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VECTOR FIELDS WITH TOPOLOGICAL STABILITY

KAZUMINE MORIYASU, KAZUHIRO SAKAI, AND NAOYA SUMI

Abstract. In this paper, we give a characterization of the structurally stable
vector fields by making use of the notion of topological stability. More precisely,
it is proved that the C1 interior of the set of all topologically stable C1 vector
fields coincides with the set of all vector fields satisfying Axiom A and the
strong transversality condition.

Introduction

Let M be a C∞ closed manifold and let d be the distance on M induced from
a Riemannian metric ‖ · ‖ on the tangent bundle TM . Denote by X 1(M) the set
of all C1 vector fields on M endowed with C1 topology. Then every X ∈ X 1(M)
generates a C1 flow Xt : M ×R → M ; that is a C1 map such that Xt : M → M
is a diffeomorphism satisfying X0(x) = x and Xt+s(x) = Xt(Xs(x)) for all s, t ∈ R
and x ∈ M . We say that Y ∈ X 1(M) is semiconjugate to X ∈ X 1(M) if Yt is
semiconjugate to Xt; that is, there are a continuous surjection h : M → M and a
continuous map τ : M ×R→ R such that
• for all x ∈ M , τ (x, 0) = 0 and τ (x, ·) : R → R is an orientation preserving

homeomorphism,
• for all x ∈M and t ∈ R, h(Yt(x)) = Xτ(x,t)(h(x)),

where Xt and Yt are the flows induced by X and Y respectively. The pair (h, τ )
is called a semiconjugacy from Y to X. If h can be taken as a homeomorphism,
then we say that Y is conjugate to X. A vector field X ∈ X 1(M) is called (C1)
structurally stable if there is a C1 neighborhood U(X) of X in X 1(M) such that
every Y ∈ U(X) is conjugate to X. It is proved by Robinson [11] that if X satisfies
Axiom A and the strong transversality condition, then X is structurally stable.

Recently, Hayashi [4] proved a very important theorem on the C1 connecting
lemma (see also [17]) and by using this lemma, Hayashi [4] and Wen [16] gave a
proof of C1 stability conjecture for vector fields independently. After that Gan [3]
gave another proof for the conjecture by combining with the connecting lemma and
the methods in studying vector fields developed systematically by Liao [7].

We shall also consider the C0 topology on X 1(M). More precisely, for X,Y ∈
X 1(M), let

dC0(X,Y ) = sup
x∈M
{‖X(x)− Y (x)‖}.
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We say that X ∈ X 1(M) is topologically stable in X 1(M) if for any ε > 0, there is
δ > 0 such that for any Y ∈ X 1(M) with dC0(X,Y ) < δ, there is a semiconjugacy
(h, τ ) from Y to X satisfying d(h(x), x) < ε for all x ∈M (see [6] and [15]).

The purpose of this paper is to give a characterization of the structurally stable
vector fields by making use of the notion of topological stability. Denote by T S(M)
the set of all topologically stable C1 vector fields on M . The following is proved.

Main Theorem. The C1 interior of T S(M), intT S(M), is characterized as the
set of all vector fields satisfying Axiom A and the strong transversality condition.

Our result includes the theorems proved by Hurley [6] and Wen [15]. To prove
the theorem we will check the Kupka-Smale condition (see [9]) for X ∈ intT S(M).
For diffeomorphisms, the same result was proved by the first author [8] and the
techniques used in there may be available to see the Kupka-Smale condition for
periodic orbits (which are not singularities) of X. In this paper, we give a simpler
proof of the transversality of the stable and the unstable manifolds of periodic
orbits. In general, however, the techniques used in [8] cannot work for the proof of
the hyperbolicity and the transversality of the stable and the unstable manifolds of
singularities.

It follows immediately that if X ∈ X 1(M) satisfies Axiom A and the strong
transversality condition, then X is topologically stable in X 1(M) (see [12] and
Remark stated below). As we have pointed out, the structural stable vector fields
were characterized as the set of all vector fields satisfying Axiom A and the strong
transversality condition. Thus, our theorem gives rise to the following

Corollary 1. For every X ∈ X 1(M), X is structurally stable if and only if X ∈
intT S(M).

Recall that X ∈ X 1(M) is Morse-Smale (see [9]) if the non-wandering set is
composed of a finite number of hyperbolic singularities and periodic orbits whose
stable manifolds and unstable manifolds are all transversal. From [5, Theorem C],
we see that if X ∈ T S(M) is C0 approximated by a Morse-Smale vector field, then
the non-wandering set of Xt is composed of a finite number of singularities and
periodic orbits. Since the set of all Morse-Smale vector fields is open and dense in
X 1(M) when M is a surface (see [9]), we have the following

Corollary 2. If X ∈ intT S(M) can be C0 approximated by a Morse-Smale vector
field, then X is Morse-Smale. Especially, when M is a surface, intT S(M) is
characterized as the set of all Morse-Smale vector fields (cf. [1] and [14]).

Let X ∗(M) be the set of all X ∈ X 1(M) with the property that there is a
C1 neighborhood U(X) ⊂ X 1(M) of X such that for every Y ∈ U(X), whose
singularities and periodic orbits are hyperbolic. Denote by X ](M) all the systems
X ∈ X ∗(M) satisfying the following property: there is a C1 neighborhood U(X) ⊂
X ∗(M) of X such that for each Y ∈ U(X), the stable manifolds and the unstable
manifolds of singularities and periodic orbits of Yt are all transversal. Recently it
is proved in [3] that X ∈ X ](M) if and only if X satisfies Axiom A and the strong
transversality condition. Thus X ](M) ⊂ intT S(M). To get the main theorem it is
enough to show that

Theorem. intT S(M) = X ](M).
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Throughout this paper, let Sing(X) be the set of all singularities of X ∈ X 1(M),
and let PO(Xt) be the set of all periodic orbits (which are not singularities) of the
integrated flow Xt. The proof of Theorem is divided into the following

Proposition A. intT S(M) ⊂ X ∗(M).

Proposition B. Let X ∈ intT S(M) and p ∈ Sing(X). Then, for every σ ∈
Sing(X) ∪ PO(Xt), the stable manifold of p and the unstable manifold of σ are
transverse.

Proposition C. Let X ∈ intT S(M) and let γ, γ′ ∈ PO(Xt). Then the stable
manifold of γ and the unstable manifold of γ′ are transverse.

When M is a surface, if γ ∈ PO(Xt) (X ∈ X 1(M)) is hyperbolic, then γ is
an attractor or a repellor. Thus, in the last proposition, we may suppose that
dimM ≥ 3.

Remark. Denote by F1(M) the set of all C1 flows on M and topologize F1(M) by
using the C0 topology on generating vector fields; that is, for Xt, Yt ∈ F1(M), let

d′C0(Xt, Yt) = sup
x∈M
{‖Ẋ0(x)− Ẏ0(x)‖}.

