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Vector Fields for Robot Navigation Along
Time-Varying Curves in n-Dimensions

Vinı́cius M. Gonçalves, Luciano C. A. Pimenta, Carlos A. Maia, Bruno C. O. Dutra, and Guilherme A. S. Pereira

Abstract—This paper presents a methodology for computation
of artificial vector fields that allows a robot to converge to and
circulate around generic curves specified in n-dimensional spaces.
These vector fields may be directly applied to solve several robot-
navigation problems such as border monitoring, surveillance, tar-
get tracking, and multirobot pattern generation, with special ap-
plication to fixed-wing aerial robots, which must keep a positive
forward velocity and cannot converge to a single point. Unlike pre-
vious solutions found in the literature, the approach is based on
fully continuous vector fields and is generalized to time-varying
curves defined in n-dimensional spaces. We provide mathematical
proofs and present simulation and experimental results that illus-
trate the applicability of the proposed approach. We also present a
methodology for construction of the target curve based on a given
set of its samples.

Index Terms—Limit cycles, mobile robots, motion control, time-
varying systems.

I. INTRODUCTION

V
ECTOR-FIELD-BASED approaches have been exten-

sively used to guide and control mobile robots in the

execution of different tasks. This is mainly due to an impor-

tant characteristic of such methods that is the integration of path

planning, trajectory planning, and robot control in the same

approach, which allows for stability proofs and real-world im-

plementations [1]. Given an n-dimensional domain Ω, a vector

field h is defined such that h : Ω → Tq(Ω), where Tq(Ω) is the

tangent space of Ω, and q ∈ Ω. In robotics, the domain Ω is the

robot’s configuration space, also represented by C. The desired

task is then accomplished by forcing the robot to use the vector

field as velocity or acceleration input.

A classical problem is to drive a single robot from an initial

configuration q0 to a final configuration qf . This problem was

solved by means of several artificial vector fields such as the

ones proposed in [1]–[7].

Other important problems that were recently considered by

several researchers are pattern generation and pattern tracking.

Different tasks, such as surveillance, manipulation, and bound-

ary monitoring, can be executed by using solutions of these
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problems. A very interesting application is, for instance, shown

in [8], where a flock of aerial vehicles is used to track a chemical

plume released in the atmosphere.

The pattern-generation problem involves control of a team of

mobile robots in order to converge to a prespecified static geo-

metric pattern. On the other hand, the pattern-tracking problem

requires one or more vehicles that are controlled to converge to

a closed pattern and to circulate along it. The two problems are

essentially very similar, and so are the solutions found in the

literature.

In [9]–[11], vector fields are computed to solve the pattern-

generation problem for static 2-D patterns and multiple planar

mobile robots. Basically, an attractive vector field that guides

the robots to a pattern is added to a field that is designed to

avoid collisions among the robots. The main difference among

these methods is the way such fields are computed. Chaimowicz

et al. [9] compute the attractive field as the gradient of a func-

tion, which is constructed as an interpolation of several radial-

basis functions centered at samples of the desired pattern. This

methodology, which allows the generation of generic-shaped

patterns, is used and extended in the present work to generate

curves in 2-D and 3-D spaces, as will be shown later in the

paper. Hsieh and Kumar in [10] used a similar approach but

improved Chaimowicz’s interrobot-collision solution. This al-

lowed for proofs of convergence for the group. Pimenta et al.

[11] proposed the use of a numerical method to compute an

electrostatic analogous field to attract the group of robots to the

pattern. The main advantage of their approach is the possibility

to add static, previously known obstacles in the workspace. An-

other contribution of [11] was the use of fluid models to control

the interrobot behavior.

Solutions to pattern tracking using vector fields are very sim-

ilar to the ones adopted for pattern generation with multiple

robots. In addition to the field that attracts the robot to the target

curve, another vector field is also necessary to make the robot

traverse the curve. The computation of these fields and a method

to compose them, allowing for proofs of convergence, are the

main challenges to obtain good solutions. The composition of

an attractive and a rotational field usually creates a stable limit

cycle in the robot configuration space. Just to clarify the idea,

we present in Fig. 1 an example of a pattern in a 2-D space and

a vector field that solves the tracking problem. This idea was

used in [12]–[21].

Hsieh et al. [15] compute a dynamic vector field to control

a team of planar holonomic mobile robots to converge to and

circulate along the boundary of a desired static 2-D geometric

pattern. The vector field is dynamic in the sense that it changes

according to the robots’ relative positions. This is necessary

to guarantee collision avoidance. Ceccarelli et al. [18] also deal
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Fig. 1. Example of curve and vector field.

with planar ground robots. Although the pattern is constrained to

be circular, proofs of convergence for a group of nonholonomic

robots are presented.

Several other papers on pattern tracking are motivated by

the nature of the robot used in the application [16], [19], [21].

In the case of airplane-based unmanned air vehicles (UAVs),

the robot must maintain a positive forward speed and cannot

converge to a single point. Therefore, most of the tasks may

be modeled as closed-patterns tracking problems. For example,

Frew et al. [16] controlled two UAVs to follow moving targets

on the ground by modeling the task as the problem of tracking a

loiter circular pattern centered at the target. Although the authors

experimentally show that a vector field can be used to solve the

problem, they did not present formal proofs that consider the

time-varying nature of the pattern.

In some situations, traditional waypoint navigation problems

may be also seen as a pattern-tracking problem if the waypoints

are considered to be sample points of a closed curve, as shown

in [21]. In these cases, the main challenge is to construct a

continuous vector field that guides the robot to follow an arbi-

trary sequence of waypoints. Using the methodology proposed

by [19], for example, it is possible to generate fully continuous

vector fields for any pattern that may be constructed by warping

a circular curve. Since the warping technique proposed by the

authors does not allow for tracking any arbitrary sequence of

waypoints, they also propose a switching algorithm that gen-

erates discontinuous vector fields. Iscold et al. [21] compute a

continuous vector field that allows a UAV to track an arbitrary

sequence of planar waypoints. The authors construct a polyg-

onal corridor that contains a set of waypoints and apply the

methodology proposed in [4] to generate the field inside the

corridor. The main drawbacks of the methodology are the field

discontinuity at the border of the corridor and the difficulty to

extend the vector field to 3-D workspaces. Actually, solutions

that generate time-varying vector fields for pattern tracking in

dimensions higher than two could not be found in the literature

until the present date.

In the present work, we address the problem of computation of

a vector field to control a single robot, which is represented by its

configuration, to converge to and circulate along a given curve.

