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Vector form factor of the pion from unitarity and analyticity: A model-independent approach
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We study a model-independent parametrization of the vector pion form factor that arises from the constraints
of analyticity and unitarity. Our description should be suitable up/se=1.2 GeV and allows a model-
independent determination of the mass of #{&70) resonanceM ,=(775.1+0.5) MeV. We analyze the
experimental data om~ — 7 «’v, in this framework, and its consequences on the low-energy observables
worked out by chiral perturbation theory. An evaluation of the two pion contribution to the anomalous mag-
netic moment of the muorg,,, and to the fine structure constaﬁi(M%), is also performed.
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I. INTRODUCTION form factor drives the hadronic part of botite” — 77~
andr~—m 7°v_processes in the isospin lintiThere is an

The hadronic matrix elements of quantum chromodynamextensive bibliography on the study of this form factor that
ics (QCD) currents play a basic role in the understanding ofwe do not review in detail here.
electroweak processes at the low-energy regitgpically At very low energiesF(s) has been calculated igPT
E~1 GeV). However our poor knowledge of the QCD dy- yp to O(p®) [7,8]. A successful study at the(770) energy
namics at these energies introduces annoying and serious Ugkale has been carried out in the framework of the resonance
certainties in the description and prediction of the processegyjrg theory(the effective action of QCD at the resonance

involved. region in Ref. [9]. In this last reference the unitarity and

q To bgpa?rsl tT'ItS pr:)blem sterzl\_/ertal proc(:)edures hgvihbeen_ aghalyticity properties of the vector pion form factor were
ressed in Ihe fiterature on this topic. un one side there 1S plemented in order to match the low-energy result at

widespread set of models that pretend to describe, in a sin}-9 M ) )
o ) . o . (p™) in xPT with the correct behavior at th&770) peak.
plified way, the involved dynamicsl,2]. While it is of im The result is in excellent agreement with the data coming

portance to get a feeling of the entangled physics, the in]; o Y ande- mt— et Thi
cluded simplifying assumptions are usually poorly justified M€ & —m @ ande z7-—€ m— processes. This so-
and, sometimes, even inconsistent with Q@@.hocparam- lution, that includes the(770) cor_1tr|but|on _only, Ieaves_ju_st
etrizations of the matrix elements have also been extensive Q€ frée parameteM ,, and provides a suitable description
used[2,3]. The problem with this technique is that, while the Of Fv(S) up tos~1 GeV. If we want to be able to extend
description of data can be properly accounted for, it is noitS validity at higher energies we should take into account
easy to work out the physics hidden in the parameters. other contributions. To achieve this feature, the analyticity
A more promising and model-independent procedure i€nd unitarity properties of(s), together with the reso-
the use of effective actions from QCD. At very low energieshance chiral theory, continue to provide a model-
[E<M,, with M, the mass of the(770) resonandethe independent solution for the vector pion form factor that we
most irﬁhportant OCD feature is its chiral symmetry that isanalyze, in detail, in this article. The new solution includes
realized in chiral perturbation theorwPT) [4], a perturba- WO, & priori, unknown parameters in addition kb, . These
tive quantum field theory that provides the effective action ofP@rameters happen to be related to the chiral low-energy ob-
QCD in terms of the lightest pseudoscalar mesqi&T has sezrvables n Refs£7,8], the squared charged pion radius,
a long and successful set of predictions both in strong anél“)v . and theO(s®) term in the chiral expansioa; .
electroweak processe$]. At higher energies E~M ), In the next section we construct the vector pion form fac-
resonance chiral theory is the analogous framewi@k toron the grounds of its analyticity and unitarity relations. In
where the lightest resonance fields are kept as explicit deSec. Ill we study the experimental data en—m ‘v,
grees of freedom. With the addition of dynamical constraintgVith our solution for the pion form factor. By a fitting pro-
coming from short-distance QCD, resonance chiral theorgedure we determine the values Mf, and low-energy pa-
becomes a predictive mode|_independent approach to Wori[ameters.that tau decay data demand. Section |V|S devoted
with. to analyzing the results we have gotten from the fitting pro-
One of the simplest hadronic matrix elements of a QCDcedure and the consequences on the chiral observables of
current is the vector pion form fact®t,(s) defined through xPT. A corresponding evaluation of the two-pion contribu-