Here Ẋ0(x) ∈ TxM is the tangent vector at t = 0 to the curve t→ Xt(x). We say
that Xt ∈ F1(M) is topologically stable in F1(M) if for any ε > 0, there is δ > 0
such that for any Yt ∈ F1(M) with d′C0(Xt, Yt) < δ, there is a semiconjugacy (h, τ )
from Yt to Xt satisfying d(h(x), x) < ε for all x ∈M (e.g. [1]). Robinson proved in
[12] that if Xt ∈ F1(M) satisfies Axiom A and the strong transversality condition
(see [11] for the definitions), then Xt is topologically stable in F1(M).

Let Yt ∈ F1(M) be the flow induced by Y ∈ X 1(M) which satisfies Axiom A
and the strong transversality condition. Then we see that Yt also satisfies Axiom A
and the strong transversality condition so that Yt is topologically stable in F1(M).
Thus Y is topologically stable in X 1(M).

1. Preliminaries

Let M , d and X 1(M) be as before. In this paper, for X,Y, · · · ∈ X 1(M), we
denote the generated flows by Xt, Yt, · · · respectively. Recall that p ∈ Sing(X)
is hyperbolic if the linear map DpX : TpM → TpM has no eigenvalue λ with
Re(λ) = 0 (e.g. [9, p.58]). For a hyperbolic singularity p, we define the stable
manifold W s(p,Xt) and the unstable manifold Wu(p,Xt) of p as usual. A point
x ∈ M is called a non-wandering point of X if for any neighborhood U of x in
M , there is t ≥ 1 such that Xt(U) ∩ U 6= ∅. The set of all non-wandering points
of X is denoted by Ω(Xt). Clearly, Sing(X) ∪ PO(Xt) ⊂ Ω(Xt). We say that X
satisfies Axiom A if PO(Xt) is dense in Ω(Xt)\Sing(X), and if there are constants
C > 0 and λ > 0 such that the tangent flow DXt : TM → TM leaves invariant a
continuous splitting TΩ(Xt)M = Es ⊕ SpanX ⊕ Eu such that

‖DXt|Es(x)‖ ≤ Ce−λt and ‖DX−t|Eu(x)‖ ≤ Ce−λt.

for t > 0 and x ∈ Ω(Xt).
Hereafter, we assume that the exponential map expp : TpM(1) → M is well

defined for all p ∈ M , where TpM(1) = {v ∈ TpM : ‖v‖ ≤ 1}. Let Bε(x) = {y ∈
M : d(x, y) ≤ ε} (ε > 0). Then, by mimicking the proof of [2, Lemma 1.1], we
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have the following being used in the proof of the hyperbolicity of the singularity in
section 2.

Lemma 1.1. Let X ∈ X 1(M) and p ∈ Sing(X). Then for every C1 neighborhood
U(X) ⊂ X 1(M) of X, there are δ0 > 0 and ε0 > 0 such that if Oδ : TpM → TpM
is a linear map with ‖Oδ −DpX‖ < δ < δ0, then there is Y δ ∈ U(X) satisfying

Y δ(x) =

{ (
Dexp−1

p (x) expp
)
◦ Oδ ◦ exp−1

p (x) if x ∈ Bε0/4(p),
X(x) if x /∈ Bε0(p).

Furthermore, dC0(Y δ, Y 0)→ 0 as δ → 0. Here Y 0 is the vector field for O0 = DpX.

Remark 1.1. By Lemma 1.1, Y 0
|Bε0/4(p) is regarded as a linearization of X|Bε0/4

(p)
with respect to the exponential coordinates. If there are an interval I ⊂ R and an
integral curve ξ(t) (t ∈ I) of the linear vector field Oδ in exp−1

p (Bε0/4(p)) ⊂ TpM ,
then the composition expp ◦ ξ : I →M is an integral curve of Y δ in Bε0/4(p) ⊂M
(e.g. [9, p.10]).

Let X ∈ X 1(M). For every x ∈ M \ Sing(X), put Π̂x = (SpanX(x))⊥ ⊂ TxM

(see [10, p.266]), Πx,r = expx(Π̂x,r) and Πx = Πx,1, where Π̂x,r = {v ∈ Π̂x : ‖v‖ <
r} for r > 0. Then, for given x′ = Xt0(x) (t0 > 0), there are r0 > 0 and a C1

map τ : Πx,r0 → R such that Xτ(y)(y) ∈ Πx′ (y ∈ Πx,r0) with τ (x) = t0. The
flow Xt uniquely defines the Poincaré map f : Πx,r0 → Πx′ by f(y) = Xτ(y)(y)
for all y ∈ Πx,r0 . The map is C1 embedding whose image is interior to Πx′ if
r0 is small. We denote the set of all C1 embeddings from Πx,r to Πx′ (r > 0)
by Emb1(Πx,r,Πx′) and topologize it by using the C1 topology. If Xt(x) 6= x for
0 < t ≤ t0 and r0 is sufficiently small, then (t, y) 7→ Xt(y) C1 embeds

{(t, y) ∈ R×Πx,r : 0 ≤ t ≤ τ (y)}
for 0 < r ≤ r0. The image

{Xt(y) : y ∈ Πx,r and 0 ≤ t ≤ τ (y)}
is called a t0-time length flow box and is denoted by Fx(Xt, r, t0). For ε > 0, let
Nε(Πx,r) be the set of all diffeomorphisms ϕ : Πx,r → Πx,r such that supp(ϕ) ⊂
Πx,r/2 and dC1(ϕ, id) < ε. Here dC1 is the usual C1 metric, id : Πx,r → Πx,r is the
identity map and the support of ϕ is the closure of the set where it differs from id.

Lemma 1.2. Let X ∈ X 1(M). Suppose Xt(x) 6= x for 0 < t ≤ t0 (x /∈ Sing(X)),
and let f : Πx,r0 → Πx′ (x′ = Xt0(x)) be the Poincaré map (r0 > 0 is sufficiently
small). Then, for every C1 neighborhood U(X) ⊂ X 1(M) of X and 0 < r ≤ r0,
there is ε > 0 with the property that for every ϕ ∈ Nε(Πx,r), there exists Y ∈ U(X)
satisfying {

Y (y) = X(y) if x /∈ Fx(Xt, r, t0),
fY (y) = f ◦ ϕ(y) if y ∈ Πx,r.

Here fY : Πx,r → Πx′ is the Poincaré map defined by Yt.

Proof. See [10, p.296, Remark 2].

Remark 1.2. Under the same notation and assumption of Lemma 1.2, let Y δ ∈
U(X) be given by Lemma 1.2 for ϕδ ∈ Nε(Πx,r) (δ > 0). If ϕδ → ϕ as δ → 0 with
respect to the C1 topology, then, by the construction of Y δ stated in the proof [10,
p.296], it can be checked that dC0(Y δ, Y )→ 0 as δ → 0.
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Let X ∈ X 1(M) and suppose p ∈ γ ∈ PO(Xt) (XT (p) = p, T > 0). If f :
Πp,r0 → Πp is the Poincaré map (r0 > 0), then f(p) = p. We say that γ is hyperbolic
if p is a hyperbolic fixed point of f (e.g. [9, p.95]). If γ ∈ PO(Xt) is hyperbolic,
then the stable manifold W s(γ,Xt) and the unstable manifold Wu(γ,Xt) of γ are
defined by the usual way. Let γ, γ′ ∈ PO(Xt) be hyperbolic. We say that γ is
transverse to γ′ if for any x ∈W s(γ,Xt) ∩Wu(γ′, Xt),

TxM = TxW
s(γ,Xt) + TxW

u(γ′, Xt).