Unlike previous works, we compute vector fields to deal with

the general problem of time-varying patterns in n-dimensional

spaces. To the best of the authors’ knowledge, the methodol-

ogy in the present paper is the first vector-field approach that

explicitly considers generic-shaped time-varying patterns, de-

fined in n-dimensional spaces, with convergence proofs. The

fact that the methodology is able to control robots with n de-

grees of freedom (DOFs) allows it to be used to control not

only mobile robots but manipulators performing repetitive tasks

that can be represented by closed curves in their n-dimensional

configuration spaces as well.

This paper extends our preliminary results presented in [22],

in which we have shown an early version of the proposed vector

field. This field is based on the sum of three terms: 1) con-

vergence; 2) circulation; and 3) correction term. The first term

guarantees that a kinematically controlled holonomic robot ap-

proaches the desired curve, the second one guarantees that the

robot circulates the curve, and the third is a feedforward term

that compensates for the time-varying nature of the curve. These

components are based on n − 1 implicit functions that define the

target curve. Unlike the preliminary version of the work in [22],

in the present paper, we have replaced the negative definite

function used in the convergence term by a more intuitive po-

tential function, which is built from the implicit functions that

define the target curve. The mathematical proofs are detailed

and presented in a more constructive way, and an extension of

the methodology to second-order dynamic systems is also pre-

sented. Furthermore, we present a practical methodology to de-

termine the implicit functions using a set of sample points of the

target curve. This methodology may be used for static and time-

varying periodic curves. Similar to previous works [9], [23],

this technique is based on radial-basis function interpolation.

However, we use such an interpolation in spaces with dimen-

sions higher than two, as well in the context of time-varying

boundaries. Finally, in this paper, we discuss how the proposed

methodology can be used to guide and control actual robots,

and we illustrate the method with a differential-drive mobile

robot.

The paper is organized as follows. In Section II, the prob-

lem is formulated. The proposed vector-field methodology to

solve the problem is presented in Section III. In this section,

we also present mathematical guarantees and the computational

complexity of the method. In Section IV, we present a prac-

tical numerical technique to construct the desired curves and

discuss how the method can be applied to control actual robots.

Conclusions and directions for future research are presented in

Section V. In Appendix A, we show an extension to our so-

lution, which is initially proposed for single-integrator robots,

to second-order systems. Finally, in Appendix B, we present

mathematical results for a special class of implicit functions

that shows that the only set of configurations which may cause

our technique to fail is of measure zero.

II. PROBLEM DEFINITION

We consider a robot R represented by a configuration vec-

tor q = [x1 x2 . . . xn ]T in the n-dimensional, obstacle-free
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Fig. 2. Two-dimensional surfaces in R
3 such that the intersection defines a

1-D closed curve.

configuration space C = R
n . We initially assume that the robot

is modeled as a single integrator:

q̇ = u (1)

in which u is the control input.1 Embedded in C, we define

a 1-D target curve T (t), where t is the time, which is ex-

pressed as the intersection of n − 1 surfaces of codimension

1. We assume that an (n − 1)-dimensional surface is a level

set of a function α : R
n �→ R. In fact, T (t) is described as

the set of points such that, for an appropriate set of functions

αi , αi(x1 , x2 , . . . , xn , t) = 0 for i = 1, 2, . . . , n − 1 at those

points. Fig. 2 is an example of a 1-D curve in R
3 that is

the intersection of two 2-D, static surfaces α1(x1 , x2 , x3) = 0
and α2(x1 , x2 , x3) = 0. By considering these assumptions, the

problem we are solving in this paper can be stated as follows.

Problem 1: Let T be a closed curve, which may be static

or time-varying, defined in an n-dimensional space. Compute a

static or time-varying vector field, h, such that its integral curves

asymptotically converge to and circulate along T .

More precisely, we can rewrite Problem 1 as follows: Create a

vector fieldh(q) : C → Tq(C), where Tq(C) is the tangent space

of C, such that if u = h(q) then: 1) as t → ∞, q → T (t); and

2) once in T , this set is continuously traversed by q in a fixed

direction. In the case of static curves, statement 2) is satisfied if

q̇ is continuous, and ‖q̇‖ > 0 ∀t ≥ 0. For time-varying curves,

it is satisfied if q̇ is continuous and ‖R‖ > ‖vT (q, t)‖ ∀t ≥ 0,

whereR is the component of q̇ tangent to the curve, andvT (q, t)
is the tangential velocity of the curve at q.

Before we proceed with the proposed vector field methodol-

ogy, we provide formal definitions for the functions αi and for

the curve T (t).
Definition 1: Let αi(x1 , x2 , . . . , xn , t) : R

n+1 �→ R, i =
1, 2, 3, . . . , n − 1 be functions with bounded second-partial

derivatives such that the set T (t), as given by Definition 2,

is connected, and 1-D ∀t ≥ 0.

Definition 2: Let T (t) = {[x1 x2 . . . xn ]T ∈ R
n |αi(x1 ,

x2 , . . . , xn , t) = 0,∀i ≤ n − 1} be the set of all points that lie

in the intersection of the level sets αi = 0.

1In Appendix A, we present an extension for second-order systems.

The requirement for bounded second-partial derivatives in

Definition 1 will become clear later in our proofs. Notice that

we define the αi functions such that the time-varying set T (t)
is 1-D and connected for all t ≥ 0. Connectedness is necessary

to avoid disjoint closed curves.

III. METHODOLOGY

This section presents a solution to the problem defined in

Section II. This problem can be decomposed into two subprob-

lems: 1) convergence to the curve and 2) circulation along it.

Each of these subproblems will be solved separately using vector

fields. In what follows, the vector field, which will be obtained

as a composition of the individual solutions, will be shown to

ensure both convergence and circulation.

A. Convergence to the Curve

Let V : R
n−1 �→ R be a differentiable positive-definite

function. Since αi is a function of x1 , x2 , . . . , xn and t,
V (α1 , α2 , . . . , αn−1) is also a function of these variables. Fur-

thermore, since V is positive definite, V = 0 if and only if

αi = 0 ∀i. Therefore, if we are able to set the function V to

zero, then we can guarantee convergence to the curve. Note that

dV

dt
= ∇V T q̇ +

∂V

∂t
(2)

where ∇ is the gradient taken with respect to q.

