin ¬. (9)

Let W2 = 1

2
¬̃2 and take the derivative to obtain

Ẇ2 = ¬̃ ˙̃¬

= ¬̃
°

¬̇ ° ¬̇d(y)
¢

= ¬̃

µ

Æ(¬c ° ¬) + ¬1
2

º

k

1 + (ky)2
Vg sin ¬

∂

.

If we choose the control signal as

¬c = ¬ °
1

Æ
¬1

2

º

k

1 + (ky)2
Vg sin ¬ °

∑

Æ
sign(¬̃), (10)
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where

sign(x) =

8

>

<

>

:

1 if x > 0

0 if x = 0

°1 if x < 0

and ∑ > 0, then

Ẇ2 ∑ °∑ |¬̃| (11)

from which we conclude that ¬̃ ! 0 in finite time [12].
It is well known that the sign function leads to chattering in

the control [12]. To mitigate the adverse effects of chattering,

the control signal (10) is replaced with

¬c = ¬ °
1

Æ
¬1

2

º

k

1 + (ky)2
Vg sin ¬ °

∑

Æ
sat

µ

¬̃

≤

∂

, (12)

where

sat(x) =

(

x if |x| ∑ 1

sign(x) otherwise
,

and ≤ > 0 defines the width of the boundary region around
the sliding surface.

The shape of the sliding surface and system trajectory onto

the sliding surface are influenced by the control parameters k,
¬1, ∑, and ≤. Figure 5 shows state trajectories onto the sliding

surface ¬d(y) for various initial conditions generated from (6),
(7), (8), and (12). The parameter k controls the slope of the
sliding surface near the origin, while ¬1 scales the magnitude

of ¬d(y) for large values of y. The gain parameter ∑ controls

the shape of the trajectories onto the sliding surface. Large

values of ∑ drive ¬̃ to zero quickly. The parameter ≤ is the

width of the transition region around the sliding surface that

is used to reduce chatter in the control.

−100 −50 0 50 100
−1.5

−1

−0.5

0

0.5

1

1.5

lateral error, y (m)

c
o
u
rs

e
, 
χ
 (

ra
d
)

χd(y)

Fig. 5. State trajectories onto the sliding surface ¬d(y) for various initial
conditions.

Theorem III.1 The system of equations given by (6) and (9),

where ¬c is given by (12) and ¬d(y) is given by (8) is globally
exponentially stable if 0 < ¬1 ∑ º

2
and

µ

2¬1k

º≤µ

∂

min

Ωµ

Ω∑

Vg

∂

,
≥ ȳ

2

¥

æ

> 1, (13)

where

µ ∏ max

(

2(1 + (kȳ)2)

cos
°

2¬1

º
tan°1 (kȳ)

¢ ,
4¬1kȳ

º sin
°

2¬1

º
tan°1 (kȳ)

¢

)

and ȳ is arbitrary.

The stability condition (13) makes sense physically. If Vg is

large, than the turning radius of the MAV increases making it

more difficult to remain within the boundary layer. Similarly

small ¬1 or small k imply slower convergence toward the path
as indicated by Figures 3 and 4. Small ≤ makes the feedback

control high gain which enhances tracking. It is interesting to

note that (13) is independent of Æ. However, from (12) it is

clear that to avoid unrealistic control effort, ∑ is required to

be proportional to Æ. Therefore, (13) is easier to satisfy if Æ is

large, implying that the on-board autopilot can quickly track

course changes.

Proof:

If |¬̃| ∏ ≤, then ¬c is equivalent to (10) which results in

(11) implying that the set

S≤

4
= {|¬̃| ∑ ≤}

is positively invariant and that ¬̃ converges to S in finite time.
It remains to show that inside S≤ the system trajectories

converge to the origin (y, ¬̃) = (0, 0). Toward that end define
the Lypunov function candidate

W =
1

2
y2 +

1

2
Ω¬̃2

where Ω is a positive scale factor used to weight the terms so

that they are similar in magnitude. Differentiating we obtain

Ẇ = yẏ + Ω¬̃ ˙̃¬

= yVg sin
°

¬d(y) + ¬̃
¢

+ Ω¬̃Æ

µ

¬c ° ¬ +
1

Æ

2¬1

º

k

1 + (ky)2
Vg sin ¬

∂

.