The following lemma plays an essential role in the proof of the hyperbolicity
of the periodic orbits and in the proof of the transversality of the stable and the
unstable manifolds (see sections 2 and 3).

Lemma 1.3. Let X ∈ X 1(M), p ∈ γ ∈ PO(Xt) (XT (p) = p) and f : Πp,r0 → Πp

be as above, and let U(X) ⊂ X 1(M) be a C1 neighborhood of X and 0 < r ≤ r0 be
given. Then there are δ0 > 0 and 0 < ε0 < r/2 such that for a linear isomorphism
Oδ : Π̂p → Π̂p with ‖Oδ −Dpf‖ < δ < δ0, there is Y δ ∈ U(X) satisfying

(i) Y δ(x) = X(x) if x /∈ Fp(Xt, r, T ),
(ii) p ∈ γ ∈ PO(Y δt ),

(iii) gY δ (x) =
{

expp ◦Oδ ◦ exp−1
p (x) if x ∈ Bε0/4(p) ∩Πp,r,

f(x) if x /∈ Bε0(p) ∩Πp,r,

where gY δ : Πp,r → Πp is the Poincaré map of Y δt . Furthermore, let Y 0 be the
vector field for O0 = Dpf . Then we have
(iv) dC0(Y δ, Y 0)→ 0 as δ → 0.

Proof. Let τ : Πp,r0 → R be the C1 function such that f(x) = Xτ(x)(x) ∈ Πp

(x ∈ Πp,r0). Put p′ = XT/2(p), and for x ∈ Πp,r0 , take 0 < τ ′(x) < T such that
Xτ ′(x)(x) ∈ Πp′ . Clearly τ ′ : Πp,r0 → R is a C1 function. Set f ′(x) = Xτ ′(x)(x) ∈
Πp′ (x ∈ Πp,r0). Then f ′ : Πp,r0 → Πp′ is a C1 embedding. We apply Lemma 1.2
to X and f ′. For every C1 neighborhood U(X) of X and 0 < r ≤ r0, let ε > 0 be
given by Lemma 1.2. Choose a C1 neighborhood U(f) ⊂ Emb1(Πp,r,Πp) of f such
that if
• g ∈ U(f),
• g(p) = p and g(x) = f(x) when x /∈ Πp,r/2,

then, ϕg = f−1 ◦ g ∈ Nε(Πp,r). It is easy to see that Xτ(ϕg(x))(ϕg(x)) = g(x) for
x ∈ Πp,r (recall f(p) = p). By [2, Lemma 1.1], there are δ0 > 0 and 0 < ε0 < r/2
such that if Oδ : Π̂p → Π̂p is a linear map with ‖Oδ −Dpf‖ < δ < δ0, then there
is gδ ∈ U(f) satisfying

gδ(x) =
{

expp ◦Oδ ◦ exp−1
p (x) if x ∈ Bε0/4(p) ∩Πp,r,

f(x) if x /∈ Bε0(p) ∩Πp,r

and dC1(gδ, g0)→ 0 as δ → 0. Here g0 is the map for O0 (= Dpf). If we put ϕgδ =
f−1 ◦ gδ, then, by the choice of U(f), there are Y δ ∈ U(X) and fY δ : Πp,r → Πp′

(induced by Y δt ) such that{
Y δ(x) = X(x) if x /∈ Fp(Xt, r, T/2),
fY δ (x) = f ′ ◦ ϕgδ(x) = Xτ ′(ϕgδ (x))(ϕgδ(x)) if x ∈ Πp,r.

Denote Xτ(ϕgδ (x))−τ ′(ϕgδ (x))(fY δ (x)) by gY δ (x) for x ∈ Πp,r. Then

gY δ (x) = Xτ(ϕgδ (x))(ϕgδ(x)) = gδ(x)
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for x ∈ Πp,r. Let Y 0 be the vector field for O0. Then, by Remark 1.2, dC0(Y δ, Y 0)
→ 0 as δ → 0 (since dC1(gδ, g0)→ 0 as δ → 0).

2. Proof of Proposition A

At first, we show the conclusion for singularities. Let T S(M) be as before
and fix X ∈ intT S(M). Suppose that there is an eigenvalue λ of DpX with
Re(λ) = 0 for some p ∈ Sing(X). By Lemma 1.1, for any C1 neighborhood
U(X) ⊂ T S(M) of X, there are δ0 > 0 and ε0 > 0 such that for every linear
isomorphism Oδ : TpM → TpM with ‖Oδ − DpX‖ < δ < δ0, there is Y δ ∈ U(X)
satisfying

Y δ(x) =

{ (
Dexp−1

p (x) expp
)
◦ Oδ ◦ exp−1

p (x) if x ∈ Bε0/4(p) ,
X(x) if x /∈ Bε0(p).

Let Y 0 ∈ U(X) be as above for O0 = DpX and denote Y 0 by Y . For 0 < ε < ε0/16,
let 0 < δ < min{δ0, ε} be as in the definition of the topological stability of Yt. Pick
0 < δ′ < δ and a linear isomorphism Oδ′ : TpM → TpM whose any eigenvalue has
a non-zero real part such that dC0(Y, Y δ

′
) < δ. Then p is a hyperbolic singularity

of Y δ
′
. By Remark 1.1, the restriction Y δ

′

t |Bε0/4(p) can be regarded as the flow
induced from the hyperbolic linear vector field Oδ′ | exp−1

p (Bε0/4(p)) with respect to

the exponential coordinates. Since dC0(Y, Y δ
′
) < δ, there are h : M → M and

τ : M ×R→ R such that h(Y δ
′

t (x)) = Yτ(x,t)(h(x)) for all x ∈M and d(h, id) < ε.
By the existence of the λ, we can take z ∈M such that

p /∈ Bε(YR(z)) ⊂ Bε0/8(p)

(by reducing ε if necessary). Here YR(z) = {Yt(z) : t ∈ R} and Bε(A) =⋃
x∈ABε(x) for A ⊂ M . Fix w ∈ h−1(z). Then, since h(Y δ

′

t (w)) = Yτ(w,t)(z)
and d(h, id) < ε, we have Y δ

′

R (w) ⊂ Bε(YR(z)). This is a contradiction since
Y δ
′

t |Bε0/4(p) is regarded as the flow induced from the hyperbolic linear vector field
Oδ′ | exp−1

p (Bε0/4(p)).
Next we prove the proposition for periodic orbits. Let U(X) ⊂ T S(M) be a C1

neighborhood of X and pick p ∈ γ ∈ PO(Xt) (XT (p) = p, T > 0). The flow Xt

defines the Poincaré map f : Πp,r0 → Πp (for some r0 > 0). By assuming that
there is an eigenvalue λ of Dpf with |λ| = 1, we shall derive a contradiction. Let
δ0 > 0 and 0 < ε0 < r0 be given by Lemma 1.3 for the U(X). Then, for every
linear isomorphism Oδ : Π̂p → Π̂p with ‖Oδ −Dpf‖ < δ < δ0, there is Y δ ∈ U(X)
such that

• Y δ(x) = X(x) if x /∈ Fp(Xt, r0, T ),

• gY δ (x) =
{

expp ◦Oδ ◦ exp−1
p (x) if x ∈ Bε0/4(p) ∩Πp,r0 ,

f(x) if x /∈ Bε0(p) ∩Πp,r0 ,
• dC0(Y δ, Y 0)→ 0 as δ → 0.