If V̇ is a negative-definite function, then V → 0. It is impor-

tant to mention that, by Definition 1, the second-partial deriva-

tives of the functions αi are bounded, which implies that the

first-partial derivatives are continuous. Also, V is differentiable,

which means that both ∇V and ∂V /∂t are well defined. Let

u = −G∇V + P (3)

where P is a vector to be defined and G(x1 , x2 , . . . , xn , t) is

a nonnegative scalar function. Vector u can be understood as a

combination of two terms. The first term is given by −G∇V ,

which is responsible for guiding the system to a minimum of

V , and provided that certain conditions are ensured the only

possible minimum is V = 0. As previously mentioned, since V
is positive definite, this minimum is only reached if αi = 0 ∀i.
Therefore, this first term drives the system toward the desired

curve. The second term is a vector P, which will be designed to

compensate for the possible time-varying nature of the curve. It

should be clear that this term is not necessary when the curve is

static.

According to the model in (1) and substituting (3) in (2), we

obtain

dV

dt
= −G‖∇V ‖2 + ∇V T P +

∂V

∂t
. (4)

If

∇V T P +
∂V

∂t
= 0 (5)
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then V̇ ≤ 0. Using the chain rule

∇V =

n−1
∑

i=1

∂V

∂αi
∇αi (6)

∂V

∂t
=

n−1
∑

i=1

∂V

∂αi

∂αi

∂t
. (7)

By replacing these two expressions in (5), we have

n−1
∑

i=1

∂V

∂αi

(

∇αT
i P +

∂αi

∂t

)

= 0. (8)

Therefore, in order to satisfy (8), it is sufficient that

∇αT
i P = −

∂αi

∂t
(9)

for i = 1, 2, . . . , n − 1. To rewrite (9) in a compact form, the

following definition is needed.

Definition 3: Let M∗ be the matrix in R
n−1×n such that the ith

row is given by the vector ∇αT
i for i = 1, 2, . . . , n − 1. Also,

let a∗ be the column vector in R
n−1 such that the ith row is

given by ∂αi/∂t for i = 1, 2, . . . , n − 1.

Using Definition 3, we can rewrite the set of equations in (9)

as

M∗P = −a∗. (10)

Definition 4: Let U(t) be the set of points [x1 x2 . . . xn ] ∈
R

n such that the vectors ∇αi’s are linearly dependent.

In Appendix B, it is proved that some reasonable assumptions

are sufficient to guarantee that U(t) is of measure zero on R
n .

We also want this set to be repulsive according to the next

definition.

Definition 5: A time-varying set of points S(t) of a dynamical

system q̇ = h(q, t) is said to be a repulsive set if there exists a

neighborhood N (S) such that for all q ∈ N , we have Ḋ > 0
for all t, where D is the distance between q and S.

Assuming that the set U(t) is repulsive for all t > 0, the

existence of a solution P in (10) is independent of the vector

a∗. We will explicitly write a solution later. At this point, we

will assume that it is possible to obtain such a P, and then, (4)

becomes

dV

dt
= −G‖∇V ‖2 . (11)

We can see that if G is null on the points such that ∇V = 0,

then the qualitative behavior of (11) is unchanged. Thus, G is

formalized as follows:

Definition 6: Let G(x1 , x2 , . . . , xn , t) : R
n+1 �→ R be a non-

negative function with bounded partial derivatives. Besides, it

can only vanish in configurations where ∇V = 0.

Now, it is important to analyze the term ‖∇V ‖2 . This term

is null if and only if ∇V = 0. For a differentiable positive-

definite function V , the partial derivatives ∂V/∂αi = 0 vanish

at the arguments α1 = α2 = · · · = αn−1 = 0, which means that

∇V = 0 in T (t). By (6), we can see that if at least one of the

components ∂V/∂αi is nonnull for a point q at time t and∇V =
0, then the vectors ∇αi are linearly dependent. Therefore, these

points form a subset of the set U(t). Without further restrictions

on V , there are also remaining points such that ∇V = 0 that are

neither in T (t) nor in U(t): The points where all components

∂V/∂αi vanish and are not in T (t). The following definition of

V ensures that this set is empty.

Definition 7: Let V : R
n−1 �→ R be a positive-definite func-

tion with bounded second-order partial derivatives such that its

gradient is null only at the origin. We will refer to this function

V along the text as a potential function.

Provided that the set U(t) is repulsive, the right side of (3)

solves the problem of convergence. It is important to mention

that an explicit expression for P will be shown in Section III-C.

B. Circulation Along the Curve

Suppose that q has already converged to the set T (t) for a

given t. Therefore, ∇V = 0. In order to make the system to

traverse the curve, we add a term R to (3):

u = R + P. (12)

To maintain the configuration on the curve and moving along

the curve, it is important to ensure that ‖R‖ �= 0 (see Section II)

and that α̇i = 0 for i = 1, 2, . . . , n − 1. Observe that

dαi

dt
= ∇αT

i q̇ +
∂αi

∂t
. (13)

By remembering that q̇ = u, and using (12) and (9) in (13),

we get

∇αT
i R = 0 (14)

for i = 1, 2, . . . , n − 1, or simply

M∗R = 0. (15)

If the vectors ∇αi are linearly independent, then there is only

one vector (up to a scalar factor) in R
n that satisfies (15). This

motivates the next definition.

Definition 8: Let vi , i = 1, 2, 3, . . . , n − 1, and n ≥ 2 be row

vectors in R
n . The wedge product [24] ∧n−1

i=1 vi is the vector

in R
n such that the ith element is given by the cofactor of nth

row and ith column of the matrix such that the ith row is given

by the vector vi for i = 1, 2, 3, . . . , n − 1 (since the last row is

unnecessary, it is left undefined).

The definition, as given earlier, can be seen as an extension of

the cross product in R
3 to R

n . Note that, if n = 3, this definition

reduces to the usual cross product. The resulting vector is or-

thogonal to each vi . Besides, this vector is null whenever two (or

more) vectors are linearly dependent. In this paper, if n = 3, we

will write v1 × v2 instead of ∧2
i=1vi . It is interesting to observe

that Definition 4 can be rewritten using the wedge product:

The set U(t) is the set of points such that ∧n−1
i=1 ∇αi = 0. In

Appendix B, we use this observation to derive a sufficient con-

dition for U(t) to be a set of measure zero. Basically, it is shown

that if the functions αi are real analytic and their respective gra-

dients are not zero almost everywhere for all t ≥ 0, then the set

U(t) has measure zero.

It becomes clear that if

R = H ∧n−1
i=1 ∇αi (16)
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in which H(x1 , x2 , . . . , xn , t) is a scalar function according to

the following definition, then (14) holds for i = 1, 2, . . . , n − 1.