(m" (P a (PHIVLI0)=(p=p")Fu(s), (D)
1f isospin symmetry is broken, there is a mixing between the
wheres=q*=(p+p’)? and Vi is the third component of third and eighth components of the vector current. The spectral
the vector current associated with the approximté¥{3),,  functions are then slightly different in"e™ annihilation and tau
flavor symmetry of the QCD Lagrangian. The vector piondecays.
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tion to the hadronic part of the anomalous magnetic momen$trictly speaking the solutioni6) for Fy(s) is valid only
of the muon and the fine-structure constant is collected imelow the inelastic threshold€ 16m?). This is because we

Sec. V. We present our conclusions in Sec. VI. have only included the two-pion threshold in the unitarity
relation (2). However, the contributions from higher multi-
Il. ANALYTICITY AND UNITARITY IN  Fy(s) plicity intermediate states are suppressed by phase space and
. . ] . ordinary chiral counting.
The vector pion form factoF(s) is an analytic function As in any subtracted dispersion relation like the one given

in the whole compless plane, except for the cut along the py Eq. (5) there is an interplay between the subtraction con-
positive real axis, starting at the lowest threshstd4m?,  stants(polynomial part and the dispersive integral. By in-
where its imaginary part develops a discontinuity. This iSCreasing the number of Subtractio(ﬁorrespondingw in-
given by the unitarity condition creasing the power af in the denominatorwe pull in the
L low-energy part of InFy(s) in the integrand. Then the val-
_ - +_— |7t 3 ues of ImF/(s) in the upper part of the integration are less
ImF(s) 2 Z fdp“<77 ™I |n><n|VlL|0>, @ important. At the same time the information of this high-
energy region shifts to the increasing number of subtraction
where |n) represents on-shell intermediate states &hds  constants that are related with the low-energy expansion of
the scattering operator connecting the intermediate §tate the form factor. This situation is reflected in the solution of
to the final two-pion state. The first allowed intermediatethe integral equatiot6). If we know the 5%(3) phase-shift
states are 2, 4w, and KK. To every intermediate state only at very low energies, an accurate evaluation of the in-
corresponds a branch point at the valuesoéqual to the tegral in Eq.(6) would require a high number of subtrac-
squared sum of masses of the corresponding particles, i.gipns. This exchange of information between high and low
s=(2m,)?, s=(4m,)?, and so on. In the elastic regios, energies is, by no means, paradoxical. It is a strict conse-
<16me, the only intermediate state considered in B).is  quence of the fact that, being an analytic function in the
the one with 2r, and the Watson final-state theord0] ~ complexs plane, the behavior of(s) at different energy
relates the imaginary part & (s) to the partial wave am- scales is related. Dispersion relations rigorously embody this
plitude t}(s) for 7 elastic scattering with angular momen- Property.

tum and isospin equal to one. Thus, from E2), The 6}(s) phase-shift is rather well known, experimen-
tally, up toE~2 GeV. Resonance chiral theory provides a
IMFy(s+ie)=o, ti(s)Fy(s)* =€ o SindtFy(s)*, model-independent analytic expression that describes prop-

(3)  erly thep(770) contribution 9] to it:

whereo .= \/1—4m2wls. As ImF/(s+ie) is a real quantity, stig)— M, I (s)
the phase oF (s) must besi(s), that is, the phase-shift of 1(s)=arcta M2—s |’
thet}(s) partial wave amplitude. Therefore, P

®

with T ,(s) the hadronic off-shelp width [12] [see Eq(A2)

in the Appendiy. This result, that provides our definition of
M, , follows from Eq.(4) and the expression fd¥,(s) ob-
tained in Ref[9] that we collect in the Appendix. The de-
r%cription of data given byﬁi(s) in Eq. (8) is accurate enough
up to E~1 GeV for values ofM, in the ballpark of the

ImFy(s+is)=tans] ReF(s). (4)

The analyticity and unitarity properties &f,(s) are accom-
plished by demanding that the form factor should satisfy a
n-subtracted dispersion relation in the form

-1k gk average value collected by the Particle Data GréepG)
Fy(s)= >, F_FV(S)|S=O [13]. At higher energies heavier resonances with the same
k=0 k! dg* quantum numbers pop up, and to get a correct description we