Denote Y 0 by Y . For 0 < ε < ε0/16, let 0 < δ < min{δ0, ε} be as in the definition of
the topological stability of Yt. Take 0 < δ′ < δ and a hyperbolic linear isomorphism
Oδ′ : Π̂p → Π̂p with dC0(Y, Y δ

′
) < δ. Then there are h : M → M and τ :

M × R → R satisfying h(Y δ
′

t (x)) = Yτ(x,t)(h(x)) for all x ∈ M and d(h, id) <
ε. Remark that gY δ′ (p) = p and the restriction gY δ′ |Bε0/4(p)∩Πp,r0

is regarded
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as the hyperbolic linear isomorphism Oδ′ | exp−1
p (Bε0/4(p)∩Πp,r0 ) with respect to the

exponential coordinates. Since |λ| = 1, we may take z ∈ Πp,r0 such that

p /∈ Bε({giY (z) : i ∈ Z}) ⊂ Bε0/8(p) ∩Πp,r0 .

Fix w ∈ h−1(z) and set w′ = Y δ
′

t′ (w) ∈ Πp,r0 , where |t′| = min{|t| : Y δ
′

t (w) ∈
Πp,r0}. Then, since h(Y δ

′

t (w)) = Yτ(w,t)(z) and d(h, id) < ε, we have gi
Y δ′

(w′) ∈
Bε({giY (z) : i ∈ Z}) for all i ∈ Z. This is a contradiction since gY δ′ |Bε0/4(p)∩Πp,r0

can
be regarded as the hyperbolic linear isomorphism. The proposition is proved.

3. Proof of Proposition B

Let T S(M) be as before and fix X ∈ intT S(M). Suppose that x ∈W s(p,Xt)∩
Wu(σ,Xt) (p ∈ Sing(X), σ ∈ Sing(X) ∪ PO(Xt)) and

TxM 6= TxW
s(p,Xt) + TxW

u(σ,Xt).

We may assume that x is very near p. Take r0 > 0 small enough so that
• there are the Poincaré maps f : Πx,r0 → ΠX1(x) and f ′ : ΠX−1(x),r0 → Πx,
• {Xt(x) : t < 0} ∩Πx,r0 = ∅ and {Xt(x) : t < −1} ∩ΠX−1(x),r0 = ∅,
• Wu

2r0(σ,Xt) ∩
(
Πx,r0 ∪ΠX−1(x),r0

)
= ∅.

Here Wu
2r0(σ,Xt) is the local unstable manifold of σ. Put

V s(x) = the connected component of W s(p,Xt) ∩Πx containing x,

V u(x) = the connected component of Wu(σ,Xt) ∩Πx containing x.

Clearly, 0 ≤ dimV s(x) ≤ dim Πx and 0 ≤ dimV u(x) ≤ dim Πx. If

dimV s(x) = dim Πx or dimV u(x) = dim Πx,

then there is nothing to prove. Notice that Π̂x 6= TxV
s(x) + TxV

u(x). Finally, fix
t1 > 0 such that X−t1(x) ∈Wu

r0(σ,Xt).
We shall divide the proof into the following two cases:

Case 1. dimV s(x) + dimV u(x) < dim Πx,

Case 2. dimV s(x) + dimV u(x) ≥ dim Πx.

An outline of the proof is, roughly speaking, with a small perturbation we destroy
the intersection of two manifolds V s(x) and V u(x) and derive a contradiction in
Case 1 (see Figure 1). In Case 2, at first, we attach V s(x) and V u(x) in a small
neighborhood of x (see Figure 2) and next, we destroy the intersection “locally”
with small perturbations (see Figure 3). Then we shall derive a contradiction.

First of all, we make use of Lemma 1.2 for X and f . For δ > 0, let ε(δ) > 0
be the number such that if ϕ ∈ Nε(δ)(Πx,r0), then the corresponding vector field Y
given by Lemma 1.2 satisfies dC0(X,Y ) < δ. Put

V ur (x) = the connected component of V u(x) ∩Br(x) containing x

for r > 0. If dimV s(x) + dimV u(x) < dim Πx (Case 1), then the following is easily
obtained: there is 0 < r′ < r0/4 with the property that

(1.1) for every δ > 0, there exists ϕδ ∈ Nε(δ)(Πx,r0) satisfying ϕδ(V ur′ (x)) ∩
V s(x) = ∅,

(1.2) V ur′ (x) =
[⋃

0≤t≤t1 Xt

(
Wu

2r0(σ,Xt)
)]
∩Πx,r0 ∩Br′(x),

(1.3) Br′({Xt(x) : t ≤ 0}) ∩Πx,r0 = Br′(x) ∩ Πx,r0 (see Figure 1).
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For a sufficiently small 0 < ε < r′, pick 0 < δ < ε as in the definition of the
topological stability of Xt. Let Y δ be the vector field given by Lemma 1.2 for the
above perturbation (1.1); that is, Y δ(y) = X(y) if y /∈ Fx(Xt, r0, 1),

g(y) = f ◦ ϕδ(y) if y ∈ Πx,r0 ,
dC0(X,Y δ) < δ,

where g : Πx,r0 → ΠX1(x) is the Poincaré map induced by Y δt . For simplicity, denote
Y δ by Y . Then, since dC0(X,Y ) < δ, there are h : M → M and τ : M ×R → R
such that h(Yt(y)) = Xτ(y,t)(h(y)) for all y ∈M and d(h, id) < ε. Remark that(

{Xt(x) : t < 0} ∪Wu
2r0(σ,Xt)

)
∩ Πx,r0 = ∅

and Y (y) = X(y) if y /∈ Fx(Xt, r0, 1). Thus σ is also a hyperbolic singularity or
periodic orbit of Y . Especially, Wu

2r0(σ,Xt) = Wu
2r0(σ, Yt) and Xt(x) = Yt(x) for

t ≤ 0. Fix w ∈ h−1(X1(x)). Then h(Yt(w)) = Xτ(w,t)(X1(x)) for all t ∈ R and
d(h(y), y) < ε for all y ∈M . It is easy to see that the positive orbit {Yt(w) : t ≥ 0} is
included in some small neighborhood U(p) of p since Xt(X1(x))→ p as 0 < t↗∞.