Definition 9: We denote by H(x1 , x2 , . . . , xn , t) : R
n+1 �→

R a continuous, strictly positive or negative function at T (t).
Observe that each point of a time-varying curve moves ac-

cording to a velocity, which, in general, may have a component

tangent to the curve. We will choose in the next section a partic-

ular vector P, which is orthogonal to R. Thus, the only term that

guides the system in the tangent direction of T (t) is R. There-

fore, circulation can always be ensured by choosing a proper H
which makes ‖R‖ larger than the norm of any tangent velocity

component of the curve.

It is important to mention the need of T (t) ∩ U(t) = ∅. If the

intersection is not empty, i.e., there are points on the target curve

such that the gradients are linearly dependent, then the term R

vanishes.

As previously pointed out, not all choices of functions αi are

such that the set T , i.e., αi = 0 ∀i, is 1-D for all t > 0. Let qf

be a point in this set. Then, locally, and for a given t, all the

surfaces αi = 0 are approximately an n − 1 dimensional plane

near that point, provided that the functions αi are differentiable

in their spatial arguments xi . For q sufficiently close to qf , we

have

∇αT
i |q→qf

(q − qf ) = 0 (17)

for i = 1, 2, . . . , n − 1. This equation corresponds to the first-

order Taylor expansion of αi close to qf . A sufficient condition

for T to be 1-D is that the n − 1 vectors ∇αi |q→qf
are linearly

independent, since the set of points q that satisfies (17) ∀i will

be 1-D.

Observe that it is sufficient that ∧n−1
i=1 ∇αi �= 0 for the in-

tersection set to be 1-D. However, this is not necessary: if

n = 3 and α1 = x2
1 + x2

2 + x2
3 − 1 and α2 = x2

1 + x2
2 − 1 = 0,

for example, the intersection set is 1-D (the circumference

x2
1 + x2

2 − 1 = 0 in the x1x2 plane), but the wedge product

is null on the curve. The set of functions αi that provides curves

with this behavior (1-D but with null wedge product on the

curve) must be avoided since, in this case, circulation will be

compromised.

Provided that the set U(t) is repulsive and that T (t) ∩ U(t) =
∅, the control law in (12) solves the problem of circulation. In

the next section, convergence and circulation will be ensured.

C. Circulation and Convergence

This section starts with a definition:

Definition 10: Let M be the matrix in R
n×n such that the

first n − 1 lines correspond to matrix M∗ and the last line is the

vector (∧n−1
i=1 ∇αi)

T . Also, let a be the vector in R
n such that

the first n − 1 lines correspond to vector a∗ and the last line is 0.

Note that matrix M is invertible if and only if q is not in U(t).
Thus, if P satisfies

MP = −a (18)

then it clearly satisfies (10). Furthermore, the last line in (18)

means that ∧n−1
i=1 ∇αi and P are orthogonal. Therefore, R (as

in (16)) and P are also orthogonal, and the sum R + P is null

only if both terms are null. Now, we can write P, provided that

the system is not in U(t)

P = −M−1a.

The term P is essential to guarantee the convergence to time-

varying curves, as will be discussed in the next section.

Now, we will merge the right sides of (3) and (12)

u = −G∇V + H(∧n−1
i=1 ∇αi) − M−1a. (19)

The resulting vector field solves both the problem of circula-

tion and of convergence, provided that the set U(t) is repulsive,

and T (t) ∩ U(t) = ∅. This will be proved in the next theorem by

using the Lyapunov-like lemma presented in [25]. This lemma

follows directly from the well-known Barbalat’s lemma.

Theorem 1: Consider the nonautonomous dynamical system

defined by (1) and (19). Assume that the setU(t) is repulsive and

that T (t) ∩ U(t) = ∅ for all t. The system converges asymptot-

ically to the set T (t) for any initial condition (t = 0) q0 that is

not in U(0). In addition, it is always possible to ensure circu-

lation along T (t) with a given fixed direction. Moreover, q̇ is

continuous.

Proof: Note that q̇ is continuous for any t due to the differ-

entiability or continuity of the involved functions and that, by

hypothesis, the points in the set U(t) are repulsive.

Function V is positive definite and, therefore, lower bounded.

It can be verified that

dV

dt
= −G‖∇V ‖2 + H∇V T (∧n−1

i=1 ∇αi).

Using (6) and the fact that ∧n−1
i=1 ∇αi is orthogonal to each

∇αi we obtain

dV

dt
= −G‖∇V ‖2 .

By the assumptions of bounded second derivatives of V and

αi and bounded first derivative of G, we can check that d2V/dt2

is bounded. Thus, the Lyapunov-like lemma in [25] is applicable.

Therefore, dV/dt → 0. Provided that the set U(t) is repulsive,

V → 0, and the system converges asymptotically to the desired

curve.

Once in the curve, the term −G∇V vanishes, and the system

input is given by (12). By the discussion in Section III-B, it is

always possible to choose H such that circulation is ensured.

The sign of H in the desired curve determines the direction of

circulation. �

D. Numerical Example

In this section, we illustrate the result of Theorem 1 and

discuss the importance of the correction term in the proposed

control law by means of a numerical example. We consider

convergence and circulation of a time-varying curve in R
3 . Let

α1(x1 , x2 , x3 , t) = x2
1 + x2

2 − 1

α2(x1 , x2 , x3 , t) = x3 − sin(γt) (20)

in which γ �= 0. The set T (t) is 1-D: a circumference parallel

to the x1x2 plane with unitary radius and center at the x3 axis

that changes between x3 = 1 and x3 = −1 (according to x3 =
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Fig. 3. Simulation for an initial condition q0 = [0.1 0.1 0.1]T .

sin(γt)). We first need to find the set U(t). The wedge product

between ∇α1 and ∇α2 (cross product, for n = 3) is given by

∇α1 ×∇α2 = [2x2 − 2x1 0]T .

Therefore, the set U(t) (∇α1 ×∇α2 = 0) is the set

{(x1 , x2 , x3) ∈ R
3 |x1 = x2 = 0} (the x3 axis). Furthermore,

it is easy to see that the cross product is nonnull on the de-

sired curve. Now, it is necessary to select a potential function

V (α1 , α2). We choose V = α2
1 + α2

2 . As its gradient is given

by [2α1 2α2 ]
T , it is null only if α1 = α2 = 0. Moreover, all the

requirements in Definition 7 are satisfied.

Now, we will prove that the set U(t) is repulsive for all t.
This can be done by checking that if D(x1 , x2 , x3 , t) denotes

the distance between q at time t and the set U(t), then D2 =
α1 + 1. The derivative of D2 with respect to time is given by

dD2

dt
= ∇αT

1 q̇ = −G
∂V

∂α1
‖∇α1‖

2 −∇αT
1 M−1a (21)

since ∇α1 and ∇α2 are orthogonal. Technically, (21) is not

defined in the set U(t) since M−1a is undefined in this set.