Inside the boundary region we have

¬c = ¬ °
1

Æ
¬1

2

º

k

1 + (ky)2
Vg sin¬ °

∑

Æ

¬̃

≤
.

Therefore

Ẇ = Vgy sin
°

¬d(y) + ¬̃
¢

°
Ω∑

≤
¬̃2

= °
Ω∑

≤
¬̃2 + Vgy sin

°

¬d(y)
¢

+ Vgy
°

sin
°

¬d(y) + ¬̃
¢

° sin
°

¬d(y)
¢¢

∑ °
Ω∑

≤
¬̃2 + Vgy sin

°

¬d(y)
¢

+ Vg |y|
Ø

Øsin
°

¬d(y) + ¬̃
¢

° sin
°

¬d(y)
¢
Ø

Ø .

Noting that
Ø

Øsin
°

¬d(y) + ¬̃
¢

° sin
°

¬d(y)
¢
Ø

Ø

=
Ø

Øsin ¬d(y) cos ¬̃ + cos ¬d(y) sin ¬̃ ° sin ¬d(y)
Ø

Ø

=
Ø

Øsin ¬d(y)(cos ¬̃ ° 1) + cos ¬d(y) sin ¬̃
Ø

Ø

∑ |cos ¬̃ ° 1| + |sin ¬̃|

∑ 2 |¬̃| ,
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we get

Ẇ ∑ °
Ω∑

≤
¬̃2 + 2Vg |y| |¬̃| + Vgy sin

°

¬d(y)
¢

= °
Ω∑

≤
¬̃2 + 2Vg |y| |¬̃|° Vgy sin

µ

2¬1

º
tan°1(ky)

∂

.

Let

¡(y) = y sin

µ

2¬1

º
tan°1(ky)

∂

,

and note that ¡(y) º 2¬
1k
º

y2 for small values of ky and

¡(y) º (sin¬1)y for large ky. Consider the function

'(y) =

(

2¬
1k

µº
y2 if |y| ∑ ȳ

2¬
1kȳ
µº

(2 |y|° ȳ) if |y| > ȳ
,

where ȳ is arbitrary. Our objective is to find µ that ensures

that 0 < '(y) ∑ ¡(y).
Toward that end, note that both ¡ and ' are symmetric

functions in y. Therefore, without loss of generality we will
restrict our attention to y ∏ 0. To show that '(y) ∑ ¡(y)
we will use the fact that if two functions f and g satisfy

f(0) = g(0) and f
0

(y) ∑ g
0

(y) for y ∏ 0, then f(y) ∑ g(y)
for y ∏ 0. Toward that end, note that when 0 ∑ y ∑ ȳ

¡
0

(y) = sin

µ

2¬1

º
tan°1 (ky)

∂

+
2¬1k

º
y

2

4

cos
≥

2¬
1

º
tan°1 (ky)

¥

1 + (ky)2

3

5

∏
4¬1k

º
y

2

4

1

2

cos
≥

2¬
1

º
tan°1 (ky)

¥

1 + (ky)2

3

5

∏
4¬1k

º
y

2

4

1

2

cos
≥

2¬
1

º
tan°1 (kȳ)

¥

1 + (kȳ)2

3

5

∏
4¬1k

µº
y

= '
0

(y)

if

µ ∏
2(1 + (kȳ)2)

cos
°

2¬1

º
tan°1 (kȳ)

¢ .

Also note that when y > ȳ, we have

¡(y) = y sin

µ

2¬1

º
tan°1 (ky)

∂

∏ y sin

µ

2¬1

º
tan°1 (kȳ)

∂

which implies that ¡(y) ∏ '(y) if

4¬1kȳ

µº
∑ sin

µ

2¬1

º
tan°1 (kȳ)

∂

which is equivalent to

µ ∏
4¬1kȳ

º sin
°

2¬1

º
tan°1 (kȳ)

¢ .

Therefore, if

µ ∏ max

(

2(1 + (kȳ)2)

cos
°

2¬1

º
tan°1 (kȳ)

¢ ,
4¬1kȳ

º sin
°

2¬1

º
tan°1 (kȳ)

¢

)

then '(y) ∑ ¡(y) which implies that

Ẇ ∑ °
Ω∑

≤
¬̃2 + 2Vg |y| |¬̃|° Vg'(y).