On the other hand, take t′ < 0 such that Xτ(w,t′)+1(x) ∈ Wu
r0/2

(σ,Xt). Then
Yt′(w) ∈ Wu

r0(σ,Xt) = Wu
r0(σ, Yt) since 0 < ε < r0/4. By (1.3), every Yt-orbit is

actually a Xt-orbit if it is included in a set Bε({Xt(x) : t ≤ 0}) ∩ Fx(Xt, r0, 1)c.
Thus, from (1.2), we can see that the Yt-orbit of w passes through V ur′ (x) ⊂ Πx,r0

by the choice of r′ > 0 since 0 < ε < r′. Indeed, since

Yt′(w) ∈ Bε({Xt(x) : t ≤ 0}) ∩ Fx(Xt, r0, 1)c,

we have Yt(Yt′(w)) = Xt(Yt′(w)) while

Yt(Yt′(w)) ∈ Bε({Xt(x) : t ≤ 0}) ∩ Fx(Xt, r0, 1)c
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by (1.3). If we fix the minimum number t′′ > 0 such that Yt′+t′′(w) ∈ Πx,r0 , then

Yt+t′(w) = Yt(Yt′(w)) ∈ Bε({Xt(x) : t ≤ 0}) ∩ Fx(Xt, r0, 1)c

for 0 ≤ t ≤ t′′. Thus Yt′+t′′(w) = Xt′′(Yt′(w)) ∈ V ur′ (x) by (1.2) since Yt′(w) ∈
Wu
r0(σ,Xt). Hence, the orbit of w also passes through g(V ur′ (x)) ⊂ ΠX1(x) (see

Figure 1). Therefore, by the hyperbolicity of p, there is t̃ ≥ 0 such that Yt̃(w)
escapes from U(p) by (1.1). This is a contradiction and thus the proposition is
proved in Case 1.

In Case 2, take a C1 neighborhood U(X) ⊂ T S(M) of X and set

V s(X−1(x)) = the connected component of W s(p,Xt) ∩ ΠX−1(x),

V u(X−1(x)) = the connected component of Wu(σ,Xt) ∩ ΠX−1(x)

containing X−1(x) respectively. Let f ′ : ΠX−1(x),r0 → Πx be as before, and, at
first, we apply Lemma 1.2 to X and f ′. For the above U(X), let ε′ = ε′(U(X)) >
0 be given by Lemma 1.2. Since Π̂x 6= TxV

s(x) + TxV
u(x) and dimV s(x) +

dimV u(x) ≥ dim Πx, there are 0 < r1 < r0/4, ϕ̃ ∈ Nε′(ΠX−1(x),r0) and a submani-
fold V (X−1(x)) ⊂ ΠX−1(x),r0 such that
• V s(X−1(x)) ∩Br1(X−1(x)) ⊂ V (X−1(x)),
• ϕ̃(V u(X−1(x)) ∩Br1(X−1(x))) ⊂ V (X−1(x)) and ϕ̃(X−1(x)) = X−1(x),
• dimV s(x)+dimV u(x)−dim Πx < dimV (X−1(x)) < dim ΠX−1(x) (see Figure

2).
Let Y ∈ U(X) and g = f ′ ◦ ϕ̃ : ΠX−1(x),r0 → Πx (since g(X−1(x)) = x) be given

by Lemma 1.2 and set

V s(x, Yt) = the connected component of W s(p, Yt) ∩Πx containing x,

V u(x, Yt) = the connected component of Wu(σ, Yt) ∩Πx containing x.

If we put V (x, Yt) = f ′(V (X−1(x))), then dimV (x, Yt) < dim Πx and it is easy to
see that there is 0 < r2 < r0/4 satisfying

V u(x, Yt) ∩Br2(x) ⊂ V (x, Yt) and V s(x, Yt) ∩Br2(x) ⊂ V (x, Yt).

Note that by the choice of r0, the map f : Πx,r0 → ΠX1(x) is also a Poincaré map for
Yt, σ ∈ Sing(Y )∪PO(Yt), Xt(x) = Yt(x) for t ≤ 0, and Wu

2r0(σ,Xt) = Wu
2r0(σ, Yt)

since Y (y) = X(y) if y /∈ FX−1(x)(Xt, r0, 1).
Next, we make use of Lemma 1.2 for Y and f . For δ > 0, there exists ε(δ) > 0

such that if ϕ ∈ Nε(δ)(Πx,r0), then the corresponding vector field Z given by Lemma
1.2 satisfies dC0(Y, Z) < δ. Put

V ur (x, Yt) = the connected component of V u(x, Yt) ∩Br(x) containing x

for r > 0. Since dimV (x, Yt) < dim Πx, the following is easily obtained: there is
0 < r′ < r2 with the property that

(2.1) for every δ > 0, there exists ϕδ ∈ Nε(δ)(Πx,r0) satisfying ϕδ(V ur′ (x, Yt)) ∩
V (x, Yt) = ∅,

(2.2) V ur′ (x, Yt) =
[⋃

0≤t≤t1 Yt
(
Wu

2r0
(σ, Yt)

)]
∩ Πx,r0 ∩Br′(x) (see Figure 3),

(2.3) Br′({Yt(x) : t ≤ 0}) ∩Πx,r0 = Br′(x) ∩ Πx,r0 .
Here t1 > 0 is a number such that Y−t1(x) ∈ Wu

r0(σ, Yt). Thus ϕδ(V ur′ (x, Yt)) ∩
V s(x, Yt) = ∅ by (2.1). Since Y is topologically stable, we can apply the method
used in the proof of the first case to Y . For a sufficiently small 0 < ε < r′, pick
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0 < δ < ε as in the definition of the topological stability of Yt. Let Zδ be the vector
field given by Lemma 1.2 for the above perturbation (2.1); that is, Zδ(y) = Y (y) if y /∈ Fx(Yt, r0, 1),

g′(y) = f ◦ ϕδ(y) if y ∈ Πx,r0 ,
dC0(Y, Zδ) < δ,

where g′ : Πx,r0 → ΠY1(x) is the Poincaré map induced by Zδt . For simplicity,
denote Zδ by Z.

Then, since dC0(Y, Z) < δ, there are h : M →M and τ : M ×R→ R such that
h(Zt(y)) = Yτ(y,t)(h(y)) for all y ∈M and d(h, id) < ε. Remark that(

{Yt(x) : t < 0} ∪Wu
2r0(σ, Yt)

)
∩ Πx,r0 = ∅

and Z(y) = Y (y) if y /∈ Fx(Yt, r0, 1). Thus σ is also a hyperbolic singularity or
periodic orbit of Z. Fix w ∈ h−1(Y1(x)). Then h(Zt(w)) = Yτ(w,t)(Y1(x)) for
all t ∈ R and d(h(y), y) < ε for all y ∈ M . It is easy to see that the positive
orbit {Zt(w) : t ≥ 0} is included in some small neighborhood U(p) of p since
Yt(Y1(x))→ p as 0 < t↗∞.