. should use the available experimental data from QaHs
N s" (» dztandi(z)ReF\(2) 5 We will take the result forFy(s) in Eq. (6) with three
T Jam2 2 Z—s—ie ' subtractions. There are several reasons to take this case. On
" one side the number of subtractions is high enough to weight
where we have used E). This integral equation has the the low-energy behavior oi(s) that is more well known
known Omne solution[9,11] than its high energy part. On the other side the number of
subtraction constants, threepriori unknown parameters, is
s" (= dz &1(2) low enough to allow a reasonable parametrization. In fact
Fv(s)=Qn(s)ex —j S (6)  one of the subtraction constants is provided by the normal-
mJ a2 € ization condition on the form factor, i.ek(0)=1, and
there remains two parameters that can be related to the low-
energy expansion of the form factdr,?)y andcy, as we
n-1 will shortly see.
Q. (s)=exp >, s —INFy(S)|s_ot- 7) Therefore we take as the vector pion form factor provided
k=o k! dg by analyticity and unitarity the expression

with
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1 P (a2 dz 61(2) 51(s) in this energy region. We achieve this through the
Fy(s)=exp, a; s+ §a232+; . 2¥m . following procedure:&}(s) given by Eq.(8) provides an
m7T

) implementation up toySmaci=M,; hence for M, < \Js
=<1.5 GeV/(higher values of|/s being unimportant because
Since Eq.(4) is only valid in the elastic region, we have of the three subtractions performede inc_lude the O_ch_s set
introduced an upper cut in the integration, This cutoff has 0‘; data[14]. As a result we come out with a description of
to be taken high enough so as not to spoil thepriori, 01(s), in the region of interest, that contains all the necessary
infinite interval of integration, but low enough that the inte- Physics input. _ o _
grand is well known in the interval. As commented above we However there are still contributions to the form factor in
know best 5i(s) up to E<2 GeV. We will take A Eqg. (9) that are not taken into account with Ochs data. These
=2.0 GeV, though, with three subtractions, there is a negare those of coupled channels that open atktKethreshold
ligible difference (within the errory betweenA=1.5 GeV  [20]. Therefore, in order to have a conservative determina-
and the previous value. tion of the observables, we choose to fit ALEPH data in the
The two subtraction constants, and a, are related with  range 0.32 Ge¥: \s<1.1 GeV, where we have a thorough
the squared charge radius of the pi@R) and the quadratic ~control of the contributions. The fitting procedure is carried
termcy? in the low-energy expansion of the pion form factor out with theminuIT package21]. We find
1 M,=(775.13:0.02 MeV,
Fy(s)=1+ 6(r2)35+ cys?+0O(s%), (10 p=( 2
a;=(1.84+0.02 GeV ?,
through the relations (12

— 4
(r3)7=6ay, a,=(4.18+0.05 GeV *,

1 Xx2/DOF=33.8/21.
cy=>(aztal) 1y ) .

Though they“/DOF value found can be considered reason-
able it is necessary to notice that 80%)dfcomes from just
three point$. Errors in Eq.(12), given by themINUIT pro-
gram, are to be taken with care. They do not include those
that come from the choices we have made in our approach:
the energy range to be fitted, number of subtractions, upper

that follow from the expansion of the form factor in E§)
and its comparison with Eq10). We will use them to pre-
dict these observables.

lll. THE MASS OF THE p(770) RESONANCE FROM A cut of integrationA, and the matching pointy/Syaicn be-
FIT TO 7 DECAY DATA tween Ochs data and E@). We estimate the final errors by

: - exploring the stability of the results with two and four sub-
The fact thatFy(s) is dominated by the (770) vector tractions, varying the cutoff fromA=15 GeV to A

meson up t&E~1 GeV has been extensively used to get the . he fi s
properties of this resonance. In order to proceed, a Breit- 2-0 Ge€V. extending the fitted energy range up e
Wigner—like form factor is usually introduced and fitted to =1-6 GeV, and shifting/Syacnwithin the Ochs data errors.