Therefore, we could worry about points that are very close to

U(t). As P = −M−1a and the first row of (18) means that

−∇αT
1 M−1a = ∇αT

1 P = −∂α1/∂t = 0, we obtain

dD2

dt
= ∇αT

1 q̇ = −G
∂V

∂α1
‖∇α1‖

2 = −2Gα1‖∇α1‖
2 . (22)

We can notice that in order for q to be close to U(t), it is

necessary that α1 < 0. Thus, (22) is positive near U(t), and this

set is repulsive according to Definition 5. In this case, N (U(t))
is the set {(x1 , x2 , x3) ∈ R

3 |α1(x1 , x2 , x3 , t) < 0}.

Fig. 3 shows a simulation for an initial condition q0 =
[0.1 0.1 0.1]T . Fig. 4 shows the evolution of the potential func-

tion in time. It is clear that V → 0 as t → ∞. For this simulation,

we chose G = H = 1 and γ = 0.05.

The term P, which has been discussed in the previous sec-

tions, is essential to achieve convergence if the curve is time-

varying. In this case, the absence of this term may cause the

system to converge with a fluctuating error in the best case and

to diverge in the worst scenario.

Fig. 4. Evolution of the potential function for the simulation in Fig. 3.

Fig. 5. Evolution of the potential function with (solid line) and without (dashed
line) the time-varying correction term P. For the latter, notice that the system
oscillates near the target.

Consider the given numerical example, but now with γ = 1.

As we can infer by Fig. 5, which shows the plot of V for the

controller with and without P, in the latter, the system oscil-

lates close to the desired curve but does not converge. This

phenomenon has an intuitive explanation. Without the correc-

tion term, the only one that performs the convergence task is

−G∇V . When q approaches the target, this term tends to van-

ish, and therefore, the convergence rate decreases, but the curve

keeps varying, which is what increases the error between q and

the target as the controller convergence term is too slow to react.

This prompts the term to increase again, and so on, creating the

oscillating behavior. In some cases, however, the system cannot

even approach the time-varying curve because it may be too fast

to be tracked without the correction term.

The behavior of the system when the term is not used is,

of course, dependent on the choice of the parameters. In order

to show the importance of the term, we used γ = 1 in (20)

since it is almost impossible to see the difference between the

performance of the controller with and without the term (the

oscillation in V is very small) with γ = 0.05. This is due to the

fact that the curve is too slow, compared with our choice of G
and V , and therefore, P is not so important as when γ = 1.
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A theoretical analysis of the correction term is presented

in [26].

E. Computational Complexity

The computational implementation of the method proposed in

this paper relies on the user ability to obtain n − 1 functions with

n arguments that define the target curve in R
n . For a special case,

an algorithm for construction of these functions from sample

points of the target curve is presented in Section IV-A. We do not

take this into account in the computational complexity analysis

presented in this section since it is an offline preprocessing step.

In real time, the robot must estimate its configuration q and

use it to evaluate each of the n − 1 functions ∂V/∂αi in order to

compute its control law. This is an O(n) operation. The gradient

of each function αi at q is also necessary. Each gradient has n
coordinates, and therefore, an O(n2) algorithm is used. For a

static curve, given the value of those functions, the computation

of the convergence term is given by the summation in (6) that

can be done in O(n2). The circulation term corresponds to the

computation of the wedge product of the n − 1 gradient vectors

of functions αi . This requires an O(n4) algorithm since it is

necessary to compute n determinants of order n − 1, which are

usually computed by an algorithm based on LU decomposition

consuming O(n3) operations. Therefore, for static curves, the

proposed algorithm is O(n4).
For time-varying curves, it is also necessary to compute the

time derivative of the n − 1 αi functions, which is O(n), the

inverse of the n × n matrix M , and the product M−1a. A com-

mon algorithm for inverse computation has complexity O(n3).
The product M−1a can be done in O(n2).

Thus, for either static or time-varying curves, the complexity

of the algorithm is O(n4). It is important to emphasize that for

a typical n, such a computational cost is not an issue.

IV. REAL-WORLD IMPLEMENTATION

A. Construction of Curves

The proposed methodology relies on our ability to determine

a set of distinct αi functions, such that the intersection of the

level surfaces αi = 0 is the desired curve. In this section, we

present a technique for constructing such intersections based on

a set of interpolation points. First, we address static boundaries

and later we consider time-varying boundaries.

1) Static Boundaries: Similar to [9] and [23], we use radial-

basis functions to interpolate a set of samples of a given curve. In

fact, in this paper, we extend the previous works to dimensions

higher than two. We will consider curves in R
3 , but our ideas

can be further extended to higher dimensions, as we will discuss

at the end of this section.

Definition 11: A radial-basis function f : R
n �→ R is any

function that depends only on the distance between q and a

fixed center qc : f(q,qc) = F (‖q − qc‖).
The next definition will be useful in our main assumption.

Definition 12: Let Π(q,P) be the orthogonal projection of

the point q onto the plane P .

Fig. 6. Sample points of a “U” shaped curve.

Assumption 1: The desired curve T is such that we can always

find a plane in which Π(q1 ,P) �= Π(q2 ,P) for every two points

q1 ∈ T and q2 ∈ T .

For the sake of simplicity, we will assume that the projection

plane P is given by x3 = 0. Note that this is not a constraint,

since, in principle, we can create our own orthogonal coordinates

x1 , x2 , x3 such that our plane is given by x3 = 0.

Suppose we sample np points of the curve q̃i =
[x̃1,i x̃2,i x̃3,i ]

T . To create α1 , we use the orthogonal projections

Π(q̃i ,P), where P is the plane given by x3 = 0. Consider the

vectors q∗ = [x1 x2 0]T and q̃∗i = [x̃1,i x̃2,i 0]T . Function α1

is given by

α1(x1 , x2 , x3) = −1 +

np
∑

k=1

ωkf(q∗, q̃∗k ) (23)

where ωk is a scalar weight. Since the function must vanish

on the desired curve, we define the constraint α1(q̃∗i) = 0. We

can find the weights wk by solving the associated linear system.

Observe that we have a square matrix with dimension np . It is

important to mention that α1 does not depend on x3 .

Similarly, the function α2 is determined by

α2(x1 , x2 , x3) = x3 −

np
∑

k=1

ξkf(q∗, q̃∗k ). (24)

To compute the weights ξi , we define the constraint α2(q̃∗i) =
0. Equation (24) explains the need for Assumption 1, since the

summation on the right-hand side of this equation can be seen

as an interpolation function to fit x3 .