As in the first case, there exists t′ < 0 such that Zt′(w) ∈Wu
r0(σ, Zt) = Wu

r0(σ, Yt)
because ε is sufficiently small. By (2.3), every Zt-orbit is actually a Yt-orbit while
it is included in Bε({Yt(x) : t ≤ 0}) ∩ Fx(Yt, r0, 1)c. Thus, we can check that the
Zt-orbit of w passes through V ur′ (x, Yt) by the choice of r′ > 0 since 0 < ε < r′.
Indeed, since

Zt′(w) ∈ Bε({Yt(x) : t ≤ 0}) ∩ Fx(Yt, r0, 1)c,

if we pick the smallest number t′′ > 0 such that Zt′+t′′(w) ∈ Πx,r0 , then Zt′+t′′(w) =
Zt′′(Zt′(w)) = Yt′′(Zt′(w)) ∈ V ur′ (x, Yt) by (2.2). Hence the orbit of w also passes
through g′(V ur′ (x, Yt)) (see Figure 3). Therefore, by the hyperbolicity of p, there is
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t̃ ≥ 0 such that Zt̃(w) escapes from U(p) because ϕδ(V ur′ (x, Yt)) ∩ V s(x, Yt) = ∅.
This is contradiction and the proof is complete.

4. Proof of Proposition C

Let T S(M) be as before and fix X ∈ intT S(M). Suppose that γ, γ′ ∈ PO(Xt)
are hyperbolic and x ∈W s(γ,Xt)∩Wu(γ′, Xt). We can prove the transversality of γ
and γ′ (at x) independently of the sum dimW s(γ,Xt)+dimWu(γ′, Xt) (cf. section
3). Basically, however, an idea of the proof is the same as that of Proposition B, and
the same argument for diffeomorphisms was displayed in [13, Proof of Proposition
B].

Fix p ∈ γ (XT (p) = p, T > 0) and let r0 > 0 be sufficiently small so that we
can define the Poincaré map f : Πp,r0 → Πp. Since p is hyperbolic, there are a
Df -invariant splitting Π̂p = Esp ⊕ Eup and two constants C > 0, 0 < λ < 1 such
that

‖Dfm|Esp‖ < Cλm and ‖Df−m|Eup ‖ < Cλm

for all m ≥ 0. Throughout this section, let

W σ
r (p, f) = the connected component of W σ(γ,Xt) ∩ Πp,r containing p

for σ = s, u and 0 < r ≤ r0.
Before starting the argument, we shall give a rough outline of our proof. Let

x ∈W s(p, f) ∩ (Wu(γ′, Xt) ∩ Πp).

First of all, we linearize f at p (with respect to the exponential coordinate by using
Lemma 1.3) with a small perturbation without changing the above two sets near x.
Next, with a small modification of the linearized map, we arrange that there is a
neighborhood of x in W u(γ′, Xt)∩Πp which arrives, through iteration of the map,
in the linearized neighborhood of p as a piece of an affine space (with respect to
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the exponential coordinates). If the intersection W s
r0(p, f) and Wu(γ′, Xt) ∩ Πp is

not transverse at x, then the piece of an affine space is not transverse with respect
to the local linear stable manifold of p. The modified vector field Y ∈ X 1(M) is
topologically stable because the above two modifications are sufficiently C1 small.
However, since the piece of an affine space is not transverse with respect to the local
linear stable manifold of p, we can construct Z ∈ X 1(M) (near Y with respect to
the C0 topology) and can take w ∈ h−1(x) whose positive Z-orbit escapes from a
small tubular neighborhood of γ. Here h is a semi-conjugacy from Z to Y . This is
a contradiction since x ∈W s(γ, Yt) and d(h, id) is sufficiently small.

Suppose that x ∈ W s
r0/2

(p, f) \ intW s
r0/2

(p, f). The following is a simple gener-
alization of Lemma 1.3. Let T ′ > 0 be the number with f(x) = XT ′(x) and take
0 < r1 < r0/4 such that Fp(Xt, r1, T ) ∩ Fx(Xt, r1, T

′) = ∅.

Lemma 4.1. Under the above notation, for every C1 neighborhood U(X) of X,
there are 0 < ε0 < r0/4 and Y ∈ U(X) satisfying

(i) Y (y) = X(y) if y /∈ Fp(Xt, r1, T ) ∪ Fx(Xt, r1, T
′),

(ii) γ, γ′ ∈ PO(Yt) and YT (p) = p ∈ γ,

(iii) g(y) =
{

expp ◦Dpf ◦ exp−1
p (y) if y ∈ Bε0/4(p) ∩ Πp,r0 ,

f(y) if y /∈ Bε0(p) ∩ Πp,r0 ,
(iv) g(p) = p, x ∈W s

r0(p, g) and TxW
s
r0(p, g) = TxW

s
r0(p, f),

(v) TxW
u(γ′, Yt) = TxW

u(γ′, Xt).
Here g : Πp,r0 → Πp is the Poincaré map of Yt and W σ

r0(p, g) is the connected
component of W σ(γ, Yt) ∩Πp,r0 containing p (σ = s, t).

Proof. Let U(X) be given. For every C1 neighborhood V(X) ⊂ U(X) of X, by
Lemma 1.3, there are 0 < ε0 < r0/4 and Z ∈ V(X) such that
• Z(y) = X(y) if y /∈ Fp(Xt, r1, T ),
• ZT (p) = p ∈ γ ∈ PO(Zt),

• gZ(y) =
{

expp ◦Dpf ◦ exp−1
p (y) if y ∈ Bε0/4(p) ∩ Πp,r1 ,

f(y) if y /∈ Bε0(p) ∩ Πp,r1 ,
where gZ : Πp,r1 → Πp is the Poincaré map of Zt. Extend gZ to the whole space
Πp,r0 by the formula gZ(y) = f(y) if y ∈ Πp,r0 \ Πp,r1 . Then gZ → f with respect
to the C1 topology as Z → X, and thus W s

r0(p, gZ)→W s
r0(p, f) with respect to the

C1 topology as Z → X. Hence, for every ε > 0, we find Z ∈ U(X), 0 < r2 < r1/2
and ϕ ∈ Nε(Πx,2r2) (Πx,2r2 ⊂ Πp,r0) such that
• ϕ embeds W s

r0(p, f) ∩Br2/4(x) into W s
r0(p, gZ); that is,

ϕ
(
W s
r0(p, f) ∩Br2/4(x)

)
⊂W s

r0(p, gZ),(†)

• ϕ(y) = y if y /∈ Πx,r2 ,
Now we apply Lemma 1.2 to Z and gZ |Πp,r0∩B2r2 (x). Since ε is arbitrary, by

Lemma 1.2, there is Y ∈ U(X) (sufficiently near Z) satisfying{
Y (y) = Z(y) if y /∈ Fx(Zt, 2r2, T

′),
g(y) = gZ ◦ ϕ(y) if y ∈ Πx,2r2 ,

where g : Πx,2r2 → ΠZT ′ (x) is the Poincaré map defined by Yt. If we extend g to
Πp,r0 by g(y) = gZ(y) when y ∈ Πp,r0 \ Πx,2r2 , then g(p) = p, x ∈ W s

r0(p, g) and
TxW

s
r0(p, g) = TxW

s
r0(p, f) by (†). It is easy to see that there is 0 < r′ < r1 such

that

X−t(Cur′(x)) ∩ (Fp(Xt, r1, T/2) ∪ Fx(Zt, 2r2, T
′)) = ∅
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for all t > 0. Here Cur′(x) is the connected component of Wu(γ′, Xt) ∩Πp ∩Br′(x)
containing x. Thus

TxW
u(γ′, Yt) = TxW

u(γ′, Zt) = TxW
u(γ′, Xt).