the data. This procedure, however, relies on a modelizatiohl€nce we conclude the figures

of the form factor that is not necessarily consistent with _
/ M,=(775.1+=0.5 MeV,
QCD. Here we propose a thorough model-independent deter- p=( S
mination of the mass of the(770) resonanceM ,, defined a;=(1.84+0.05 GeV 2, (13)
by Eq. (8).
Fv(s) endows the hadronic dynamics in the™ a,=(4.2+0.2) GeV *.
— o~ v, decay and the*e” — 7" 7~ process. The ex-

perimental data from this last sourtks,16 has been avail- The parameters; and «, turn out to be highly anticorre-
able for a long time and deeply analyzed. The deeay lated. This procedure provides a mass for fitg70) reso-
—a 7%, has recently been measured accurately, in théance roughly five standard deviations higher than the Par-
energy region of our interest, by three experimental groupsiicle Data Group new averaggl3] that is M,=(769.3
ALEPH [17], CLEO-II [18], and OPAL [19]. We take *0.8) MeV, but consistent with their average fromde-
Fy(s), as given by Eq(9), to fit the ALEPH set of data. cays ande"e” processesM,=(776.0-0.9) MeV.

An appropriate study of the form factor requires a proper In Fig. 1 we compare the experimental data with our pre-
description of thesi(s) phase shift in the integration inter- Scription. We also include the parameter-free predictmre
val. As we are working with three subtractions the mainsubtraction onlyof Ref.[9] that, for completeness, we recall
contribution to the integration in Eq9) comes from the in the Appendix. It can be seen that our fit gives a good
low-energy region of the phase shift. However if we wish to
considerFy(s) aroundys~1 GeV the cutoffA should be
not lower than, let us say/s=1.5 GeV, as we commented 20One of them is at/s=0.70 GeV and the other two are around
previously. Therefore we require a precise description of/s=0.85 GeV.
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I . ' TABLE I. Low-energy observables of the vector pion form fac-
4 1 tor up to the quadratic term. We give the results for our fit and the
O(p® xPT analysis of Ref[8].

(r3yy (Gev?) cl(GeV %)
o our fit 11.04+0.30 3.79-0.04
5 O(p® xPT 11.22+0.41 3.85-0.60

O O ALEPH data, ref. [17]
o o CLEO-II data, ref. [18]
L — FittoEq. (9)

—— Ref.[9]

the p(770) peak. This is due to a smdl=0 component

contributing to the 2r spectral function inete — =" 7.

™ This contribution does not appear in the isovector spectral
| | function from 7~ — o~ %v_ which we are describing.

-l 0.5 ' 1 L5

IV. THE LOW-ENERGY OBSERVABLES
Vs (GeV)

At E<2m_, the vector pion form factor satisfies a low-
energy expansion given by EG.0). Up to the quadratic term
in s we have, therefore, two low-energy observables, the
squared charge radius of the pign?)y, and the quadratic
termcy, that are related with the parameters and a» of
the form factor(9) as given in Eq(11).

(r?)7 andcy have recently been determined@¢p®) in
description of the data up 6~1.3 GeV. Experimental data yPT[8]. While chiral symmetry constraints successfully pro-
(in spite of the big errors in the higher energy regiseem vide the chiral logarithms, it remains an uncertainty in the
to have a determinate structumild shouldey around E polynomial part that involves counterterms not predicted by
~1.3 GeV. This could be due to a heavjelike resonance the chiral framework. Therefore it is not possible to give a
as thep(1450). Our solution takes into account this possibil-plain prediction for these observables. The authors of Ref.
ity though, because Ochs data embody these resonances [@) performed, by properly including the chiral logarithms, a

FIG. 1. Comparison of the result of the fit to ALEPH data with
the experimental ALEPH17] and CLEO-II[18] data onF(s)
from 7~ — 7 #%v, in the p(770) energy region. The result of Ref.
[9] for M, =775 MeV is also shown. Up ta/s~0.8 GeV both
curves are almost indistinguishable.

toE~1.5 GeV. fit of the pion form factor, as given b@(p®) xPT, to the
We can compare the results of our fit to tau decay datalata from 7~ —# #°v_, ete " —#*7~, and e 7~
with the experimental results coming froe¥e — 7" 7~ —e~ 7~ in the low-energy regionE=<0.5 GeV). Our pro-

(time-like) [15] ande” 7" —e =~ (space—like [16] pro-  cedure provides the low-energy observables from a fit to a
cesses. In Fig. 2 we show these sets of data together with tharger energy interval in the time-like region. In Table | we
same curves of Fig. 1. We conclude that the agreement afompare our figures with those of R¢8]. As can be seen
our fit with the data is good within the errors. Notice thatthe results compare very well, but the errors to the observ-
e'e — w7 data has a contribution frorm(782) that ables provided by our procedure are smalleoticeably in
translates into a slight deformation on the right-hand side oty)).