The two functions α1 and α2 are necessarily distinct, since α2

depends on x3 and α1 does not. By construction, the gradients

∇α1 and ∇α2 are linearly dependent if and only if ∇α1 is

null. Moreover, the intersection of the curves α1 = 0 and α2 =
0 results in a curve that approximates the desired one with

accuracy dependent on the number of samples np .

As an illustration of the methodology, a “U” shaped curve

with np = 38 is presented in Fig. 6.

In order to create α1 , it is sometimes necessary to use addi-

tional points other than those sampled. In the example of the “U”

shaped curve, Fig. 7 shows the projection on the plane x3 = 0
with one additional point out of the curve. For this point, we
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Fig. 7. Projection of the sample points in Fig. 6 on the plane x3 = 0, with
one additional point out of the curve.

Fig. 8. Convergence to the target curve determined by the sample points in
Fig. 6 with initial condition given by x1 (0) = 0, x2 (0) = 2, and x3 (0) =
−0.5.

set the constraint α1 = −1. This is necessary since constructing

the curve using only the sample points creates a pathological α1

such that the level surface α1 = 0 is disconnected. This yields

two curves: one being the desired one and the other being an un-

desired ellipse that appears in the middle of the outer region of

“U.” The negative constraint forces the function to be negative

around this region eliminating the undesired curve.

However, it should be noticed that placing a negative con-

straint to eliminate the given undesired curve could, in principle,

create another one in another region. It should then be clear that

the proposed method is not completely automatic. One must

properly tune the method for a given application.

To create α1 and α2 , we selected the radial-basis function

F (u) = u ln(u) (as in [23]) for u �= 0 and 0 for u = 0. Note

that, in this case, the vector ∇F (‖q − qi‖) is undefined when

q = qi . However, the limit of this vector when q → qi exists

and is equal to 0. Therefore, we just define ∇F (‖q − qi‖) = 0

when q = qi .

Fig. 8 shows the evolution of a robot configuration using the

computed α1 and α2 for an initial configuration given by q0 =
[0 2 − 0.5]T . For this simulation, we chose to use V (α1 , α2) =
5(α2

1 + α2
2)

1.05 and G = H = 1.

This method can be extended to R
n if we assume the follow-

ing: There is a plane Pn , which we will choose without loss

of generality xn = 0, such that the projection of the points q̃i

on this plane is unique. Then, again, we assume that these pro-

jected points can be uniquely projected on another plane Pn−1

that is orthogonal to Pn , which we will choose without loss of

generality as xn−1 = 0.

We proceed then with these assumptions and projections un-

til a collection of 2-D points is reached. We then create two

orthogonal coordinates x1 and x2 (n − 2 steps are necessary).

Let us call the ith sampled point on the (n − p)th step q̃
p
∗i and

q
p
∗ = [x1 x2 . . . xp 0 . . . 0]T .

By the use of q̃2
∗i , we then construct α1 by the use of (23),

so that α1 only depends on x1 and x2 . From now, we use

constructions similar to (24) using the points q̃
p
∗i , to construct

αp , p = 2, 3, . . . , n − 1. Therefore,

αp(x1 , x2 , . . . , xn ) = xp+1 −

np
∑

k=1

ξkf(qp
∗ , q̃

p
∗k )

that depends only on x1 , x2 , . . . , xp+1 . This construction guar-

antees that the gradients ∇αi are linearly dependent if and only

if ∇α1 is null.

2) Time-Varying Boundaries: If the desired time-varying

curve can be obtained by trivial operations on a fixed curve,

such as rotating, translating, and expanding (shrinking) as

the time passes, functions α1 and α2 could be obtained via

their fixed counterparts. If not, another sampling process is

necessary.

Suppose we sample the desired curve in time at t1 , t2 , . . . , tm ,

and that we want the curve to be periodic with period T
so that t1 , t2 , . . . , tm < T . Each of these fixed curves could

be constructed by the sampling process described in the pre-

vious section. Therefore, we obtain the sample functions

α̃i(x1 , x2 , x3 , t1), . . . , α̃i(x1 , x2 , x3 , tm ) for i = 1, 2 (in R
3).

In order to construct the desired curve, we can search for a

function αi,complex of the form

αi,complex(x1 , x2 , x3 , t) =
m

∑

k=1

χi,k (x1 , x2 , x3)Lk (e
2 π
T j t)

where

Li(e
2 π
T j t) =

m
∏

k=1,k �=i

(e
2 π
T j t − e

2 π
T j tk )

and j2 = −1. This is similar to interpolating using a Lagrange

polynomial. We set that at t = tk , αi,complex(x1 , x2 , x3 , tk ) =

α̃i(x1 , x2 , x3 , tk ), and as Li(e
2 π
T j tk ) = 0 for all i �= k, we ob-

tain the weight functions χi,k in a closed form

χi,k (x1 , x2 , x3) =
α̃i(x1 , x2 , x3 , tk )

Lk (e
2 π
T j tk )

.

By extracting the real part αi = ℜ{αi,complex}, the resultant

function αi will be equal to the samples at the appropriate in-

stants ti and will be periodic with period T .

To illustrate the methodology, a time-varying curve was cre-

ated, which was obtained by rotating the sampled curve on Fig. 6
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Fig. 9. Three snapshots of a simulation with a time-varying field constructed
by a set of sample points of the desired curve. The robot configuration is
represented by the largest circle.

around the x1-axis. The curve periodically oscillates between

−45◦ and its 45◦ rotated counterpart. Fig. 9 depicts snapshots

of the simulation where the largest circle represents the current

robot configuration. We used the same V , G, and H functions

of the previous simulation.

B. Actual Robots Implementation

The methodology previously explained assumes holonomic

robots represented by their exact configuration q. Therefore, this

theory can be directly applied to control a holonomic manipula-

tor with n DOFs. By using absolute sensors at the manipulator

joints, the configuration q can be obtained accurately. Proba-

bly, the biggest issue in this case would be the definition of the

implicit functions in R
n .

On the other hand, most of the commercially-available

mobile-robot platforms are subject to kinematic constraints and

use noisy sensor measurements for localization. Therefore, it is

natural to ask if the proposed methodology can still be applied in

the case of actual mobile robots (e.g., differential-drive robots)

navigating based on an estimated pose q̂.

The estimation of q is a difficult problem in mobile robotics.

Several good solutions have already been proposed for indoor

localization [27], but accurate localization in outdoor and un-

structured environments is still a challenge. However, an impor-

tant advantage of vector-field-based approaches is the fact that

they are not too sensitive to small localization errors. Even in

the presence of such errors, the robot will keep moving in the

right direction (or very close to it).