Therefore, for |y| ∑ ȳ we get

Ẇ ∑ °
Ω∑

≤
¬̃2 + 2Vg |y| |¬̃|°

2Vg¬
1k

µº
y2

= °Vg

°

|¬̃| |y|
¢

√

Ω∑

≤Vg

°1

°1 2¬
1k

µº

!

µ

|¬̃|
|y|

∂

(14)

which is negative definite if

Ω∑

≤Vg

µ

2¬1k

µº

∂

> 1.

Exponential stability comes from the fact that W and the right

hand side of (14) are quadratic [12].

For |y| > ȳ, we get

Ẇ ∑ °
Ω∑

≤
¬̃2 + 2Vg |y| |¬̃|°

2Vg¬
1kȳ

µº
(2 |y|° ȳ)

∑ 2Vg |y| ≤ °
2Vg¬

1kȳ

µº
|y|

= 2Vg |y|

µ

≤ °
¬1kȳ

µº
|y|

∂

,

which is less than zero if

¬1kȳ

µ≤º
> 1,

thus implying asymptotic stability for |y| > ȳ.

B. Orbit Following

The algorithm for circular orbits creates vector fields in a

manner similar to the straight-line algorithm. Consider the

desired orbit path shown in Figure 6. In this discussion, a

counter-clockwise orbit will be considered. The development

for clockwise orbits is similar with the exception of several

sign changes. The desired orbit is assumed to have a known

center and radius r. When the distance between the MAV and
the center of the orbit is large, it is desirable for the MAV

to fly toward the orbit center. If we define d as the radial

distance of the MAV from the center of the orbit, then when

d is significantly larger than r the desired course is

¬d º ∞ ° º

where ∞ is defined as the angular position of the MAV with

respect to the orbit center as shown in Figure 6.

When d = r the desired course is ¬d = ∞ ° º

2
. Therefore

let the desired course be given by

¬d(d) = ∞ °
º

2
° tan°1 (k(d ° r)) , (15)

where k > 0 is a constant that specifies the rate of transition
from ∞ ° º to ∞ ° º

2
. This expression for ¬d is valid for all

values of d ∏ 0.
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For orbit following, it is convenient to change the navi-

gational dynamics to polar coordinates in terms of d and ∞

where the center of the orbit is the origin. From Figure 6,

x = cx + d cos ∞ and y = cy + d sin ∞, where (cx, cy) is the
center of the orbit. Taking the derivative and substituting into

Equations (5) and (6) gives

ḋ = Vg cos(¬ ° ∞) (16)

∞̇ =
Vg

d
sin(¬ ° ∞) (17)

where the Vg and ¬ are the ground track speed and relative

d

Vg

χ

r

d

γ

(cx, cy)

x

y

Fig. 6. Vector field geometry for orbit tracking. When the radial distance to
the MAV is much greater than the orbit radius the desired course is calculated
so that the MAV is directed toward the orbit center. As the radial distance
becomes smaller, the desired course becomes tangential to the orbit.

course, respectively. We will again assume that the course

dynamics are given by

¬̇ = Æ(¬c ° ¬). (18)

Defining d̃ = d ° r then we can argue that d̃ ! 0 asymp-
totically when ¬ = ¬d(d) by using the Lyapunov function
W1 = 1

2
d̃2, whose Lie derivative is

Ẇ1 = Vgd̃ cos
≥

°
º

2
° tan°1(kd̃)

¥

= °Vgd̃ sin
≥

tan°1(kd̃)
¥

.

Ẇ1 is less than zero for d̃ 6= 0 since the argument of sin
is in the set (°º/2,º/2) for all d̃, implying that d̃ ! 0
asymptotically.

We will again use a sliding mode approach to render the

set

S = {(d̃,¬) : ¬ = ¬d(d)}

positively invariant and to ensure that the system trajectory

reaches S in finite time. As before, define ¬̃ = ¬°¬d(d) and
differentiate to obtain

˙̃¬ = Æ(¬c ° ¬) ° ¬̇d(d)

= Æ(¬c ° ¬) °
Vg

d
sin(¬ ° ∞) + ØVg cos(¬ ° ∞),

where

Ø =
k

1 + (kd̃)2

has been defined for brevity. Letting W2 = 1

2
¬̃2 gives

Ẇ2 = ¬̃

µ

Æ(¬c ° ¬) °
Vg

d
sin(¬ ° ∞) + ØVg cos(¬ ° ∞)

∂

.