The lemma is proved.

Put Eσx (ε) = {v ∈ Eσx |‖v‖ ≤ ε} for ε > 0 (σ = s, u), and let g ∈ Emb1(Πp,r0 ,Πp),
p = g(p) ∈ Πp and ε0 > 0 be given by Lemma 4.1. Then it is easily checked that

expp(E
σ
p (ε0/4)) ⊂W σ

r0(p, g) and dim expp(E
σ
p (ε0/4)) = dimW σ

r0(p, g)

for σ = s, u since ε0 is small. For convenience, we denote expp(Eσp (ε)) by W σ
ε (p, g)

for σ = s, u and for 0 < ε ≤ ε0/4.

Proof of Proposition C. Let X ∈ intT S(M). Suppose that γ, γ′ ∈ PO(Xt) are
hyperbolic and x ∈ W s(γ,Xt) ∩Wu(γ′, Xt). Let p ∈ γ (XT (p) = p, T > 0) and
f : Πp,r0 → Πp (r0 > 0) be as before. We may assume that
• x ∈W s

r0/2
(p, f) \ intW s

r0/2
(p, f),

• Wu
2r0

(γ′, Xt) ∩Πp,r0 = ∅.
Here Wu

r0(γ′, Xt) is the local unstable manifold of γ′. Let T ′ > 0, 0 < r1 < r0/4,
Fp(Xt, r1, T ) and Fx(Xt, r1, T

′) be chosen in the next paragraph of the rough outline
of the proof. We may assume further that
• {Xt(x) : t < 0} ∩ (Fp(Xt, r1, T ) ∪ Fx(Xt, r1, T

′)) = ∅.
Fix a C1 neighborhood U(X) ⊂ T S(M) of X, and let 0 < ε0 < r0/4, Y ∈ U(X)

and g be given by Lemma 4.1. Thus

TxW
s
r0(p, g) = TxW

s
r0(p, f), Wu

2r0(γ′, Xt) = Wu
2r0(γ′, Yt)

and Xt(x) = Yt(x) for t ≤ 0. Clearly,

1 ≤ dimW s
r0(p, g) ≤ dim Πp and 1 ≤ dim(Wu(γ′, Yt) ∩ Πp) ≤ dim Πp.

If dimW s
r0(p, g) = dim Πp or dim(Wu(γ′, Yt) ∩ Πp) = dim Πp, then the conclusion

is clear.
Pick ` > 0 so large that g`−1(x) ∈W s

ε0/8
(p, g), and set

Cu(g`(x)) = the connected component of Wu(γ′, Yt) ∩ Πp containing g`(x).

Hereafter, to simplify notation, denote g`(x) by x (see Figure 4).
Then

exp−1
p (Cu(x)) ⊂ Π̂p and TxC

u(x) = Tx (Wu(γ′, Yt) ∩ Πp) .(∗)

For a linear subspace E of Π̂p and ν > 0, let

Eν(x) = {v + exp−1
p (x)|v ∈ E with ‖v‖ ≤ ν}

be a piece of an affine space running parallel to E.
Let T ′′, T ′′′ > 0 be numbers with YT ′′(g−1(x)) = x, YT ′′′(x) = g(x) respectively.

Choose a linear subspace E′ ⊂ Π̂p and 0 < ν0 ≤ ε0/8 such that
• for every 0 < ν ≤ ν0, expp(E′ν(x)) ⊂ Bε0/4(p),
•

Tx expp(E
′
ν0

(x)) = TxC
u(x),(∗∗)

•
(
Fg−1(x)(Yt, ν0, T

′′) ∪ Fx(Yt, ν0, T
′′′)
)
∩ γ = ∅,

• {Yt(x) : t < −1}∩Fg−1(x)(Yt, ν0, T
′′) = ∅ and {Yt(x) : t < 0}∩Fx(Yt, ν0, T

′′′)
= ∅,
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•
Bν0({Yt(x) : t ≤ 0}) ∩ Fx(Yt, ν0, T

′′′) ∩ Πp,r0

= Bν0(x) ∩ Fx(Yt, ν0, T
′′′) ∩ Πp,r0 ,

(‡)

• gi
(
W s
r0(p, g) ∩Bν0(g−1(x))

)
∩Bν0(g−1(x)) = ∅ for i ≥ 1,

• Y−t(Cu(g−1(x))) ∩Bν0(g−1(x)) = ∅ for t > 0.
Here Cu(g−1(x)) is the connected component of Wu(γ′, Yt) ∩ Πp ∩ Bν0(g−1(x))
containing g−1(x). The above properties on Fx(Yt, ν0, T

′′′) will be used later in the
proof of Lemma 4.3.

As in the proof of Lemma 4.1, we have the following lemma (apply Lemma 1.2
to Y and g|Πp,r0∩Bν0 (g−1(x))).

Lemma 4.2. Fix a C1 neighborhood U(Y ) ⊂ U(X) of Y . Then there are 0 < ν1 <
ν0/4 and Y ′ ∈ U(Y ) such that

(i) Y ′(y) = Y (y) if y /∈ Fg−1(x)(Yt, ν0, T
′′),

(ii) Y ′T ′′(g
−1(x)) = x,

(iii) expp(E′ν1
(x)) ⊂Wu(γ′, Y ′t ) ∩ Πp and

Tx expp(E
′
ν1

(x)) = Tx(Wu(γ′, Y ′t ) ∩Πp)

(see Figure 5).

Remark 4.1. (i) We see that Wu
2r0(γ′, Y ) = Wu

2r0(γ′, Y ′) and Yt(x) = Y ′t (x) for
t ≤ 0,

(ii) Let g′ : Πp,r0 → Πp be the Poincaré map induced by Y ′t . Then, by Lemma
4.2 (i), γ′ ∈ PO(Y ′t ) and g′(y) = g(y) if y ∈ Πp,r0 \Bν0(g−1(x)). Thus g′(p) = g(p).
By Lemma 4.2 (ii), g′i(x) = gi(x) for all i ≥ 0.