In order to consider differential-drive robots, such as the one

used in the experiments presented here, the following model

may be considered:







ẋ

ẏ

θ̇






=







cos(θ) 0

sin(θ) 0

0 1






·

[

v

ω

]

(25)

where the model inputs v and ω are the robot’s linear and an-

gular velocities, respectively, and θ is the robot orientation. A

low-level controller based on static-feedback linearization [25],

for example, could be used to enforce that the robot follows the

desired vector field. We are interested in controlling the robot

position [x, y]T , but in this case, it is not possible to directly

use the model in (25) to compute the robot’s inputs, because the

angular velocity does not appear explicitly in the equations of

ẋ and ẏ. To circumvent this problem, we redefine the system

output as [xd , yd ]
T = [x + d cos(θ), y + d sin(θ)]T , which cor-

responds to the position of the point [d, 0]T in the robot frame.

This frame is attached to the robot center of mass and its x axis is

parallel to the robot longitudinal axis point to the front. There-

fore, the robot may be controlled by using [ẋd , ẏd ]
T = u(q),

which implies that

[

v

ω

]

=





cos θ sin θ

−
sin θ

d

cos θ

d



u(q)

where u(q) is the vector field given by (19). In this paper,

d = 0.1 m.

Our experimental platform comprises an iRobot’s Create mo-

bile robot localized by a visual system comprising three cali-

brated overhead cameras that track the robot’s position and ori-

entation using the ArtoolKitPlus Tracking Library at 20 Hz. The

robot is equipped with a Linux-based laptop, and all the code

was written in C++ based on the Player robot programming

framework [28]. Fig. 10 shows a picture of the robot.

Fig. 11 shows the robot path as seen by the visual system when

it is following a vector field determined by static functions of
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Fig. 10. Picture of the robot used in the experiments.

Fig. 11. Robot path (solid line) and desired static curve (dotted line) given a
tie-like curve.

the form

α1(x, y, z) = ax4 − bx2y2 + cy4 − 1

α2(x, y, z) = z

where a, b, and c were chosen to fit the lab workspace. Not only

for this experiment, but for all the experiments presented in this

section, the potential function was defined to be

V =
√

α2
1 + α2

2 .

Notice in Fig. 11 that some small localization noise does

not prevent the robot to circulate the desired curve shown as a

dotted line. The difference between the robot path and the target

curve can be explained by the distance d used in the feedback-

linearization controller. Fig. 12 shows a sequence of snapshots

of the experiments overlaid on the same picture to illustrate the

actual robot behavior in the lab workspace.

In the second experiment presented here, the Create robot

was subjected to a vector field that attracts it to the intersection

of a paraboloid and a plane parallel do the z-axis. As shown in

Fig. 13, the robot was initially positioned relatively far from the

target curve.

In a third test with the Create robot, it is possible to see that the

vector field in (19) can be used to track a time-varying curve.

The time-varying curve in this case is a circle with constant

radius and center moving in the x direction with 0.01 m/s. The

Fig. 12. Sequence of snapshots from the experiment in Fig. 11.

Fig. 13. Robot path (solid line) and desired static curve (dotted line) given by
a static circle.

Fig. 14. Robot path when it is following a time-varying vector field determined
by a moving circle.

circle is obtained by intersecting a moving cylinder with the

z = 0 plane. Notice that this curve can be tracked by the robot

since its maximum speed is 0.5 m/s. Fig. 14 shows the robot

path for this experiment, while Fig. 15 shows the evolution of

the potential function in time. Notice that V decreases very fast

and, except for localization and actuation errors, remains very

close to zero.

Our last experiment aims to show that the robot is able to

track curves specified by a finite number of samples of the

space. Fig. 16 shows the robot path and the desired curve. For

this figure, the 39 samples in Fig. 7 were used to generate α1 ,

while α2 was given by a horizontal plane.

V. CONCLUSION

This paper has presented a new methodology for robot navi-

gation along a closed, generic-shaped curve using a continuous

vector field. The field is given by the sum of three terms: 1)

the gradient of a potential function; 2) a circulation term; and

3) a correction term (in the case of time-varying curves). These
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Fig. 15. Function V for the path in Fig. 14.

Fig. 16. Robot path (solid line) and desired static curve (dotted line) for a
curve specified by 39 samples of the desired curve.

terms are computed by using a set of implicit functions that

intersect at the target curve. We present proofs of convergence

for point, single-, and double-integration robots (see Appendix

A for second-order dynamics). Our main contributions are re-

lated to the implicit-function formulation of the problem and

the inclusion of the correction term for time-varying curves.

The target curve may be time-varying and may also be defined

in n-dimensional configuration spaces.

The main limitation of the proposed approach is the fact that

it is not fully automated. This is due to the need to ensure that

the set U(t) is repulsive and that T (t) ∩ U(t) = ∅ for all t.
These are intrinsic properties of the functions αi , and thus far,

there is no automatic method that guarantees these hypotheses.

Nevertheless, in Appendix B, we show that if these functions are

real analytic, then U(t) is a set of measure zero. Additionally,

it is necessary to find the functions αi . For a class of sample

points of the desired curve, which satisfies Assumption 1, the

paper does present a practical methodology to determine a set

of functions. This technique relies on the interpolation of the

samples using radial-basis functions.

Another limitation is that the method is only guaranteed

to control single- and double-integration dynamic systems. In

Section IV-B, we show a practical method to control a spe-

cific class of nonholomic robots, but for other systems, further

investigation is needed.

It is interesting to note that some approaches for pattern track-

ing and pattern generation previously found in the literature can

be defined by the framework presented in this paper. If, for

example, we define V = α2
1/2, α1 = (x2

1 + x2
2 − r2

d)/2, and

G =
βv0

√

x2
1 + x2

2(x
2
1 + x2

2 + r2
d)

H = −
2rdβv0

(x2
1 + x2

2 + r2
d)

where β is a positive scaling factor, we have exactly the 2-D

vector field shown in [16], which allows for convergence and

circulation of a loiter circle of radius rd . Similar conclusions

for the vector fields defined in [15] may be obtained. Also, the

proposed methodology may be complementary to some other

published works. In [19], for instance, the authors propose vector

fields for n-dimensional spaces that guide UAVs to track the

zero-level set of a potential function. The method proposed

in the present paper could be used to compute such potential

functions.