As commented above the predictability pPT atO(p®)
o . . T . . - is spoiled because chiral symmetry does not provide infor-
L | mation on the finite part of the counterterms in the results of
' — FittoEq. (9) with 7 data (r?)y and cy. Two combinations ofO(p®) counterterms,
[ | RefO I r{,l(Mp) and r{,z(Mp), one on each observable, have to be

considered. In order to predict these terms one has to rely on
L 1 modelizations or dynamical assumptions like vector meson

N%: g I I | dominancgVMD). This last resource was employed in Ref.
= \ [8] to evaluate the vector resonance contributions
I R 1 rxl(Mp), r¥2(Mp), that are the dominant piece by far.
or R 7 Numerically the O(p®) xPT expressions relating the
- 1 low-energy observables with the polynomial terms®are

'“‘S‘II . | | . . | 1IN (r37=[12.312+r1603.4y (M,)] (GeV %), (14
-0.5 0 0.5 1 1.5

s/V(isl)  (GeV)

FIG. 2. Comparison of the result of our fit with the experimental 3For a complete discussion see Rgf]. We take for(r?)7 their
data onF(s) from ete” =7 7~ (time-like) [15] and e 7~ Set | possibility. Our numbers differ slightly from the ones given in
—e 7~ (space-lik¢ [16]. The result of Ref. [9] (M that reference because we use for the pion decay conBtant
=775 MeV) is also shown. In the regior 0.4 GeVSs/\/|—sl|z =92.4 MeV instead oF ,.=93.2 MeV. We neglect the small local
=<0.8 GeV both curves are almost indistinguishable. contribution from pseudoscalars.
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TABLE Il. Combination of O(p®) counterterms appearing in from the photon vacuum polarization insertion into the elec-

the xPT evaluation ofr?)y andcy . We give the predictions from tromagnetic vertex of the muon. It givéa2]
our fit and the ones from the chiral fit and the VMD result of Ref.

[8]. a,*{vac po) = (692.4-6.2) X 10" *°. (16)
rxl(Mp)xlO3 r¥2(Mp)><104 This contribution can be evaluated in terms of the experi-

mental hadronic total cross sectiom(e”e” — hadrons),

O”rgit —0.79+0.19 1.46-0.03 wheree*e” — 77~ is, by far, the dominant part at low
\?'E/lpD) XPT _0'6?22'26 1'5%2'44 energies. The bulk, both of the central value 15%) and

the error (-80%), ofa’*!in Eq. (16) comes from thisr
intermediate statf23].

The relevant dispersion integral to evaluate this contribu-
tion is (up to two loop$ [24]

C\’}=[1.787+13718.?¥2(Mp)] (GeV ™).

Within VMD these counterterms are obtained by integrating a(0)m,\2 (= ds R
out vector resonances using the resonance chiral theory a}j”=( 3 ) f +(S)K(S)
framework[6]. They have been worked out, within the Proca . 4
formalism, in Ref.[8] with the results
3s
2 Ron(S)=———o(e"e —m"m), (17
ry :2\/5_7;]‘)(1’\/’ dra“(s)
MV

where theK(s) function is given in Ref[25]. In terms of
Fy(s) we have

2
ry,= M—’égva, (15)

o (a(O)m
a —

L 6

A2 d 2
| N . f AFV(9PR(9),  (18)
obtained by integrating the lightest octet of vector reso- 4m

nances of masM,, . The couplingsfy, , andf, can be _ -
phenomenologmglly obtameg fr%m\;egve p_)w i where we have introduced a cutoff as the upper limit of

and ¢— KK with the resultsf,=0.20, g,=0.09, andf = integration. AsK(s) grows mildly at high values o$, the
—0.03, and, therefore, giving values w that we collect in integration ina;;™ in Eq. (18) is dominated by the very low-

energy region that gives the main contribution.
Table Il. We compare these VMD results with thae ones ob-""the hadronic contribution to the shift in the fine-structure
tained from our fit and the ones provided by thép®) xPT