If we choose the control signal as

¬c = ¬+
Vg

Æd
sin(¬°∞)°

Ø

Æ
Vg cos(¬°∞)°

∑

Æ
sign(¬̃), (19)

where ∑ > 0, then

Ẇ2 ∑ °∑ |¬̃|

from which we conclude that ¬̃ ! 0 in finite time [12].
To avoid chattering in the orbit case we replace (19) with

¬c = ¬+
Vg

Æd
sin(¬°∞)°

Ø

Æ
Vg cos(¬°∞)°

∑

Æ
sat

µ

¬̃

≤

∂

, (20)

where ≤ > 0 defines the width of the boundary region around
the sliding mode.

Theorem III.2 The system of equations given by (16)

and (18), where ¬c is given by (20) and ¬d(d) is given by (15)
is globally exponentially stable if

µ

k

≤µ

∂

min

Ωµ

Ω∑

Vg

∂

,

µ

d̄

2

∂æ

> 1, (21)

where

µ ∏ 2
£

1 + (kd̄2)
§

3

2

and d̄ is arbitrary.

Proof:

The proof follows a similar line of reasoning as the proof

of Theorem III.1. If |¬̃| ∏ ≤, then the set S≤ = {|¬̃| ∑ ≤} is
positively invariant and ¬̃ converges to S≤ in finite time. Inside

the boundary region we use the Lyapunov function candidate

W =
1

2
d̃2 +

1

2
Ω¬̃2

with Ω > 0 to obtain

Ẇ = °
Ω∑

≤
¬̃2 + Vgd̃ sin

°

¬̂d(d) + ¬̃
¢

where ¬̂d(d)
4
= ° tan°1(kd̃). Following steps that are similar

to the proof of Theorem III.1 we get

Ẇ ∑ °
Ω∑

≤
¬̃2 + 2Vg|d̃||¬̃| + Vgd̃ sin

°

¬̂d(d)
¢

= °
Ω∑

≤
¬̃2 + 2Vg|d̃||¬̃|° Vgd̃ sin

≥

tan°1(kd̃)
¥

.

Letting

¡(d̃) = d̃ sin
≥

tan°1(kd̃)
¥

,

and

'(d̃) =

(

k
µ
d̃2 if |d̃| ∑ d̄

kd̄
µ

(2|d̃|° d̄) if |d̃| > d̄
,
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where d̄ is arbitrary, we can show that 0 < '(d̃) ∑ ¡(d̃) if

µ ∏ 2
£

1 + (kd̄2)
§

3

2 . From this we find that for |d̃| ∑ d̄,

Ẇ ∑ °
Ω∑

≤
¬̃2 + 2Vg|d̃||¬̃|°

Vgk

µ
d̃2

= °Vg

°

|¬̃| |d̃|
¢

√

Ω∑

≤Vg

°1

°1 k
µ

!

µ

|¬̃|

|d̃|

∂

which is negative definite if

Ω∑k

Vg≤µ
> 1. (22)

For |d̃| > d̄, we get

Ẇ ∑ °
Ω∑

≤
¬̃2 + 2Vg|d̃||¬̃|°

Vgkd̄

µ

≥

2|d̃|° d̄
¥

which is < 0 if
kd̄

2≤µ
> 1. (23)

The combination of (22) and (23) leads to (21).

C. Combining Straight Lines and Orbits

Many paths planned for MAV flight can be approximated by

combinations of straight-line segments and circular arcs [13].

Figure 7 shows how combined paths can be utilized with

waypoint planning to fly paths that preserve equal path lengths,

fly directly over the waypoints, or turn in order to minimize

flight time. There are also a number of other situations where

a combination would be desirable. For example, following a

perimeter with irregular geometry could be done effectively

by approximating its geometry with a series of lines and arcs.

When combining straight and arc segments, an approach

for constructing the vector field must be developed. In order

to avoid the possibility of multiple sinks, dead zones, and

singularities that are inherent in the combination of vector

fields, only the vector field for the current segment or arc to be

followed is calculated. For a multi-segmented path, the vector

field changes each time the MAV reaches the end of a segment

or arc. Once the MAV has reached the end of a segment or arc,

the entire vector field changes to direct the MAV onto the next

segment or arc. No two fields are combined, thus eliminating

any issues related to the combining of fields.