We are currently extending methodologies that control

swarms of ground robots based on vector fields, such as [9]

and [15], to 3-D workspaces using the methodology proposed

in this paper. This extension will be used to control swarms of

rotorcrafts. Results of a single rotorcraft tracking curves in 3-D

are presented in [26]. We also see several applications of the

technique to guide teams of unmanned airplanes in tasks such

as the ones proposed in [19].

Our future work also includes the extension of the methodol-

ogy to consider obstacles. One possibility is to use a navigation

function [1] or a harmonic function [3] as one of the intersect-

ing functions to determine the target curve. Another extension,

which is necessary to apply the methodology to guide fixed-

wing aerial robots, for example, is to develop techniques that

impose constraints such as bounded curvature and torsion to the

target curves.

APPENDIX A

SECOND-ORDER DYNAMICS

The adaptation of vector-field-based approaches to control

second-order mechanical systems is also of great interest. In

[29], for example, such systems are addressed by adding a non-

linear dampening term to a harmonic potential field. In this

Appendix, we present a result regarding second-order dynamic

systems modeled by

q̈ = u

where u is the system-control input.

Consider the velocity vector field

c = −G∇qV + H ∧n−1
i=1 ∇qαi − M−1a.

Consider also the following definition:

Definition 13: Let κ : R
m �→ R

m be a continuous function

such that the system ṗ = κ(p) is globally asymptotically stable

to the origin p = 0.

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE MINAS GERAIS. Downloaded on August 05,2010 at 19:45:45 UTC from IEEE Xplore.  Restrictions apply. 



658 IEEE TRANSACTIONS ON ROBOTICS, VOL. 26, NO. 4, AUGUST 2010

Fig. 17. Simulation of a second-order system traversing a circumference in
R

2 with initial configuration q0 = [1 1]T and initial velocity q̇0 = [−3 0].

We propose the following control law:

u = Jq(c)q̇ +
∂c

∂t
+ κ(q̇ − c) (26)

where Jq(c) is the Jacobian matrix relative to the variables

x1 , x2 , . . . , xn , and κ is a function according to Definition 13

with m = n.

If the hypotheses on Theorem 1 hold, then the system con-

verges asymptotically to the set T (t) for any initial condition

q0 , q̇0 , provided that q0 is not in U(0). In addition, it is al-

ways possible to ensure circulation along it with a given fixed

direction. Moreover, q̈ is continuous.

To show this result, let d = q̇ − c. Then, (26) can be rewritten

as

ḋ = κ(d).

Therefore, for an initial condition d0

d(t) = ζ(t,d0).

According to the definition of d

q̇ = c + ζ(t,d0).

Since, by hypothesis, the origin is globally asymptotically

stable for the system ḋ = κ(d), as t goes to ∞, the term ζ
vanishes. According to Theorem 1, convergence and circulation

along T (t) are then guaranteed.

A simulation is presented in Fig. 17 with n = 2, initial posi-

tion q0 = [1 1]T , and initial velocity q̇0 = [−3 0]. This initial

velocity is not aligned to the vector field which implies a sinuous

path toward the target curve.

APPENDIX B

MEASURE OF THE REPULSIVE SET

If the functions αi are real analytic almost everywhere∀t ≥ 0,

then the set U(t) has zero measure in R
n . As discussed in

this text, U(t) can be seen as the zero set of the function f =
∧n−1

i=1 ∇αi : R
n �→ R

n . We will show that if f is real analytic al-

most everywhere and has a nonzero measure set such that f = 0,

then f is zero almost everywhere (thus the functions αi are not

applicable for the algorithm, since circulation is impossible).

If the functions αi are real analytic almost everywhere, it is

clear that so is f , since the product and sum of real analytic

functions are also real analytic. Then, we use the following

lemma.

Lemma 1: Let f : R
n �→ R

n be a real-analytic function in

a domain D. Suppose that there exists a domain N ⊆ D with

nonzero measure such that f = 0. Then, for all x ∈ N , all partial

derivatives of all orders of f are null.

Proof: Let x be a point in N . Since N has nonzero measure,

is always possible to find a ball B centered in x with a nonnull

radius ǫ(x) such that for all points in B we have f = 0. Let

Dr (f , x̂) =
1

r
(f(x + x̂r) − f(x))

in which r is a real number, and x̂ is a unit vector. It is clear then

that ∀x̂ ∀r ≤ ǫ, we have x + x̂r ∈ B, and then, f(x + x̂r) =
f(x) = 0, and so Dr = 0. In special

lim
r→0

Dr (f , x̂) = J(f)x̂ = 0

where J(f) is the Jacobian of f . Since x̂ is an arbitrary unit

vector, all the columns of J(f), ∂f/∂xi must vanish in the

domain N . Since f is real analytic, so is ∂f/∂xi . Then, the

lemma hypothesis also holds, and we can apply it successively

to conclude that the derivatives of all orders vanish in N . �

The following theorem can now be proved:

Theorem 2: Let f : R
n �→ R

n be a real-analytic function in

a domain D. Suppose that there exists a domain N ⊆ D with

nonzero measure such that f = 0. Then, f = 0 in D.

Proof: Lemma 1 indicates that there is an x ∈ N ⊆ D, where

all partial derivatives of f vanish. A direct adaptation of [30,

Theorem 3.13] to real analytic functions states that this fact

implies that f = 0 in D. �

Therefore, if f is nonnull almost everywhere, then at least

one hypothesis of the theorem must fail: Since it is real analytic

almost everywhere by hypothesis, then it is impossible to have

a set of nonzero measures such that f = 0.

REFERENCES

[1] E. Rimon and D. E. Koditschek, “Exact robot navigation using artificial
potential functions,” IEEE Trans. Robot. Autom., vol. 8, no. 5, pp. 501–
518, Oct. 1992.

[2] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” Int. J. Robot. Res., vol. 5, no. 1, pp. 90–98, 1986.

[3] C. I. Connnolly, J. B. Burns, and R. Weiss, “Path planning using Laplace’s
equation,” in Proc. IEEE Int. Conf. Robot. Autom., 1990, pp. 2102–2106.

[4] L. C. A. Pimenta, G. A. S. Pereira, and R. C. Mesquita, “Fully continuous
vector fields for mobile robot navigation on sequences of discrete triangu-
lar regions,” in Proc. IEEE Int. Conf. Robot. Autom., 2007, pp. 1992–1997.

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE MINAS GERAIS. Downloaded on August 05,2010 at 19:45:45 UTC from IEEE Xplore.  Restrictions apply. 
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received the Gold Medal Award from the Engineering School of UFMG for
garnering first place among the electrical engineering students in 1998.

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE MINAS GERAIS. Downloaded on August 05,2010 at 19:45:45 UTC from IEEE Xplore.  Restrictions apply. 