; . constantA a(s), defined throughx(s)=«(0)/(1—Aa(s)),
flt\./We notice that the' resultvof VMD seems to undefrvaluecaln be evaluated from* e~ — hadrons data by using a dis-
|rV1(MP)| and overestlmatesvz(Mp). As can be seen from persion relation together with the optical theorg®6]. The

Eq. (14) this difference would affect most the valuedff. It  last estimation has been worked out in H@R2] giving
has to be observed though that, on one side, to extract )
rv,(M,) from (r?)7 in Eq. (14) a strong cancellation driven Aa®(MZ)|hag=(276.3-1.6)x 10" %, (19

by the term (r?)y—12.312) is involved, and therefore it is
very sensitive to the value of the squared charge radius of thwhere the superscript indicates that only the five lightest

&uark flavors have been considered.
pion [this problem does not arise in théz(MP) casg; on The 7rar contribution can be accounted for by
the other side, VMD can only offer a rough estimate because,

at this order, heavier resonances could also give a noticeable a(0)MZ (a2 o3|Fy(s)|?
contribution while the VMD result only includes the lightest Aa(M2)| 7= _WJ A8 T (20
octet of vector mesons. By neglecting these heavier states we L s(s—Mz)

could invert the procedure and use our fit to predict the prod-
ucts of couplingsf , f\, andgyf, from Eq. (15). We obtain,

for example,f, /gv (—1.9%0.6) far from the phenomeno-
logical valuef, /gy=—0.33. It looks as if the role of heavier
resonances |s crucial in order to describ¥p®) vector
driven contributions inyPT.

where, once more, we have introduced a cutbffas the
upper limit of integration in order to control the good de-
scription of the integrand. Contrary to what happens in the
7 case, from Eq(20) we see that the integrand is not so
dominated by the low-energy region and, therefore, higher
energy contributions are relevant to evaluate(M2)| ...
In addition, and as we will see, thew contribution to
Aa(M§)|had in this energy region is just a modest 10% of
the full value(19).
The hadronic contribution to the anomalous magnetic mo- The study on the vector form factor of the pion that we
menta —(gM—Z)/Z of the muon is the main source of un- have carried out allows us to put forward a prediction for
certalnty in its theoretical prediction. Its leading part comesbotha;" andAa(M?3)| . that we work out as follows. The

V. TWO-PION CONTRIBUTION TO THE MUON  (g—2)
AND TO a(M2)
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TABLE IIl. Values of ;" andAa(M3)| ... given by our fitto  factor provided by the all-important properties of its analyt-
ALEPH 7 decay data, in the whole energy range (0.32 €&}  icity and unitarity relations. This last construction relates
<1.6 GeV), for different values of tha cutoff. Fy(s) to the 51(s) phase-shift of elastierm scattering.

To proceed we have included tlﬁé(s) phase-shiffup to

T 0 2
A (Ge) a;™x10 Aa(MD)[<10° Js=1.5 GeV) with a model-independent parametrization,
1.0 505+ 6 33.8:0.4 provided by the resonance chiral theory and experimental
1.1 5116 34.7+0.5 data. Our form factor depends on twa,priori unknown,
1.2 5146 35.1+0.5 subtraction constants and tp€770) mass. We have fitted
13 516-6 35.4-0.5 ALEPH data on7~— = 7%, to the form factor forE

=1.1 GeV and we obtaiM ,=(775.1-0.5) MeV. Our re-

_ . sult for M, is bigger than the new average [df3] but very

fit to ALEPH data that gave our results in EQL3) was  much consistent with that average frandecays ana* e~
limited to 's<1.1 GeV. As commented there we took this annihilation processes. The predictions given by our results
region because we have a thorough control of the physicgy, ine low-energy observables worked outyRT, (r3)7,

involved within. At higher energies, new _phySI_cs INpUt, un- 5,4 cy have also been computed. We find good agreement
accounted for, appears. As a result, in Fig. 1 it can be seen

o 5 with the results from the fit inyPT though our errors are
that our fit misses barely the data ab 1.2 GeV, well . smaller. It is necessary to notice, though, that when these

outside the fitted region. The computation of the integrals mf. . o
a™ (18) andAa(M2)| (20) requires a good knowledge of igures are worked on to determine local chit¥|p®) coun-
m g/lmmw terterms, the values we get are not consistent with those ob-

Fy(s) up to s=A?, therefore, if we wish to reach\ : ; .
=1.3 GeV we would need a better description of data thar;[amed’ through VMD, from resonance chiral theory by inte-

the one given with the parameters in Ha43). To achieve grating out the lightest octet of vector resonances. As a
; : _ ' ; conclusion it seems that room is left for the contribution of
this feature we fixM ,=775.1 MeV, as concluded in Eq.