The method for determining when to change the vector

field must be specified. There are a number of methods for

doing this. One way is to detect when the MAV is within

a predetermined distance from the end of the segment or

arc. This works well for transitioning out of a straight path

segment. For transitioning out of an arc, monitoring the

angular travel of the MAV has proven successful. Using this

approach, the MAV transitions to the next path segment when

the angle through which the MAV has flown is equal to the

included angle of the arc.
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Fig. 7. Straight line paths and circular orbits can be combined to produce
a variety of paths. The top figure shows the combination of two straight line
paths and three circular orbits that are arranged so that if the MAV is on the
path, the path length is equal to the original waypoint path. The middle figure
arranges the orbits so that the desired path transitions over the waypoint. In
the bottom figure a single orbit is used to transition between straight line
segments.

IV. RESULTS AND DISCUSSION

A. Hardware Testbed

BYU has developed a reliable and robust platform for

testing unmanned air vehicles [14], [15], [16]. Figures 8

through 10 show the key elements of the testbed. Figure 8

shows BYU’s Kestrel autopilot which is equipped with a

Rabbit 3400 29 MHz processor, rate gyros, accelerometers,

absolute and differential pressure sensors. The autopilot mea-

sures 3.8 £ 5.1 £ 1.9 cm and weighs 17 grams.

Fig. 8. The Kestrel autopilot system developed at BYU.

Figure 9 shows the airframe used for the flight tests reported

in this paper. The airframe is a 1.2 meter wingspan Zagi XS

EPP foam flying wing, which was selected for its durability,

ease of component installation, and flight characteristics. Em-

bedded in the airframe are the Kestrel autopilot, batteries, a
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Fig. 9. Zagi foam flying wing airframe.

Fig. 10. Screen shot of the Virtual Cockpit software used to interact with
the MAV.

1000 mW, 900 MHz radio modem, a GPS receiver, a video

transmitter, and a small analog camera.

Figure 10 shows a screen shot of the Virtual Cockpit

software that interfaces through a communication box to the

MAVs. Virtual Cockpit allows the user to control the behavior

of the MAV by changing control gains, specifying waypoints,

or changing experimental objectives. Telemetry from the MAV

is displayed in the Virtual Cockpit in real time allowing the

user to monitor the progress of the experiment.

To implement the straight-line and orbit tracking control

laws, several control parameters must be specified. Table I

specifies the parameters used for the experimental results

presented. With these values, the stability conditions specified

by (13) and (21) are satisfied provided that Ω is selected

to scale the following and course errors so that they are of

similar magnitudes during path following. For example, in the

straight-line case, choosing Ω so that

Ω º
y2

max

¬̃2
max

=
y2

max

º2

ensures that the stability condition is a meaningful indicator

of system behavior.

TABLE I

CONTROL PARAMETER VALUES

parameter value equation

Æ 1.65 rad/s (7),(18)

k 0.02 m−1 (8),(15)
¬∞ º/2 rad (8)

∑ º/2 rad2/s (12),(20)
≤ 1.0 rad (12),(20)

B. Experimental Results

To demonstrate the path following abilities enabled by the

vector field algorithm, MAVs were commanded to fly a variety

of paths composed of straight lines, orbits, and combinations

of straight lines and circular arcs. Experiments were conducted

on three separate days. The majority of the results (which are

presented first) were collected on a relatively calm day with

the average wind speed measuring 0.9 m/s from 230 degrees

southwest. The commanded airspeed was 13 m/s, thus for

these tests the average wind speed was 7 percent of the

commanded airspeed. Results were also gathered on two high-

wind days: one with an average wind speed of 9 m/s and

another with an average wind speed of 6 m/s.

The position of the MAV was measured using the on-board

GPS unit. The bias error associated with the GPS measurement

is approximately 10 m and is virtually unchanging over the

duration of the flight experiments. Random errors are in the

range of 2 to 3 m. The path-following errors reported are the

calculated by computing the lateral distance between desired

path and the location of the MAV as measured by GPS.