(iii) By the perturbation used in the above lemma, W s
ε0/4

(p, g) may be deformed
near g−j(x) if g−j(x) ∈ W s

ε0/4
(p, g) for some j > 0. We denote the deformed

manifold by W s
ε0/4

(p, g′) (see Figure 5). Then x ∈W s
ε0/4

(p, g′) and

TxW
s
ε0/4

(p, g′) = TxW
s
ε0/4

(p, g).
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exp 
 p
-1

exp 
 p

W    (p, g )u
ε0/4

W    ( p, g')
u

ε0/4

W   (p, g )s
ε0/4

W   (p, g')s
ε0/4

x

x

 p

 p

Π  p,ε0/4

Π  p,ε0/4

   (x)

Π  p,ε0/4

   (C  (x))
u

C  (x)u

exp  (E'  (x))ν1 p

W  (γ', Y' )u
t

E  (ε0/4) p
u

E  (ε0/4)
 p

s

E'  (x)ν1

exp p
-1

exp p
-1

Figure 5.

Remark 4.2. If expp(E′ν1
(x)) does not meet W s

ε0/4
(p, g′) transversely at x, then the

piece E′ν1
(x) of the affine space is not transverse with respect to the local linear

stable manifold Esp(ε0/4) of p (see Figure 5). Thus we can destroy the intersection
“locally” with a small perturbation (see Figure 6).

Lemma 4.3. Under the above notation, expp(E′ν1
(x)) meets W s

ε0/4
(p, g′) trans-

versely at x.

If the conclusion of this lemma is established, then

Π̂p = TxW
s(x, f) + Tx(Wu(γ′, Xt) ∩ Πp)

since

TxW
s(x, g′) = TxW

s(x, g) = TxW
s(x, f)

and

Tx(Wu(γ′, Xt) ∩ Πp) = Tx expp(E
′
ν1

(x))

by (∗), (∗∗), Lemma 4.1 (v), Lemma 4.2 (iii), and Remark 4.1 (iii). Therefore the
proof of Proposition C is complete.

Proof of Lemma 4.3. To simplify notation, denote Y ′, g′ and W s
ε0/4

(p, g′) by Y , g
and W s

ε0/4
(p) etc., respectively.

We make use of Lemma 1.2 for Y and g|Πp,r0∩B2ν1 (x). For δ > 0, there is
ε(δ) > 0 such that if ϕ ∈ Nε(δ)(Πx,2ν1), then the corresponding vector field Z
given by Lemma 1.2 satisfies dC0(Y, Z) < δ. Let t2 > 0 be a number such that
Y−t2(x) ∈ Wu

r0(γ′, Yt). If expp(E′ν1
(x)) does not meet W s

ε0/4
(p) transversely at x,

then, by Remark 4.2 it is not hard to show the following: there is 0 < r′ < ν1/2
such that
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Π  p,ε0/4

x

W   (p)s

W    (p)u

 p

ε0/4

ε0/4

 (E'  (x))    B   (x)ν1 r '

Π  p,ε0/4

x

W    (p)s

W    (p)u

 p

ε0/4

ε0/4

ψ (exp (E'  (x))    B   (x))ν1 r ' pδ
exp p

Figure 6.

(a) for every δ > 0, there is ψδ ∈ Nε(δ)(Πx,2ν1) satisfying{
ψδ
(
expp(E′ν1

(x)) ∩Br′(x)
)
∩W s

r0(p) = ∅,
ψδ(y) = y if y /∈ Πx,ν1 ,

(b) expp(E′ν1
(x)) ∩ Br′(x) =

[⋃
0≤t≤t2 Yt

(
Wu

2r0
(γ′, Yt)

)]
∩ Πp,r0 ∩ Br′(x) (see

Figure 6).
Fix 0 < ε < r′ sufficiently small and let 0 < δ < ε be as in the definition of the

topological stability of Yt. Let Zδ ∈ X 1(M) be given by Lemma 1.2 for the above
perturbation (a); that is, Zδ(z) = Y (z) if z /∈ Fx(Yt, 2ν1, T

′′′),
g̃(z) = g ◦ ψδ(z) if z ∈ Πx,2ν1 ,
dC0(Y, Zδ) < δ.

Here g̃ : Πx,2ν1 → Πg(x) is the Poincaré map induced by Zδt .
By the choice of ν1, Fx(Yt, 2ν1, T

′′′) ∩ γ = ∅ and so Zδt (x) = Yt(x) for t ≤ 0.
Extend g̃ to Πp,r0 by g̃(z) = g(z) if z ∈ Πp,r0 \ Πx,2ν1 , and denote Zδ by Z for
simplicity.

Since dC0(Y, Z) < δ, we can find h : M → M and τ : M × R → R such that
h(Zt(z)) = Yτ(z,t)(h(z)) for all z ∈M and d(h, id) < ε. Remark that(

{Yt(x) : t < 0} ∪Wu
2r0(γ′, Yt)

)
∩ Πx,r0 = ∅.

Thus γ′ is also a hyperbolic periodic orbit of Zt and Wu
2r0(γ′, Zt) = Wu

2r0(γ′, Yt)
since Z(z) = Y (z) if z /∈ Fx(Yt, 2ν1, T

′′′). Fix w ∈ h−1(x). Then h(Zt(w)) =
Yτ(w,t)(x) for all t ∈ R and d(h(z), z) < ε for all z ∈M . As in the proof of Propo-
sition B, it is easy to see that there exists t′ < 0 such that Zt′(w) ∈ Wu

r0(γ′, Zt) =
Wu
r0(γ′, Yt) since ε is sufficiently small. By (‡), every Zt-orbit is actually a Yt-orbit

if it is included in Bε({Yt(x) : t ≤ 0}) ∩ Fx(Yt, 2ν1, T ′′′)c. Thus, by (b) we can see
that the Zt-orbit of w passes through expp(E′ν1

(x))∩Br′(x) by the choice of r′ > 0
since 0 < ε < r′ < ν0. Indeed, since Zt′(w) ∈ Bε({Yt(x) : t ≤ 0})∩Fx(Yt, 2ν1, T ′′′)c,
there exists t′′ > 0 such that Zt′+t′′(w) ∈ Πp,r0 and

Zt+t′(w) ∈ Bε({Yt(x) : t ≤ 0}) ∩ Fx(Yt, 2ν1, T ′′′)c

for 0 ≤ t ≤ t′′. Thus Zt′+t′′(w) = Yt′′(Zt′(w)) ∈ expp(E′ν1
(x))∩Br′(x) by (b) since

Zt′(w) ∈Wu
r0(γ′, Zt), and hence, the orbit of w also passes through

g
(
ψδ(expp(E

′
ν1

(x)) ∩Br′(x))
)
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exp (E'  (x))    B   (x)

 p

Π  p,ε0/4

W    (p)u
ε0/4

W   (p)s
ε0/4

x
w

w

r 'ν1 p

(ψ  (exp (E'  (x))    B   (x)))ν1 r ' pδ
 g

Z  - orbit of t

Figure 7.

(see Figure 7). Therefore, by (a) and the hyperbolicity of γ, there is t̃ > 0 such
that Zt(w) ∈ Bε0/4(γ) for all 0 ≤ t < t̃ and Zt̃(w) /∈ Bε0/4(γ) (see Figure 7). On
the other hand, since x ∈W s

ε0/8
(p), we have Zt(w) ∈ Bε0/4(γ) for all t ≥ 0. This is

a contradiction.
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