(13), and leaver,, a, as free parameters. Then we fit the "€aVier resonances. o

ALEPH data in the whole range 0.32 GeW/s<1.6 GeV. Finally we have evaluated the s contribution to the

By studying, as above, the stability of the fitted parameteré’momal'Ous magnetic moment of tge muaf; ' and the shift
against variations in the number of subtractions,of the fine structure constadta(M3)| .. An improvement
the upper limit A, and the matching point/s .., we inthe theoretical errors of these quantities would be achieved
conclude the valued;=(1.83+0.03) GeV'2, a,=(4.28 with a more complete analysis of the available data.

+0.08) GeV*, consistent with the solution of the restricted W€ have shown how it is possible to extract model-
fit (13) but with smaller errors. The tildes am and e, are independent information of resonances from experimental
meant to prevent their use in E@.1). We emphasize that, data by exploiting general properties of form factors, such as

~ . unitarity and analyticity. When combined with the resonance
and a, are not proper physical values of thg, «, param-

eters because we have fitted a region of experimental datcep iral theory, the effective action of QCD at the lightest reso-

that is not properly implemented theoretically. However the 'ance region, these properties provide a compelling frame-
~ ~ . work for the study of form factors.

above values ofx; and @, describe well data up ta/s
=1.3 GeV and, therefore, are useful to evaluate the inte-
grals ina;" andA a(M3)| .. with smaller errors. The values
we get are collected in Table Il

It has to be noticed that our errors are similar to those We wish to thank Jon Urheim for correspondence on the
obtained in recent estimatiof23], though the results in this 7 decay data from CLEO-II. This work has been supported in
reference were obtained from a combinatiorebe™ — 7 part by TMR, EC—Contract No. ERB FMRX-CT98-0169,
and7~ — =~ 7w, decay data while our results come from a gng by CICYT(Spain under grant PB97-1261.
fit to this last process up tgs=1.6 GeV. An improvement
on our errors would require an analysis of the pion vector
form factor with a more complete set of data, combining
e'e —wmmandr —m~ 7701/7 processes.
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APPENDIX

A theoretical construction of the vector form factor of the
pion was performed in Ref9] by matching thed(p*) xPT
result(valid atE<M ) with the prescription provided by the

To gain access to the resonance properties from experiesonance chiral theory. The procedure also took into ac-
mental data, a correct definition of those properties has to beount the analyticity and unitarity properties B{(s). The
theoretically implemented. The use of modelizations, thoughiesult only includes the contribution of tip¢770) resonance
sometimes unavoidable, can seriously spoil the conclusionand gives an excellent description of data ufete1 GeV
obtained from data. In this article we have studied the vectowith just one parameteM,. We have compared this pre-
pion form factor F\/(s) within a model-independent ap- scription with ours in Figs. 1 and 2.
proach. We have introduced a parametrization of the form For completeness we recall here the result of R&f.

VI. CONCLUSIONS
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VECTOR FORM FACTOR OF THE PION FROM . ..

2
Fu(s)= .
NVE s—iM,I'(s)

p_

—S
Xexpy —5—5
pl%wzlzi

1
+ SReA( mﬁ/s,mﬁ/Mﬁ)}

ReA(m2/s,mZ/M?)

, (A1)

where[" (s) is the hadronic off-shell width of the(770)
resonanc¢l12],

PHYSICAL REVIEW B3 093005

M s 1
I,(s)=—"—=|026(s—4m?)+ = o 6(s—4m? }
p( ) 967TF37 T ( 11') 2 K ( K)
(A2)
and
2 2
m m 5 opt+1
2 27 2y | P P_. 3 P' -
A(mp/s,mp/ 1) In(,“2 +8 S 3+<rpln ap—l)’

(A3)

with op=\1—4m?/s.
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