To illustrate orbit following with the vector field algorithm,

the MAV was commanded to fly a series of concentric orbits

with varying radii. The results are shown in Figure 11. The

mean lateral path error for the 150 m orbit was 0.58 m, while

the standard deviation of the path error was 0.42 m. For the

100 m orbit the mean path error was 0.65 m and the standard

deviation of the path error was 0.46 m. For the 70 m orbit,

the mean and standard deviation of the lateral error was 1.9 m

and 1.1 m respectively. For the larger orbits, the mean errors

are about half of the wingspan of the MAV. The data indicate

that tight tracking is more difficult to achieve as the orbit

radius decreases. This is expected since control adjustments

for loss in altitude in turns must be mixed with those used to

control the lateral error and since the states associated with a

smaller orbit are further away from the nominal wings-level

trim condition.

Figure 12 illustrates the ability of the MAV to follow straight

line segments with acute angles. Excluding the transient errors

from the turns, the mean following error on the straight-line

portions of the path was 0.74 m with a standard deviation of

0.66 m.

A combination of the straight-line and arc-following meth-

ods was also tested. The techniques described in Section III-C

were implemented and the results are plotted in Figure 13.

The thicker line represents the desired path that was planned to

equalize the straight-line and smoothed path lengths. The mean

path following error and standard deviation were 3.6 m and

5.1 m respectively. Although the transitions from the straight
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Fig. 11. Telemetry plot for orbits with radii of 150, 100, and 70 m.
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Fig. 12. Telemetry plot for straight line following.

line to the orbit portions show some lateral following errors,

the length of the path flown and the desired length are similar.

The length of the straight-line path shown in Figure 13 was

2897 m. The actual distance flown was 27 m less than the

desired distance, which is an error of only 0.93 percent.

To further test the robustness and capabilities of the pro-

posed path-following algorithms, many other types of paths

have been flown. The path shown in Figure 14 illustrates both

obtuse and acute angles and the decision of the path follower to

cut the corners of the obtuse angles and flare out and around on

the acute angles. Considering the path following error over the

full path gave a mean error of 3.6 m and a standard deviation

of 4.7 m. Figure 15 shows a path representative of an urban

scenario. Although these are actual flight results, the terrain

is synthetic. The straight-line follower was used to follow this

path. The mean lateral error over the full path was 3.4 m,

while the standard deviation was 4.8 m.
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Fig. 13. Telemetry plot for equal path length following.
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Fig. 14. Combination of equal path length and corner cutting following.
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Fig. 15. Urban terrain following using straight line following.

To demonstrate the feasibility of the approach for high wind

conditions, an orbit path and a straight-line path were flown

on days where the average wind speeds were 9 m/s and 6 m/s

respectively. A plot of the orbit results is shown in Figure 16.
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For these results, the high wind required an airspeed of 18 m/s

to enable the MAV to make steady progress upwind. The

wind speed was approximately 50 percent of the commanded

airspeed. Under these conditions, the mean following error was

0.5 m with a standard deviation of 4.2 m.
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Fig. 16. Orbit following in high-wind conditions. Wind speed 50% of
commanded airspeed.

Straight-line path following results gathered under high-

wind conditions are shown in Figure 17. The wind was

measured at 6 m/s coming from the south. The commanded

airspeed was 13 m/s. As expected, the largest errors occur

during the down-wind portions of a turn. In these situations,

the groundspeed of the MAV is high and the minimum turn

radius, which is governed by roll-angle limits, becomes larger.

It can be seen that on the straight line portions of the path,

the following errors are small. In this case, the mean following

error was 0.5 m, while the standard deviation of the error was

1.2 m along the straight portions of the path.
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Fig. 17. Straight-line following in high-wind conditions. Wind speed 46%
of commanded airspeed.

V. CONCLUSIONS

In this paper, a new method for MAV path following,

based on the concept of vector fields, has been introduced.

Using Lyapunov stability criteria, it has been shown that

the vector field approach provides asymptotic following for

straight-line and circular paths in the presence of constant wind

disturbances.

The effectiveness of the vector field method has been

demonstrated experimentally using a fixed-wing MAV. For

both straight-line and circular paths, following errors averaged

less than one wingspan in steady straight-line or orbit paths

and less than three wingspans for paths involving frequent

transitions between straight-line and arc segments.
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