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Vector form factor of the pion from unitarity and analyticity: A model-independent approach
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We study a model-independent parametrization of the vector pion form factor that arises from the constraints
of analyticity and unitarity. Our description should be suitable up toAs.1.2 GeV and allows a model-
independent determination of the mass of ther(770) resonance,M r5(775.160.5) MeV. We analyze the
experimental data ont2→p2p0nt in this framework, and its consequences on the low-energy observables
worked out by chiral perturbation theory. An evaluation of the two pion contribution to the anomalous mag-
netic moment of the muon,am , and to the fine structure constant,a(MZ

2), is also performed.
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I. INTRODUCTION

The hadronic matrix elements of quantum chromodyna
ics ~QCD! currents play a basic role in the understanding
electroweak processes at the low-energy regime~typically
E;1 GeV). However our poor knowledge of the QCD d
namics at these energies introduces annoying and seriou
certainties in the description and prediction of the proces
involved.

To bypass this problem several procedures have been
dressed in the literature on this topic. On one side there
widespread set of models that pretend to describe, in a
plified way, the involved dynamics@1,2#. While it is of im-
portance to get a feeling of the entangled physics, the
cluded simplifying assumptions are usually poorly justifi
and, sometimes, even inconsistent with QCD.Ad hocparam-
etrizations of the matrix elements have also been extensi
used@2,3#. The problem with this technique is that, while th
description of data can be properly accounted for, it is
easy to work out the physics hidden in the parameters.

A more promising and model-independent procedure
the use of effective actions from QCD. At very low energi
@E!M r , with M r the mass of ther(770) resonance# the
most important QCD feature is its chiral symmetry that
realized in chiral perturbation theory (xPT) @4#, a perturba-
tive quantum field theory that provides the effective action
QCD in terms of the lightest pseudoscalar mesons.xPT has
a long and successful set of predictions both in strong
electroweak processes@5#. At higher energies (E;M r),
resonance chiral theory is the analogous framework@6#
where the lightest resonance fields are kept as explicit
grees of freedom. With the addition of dynamical constrai
coming from short-distance QCD, resonance chiral the
becomes a predictive model-independent approach to w
with.

One of the simplest hadronic matrix elements of a QC
current is the vector pion form factorFV(s) defined through

^p1~p!p2~p8!uVm
3 u0&5~p2p8!mFV~s!, ~1!

where s5q25(p1p8)2 and Vm
3 is the third component o

the vector current associated with the approximateSU(3)V
flavor symmetry of the QCD Lagrangian. The vector pi
0556-2821/2001/63~9!/093005~7!/$20.00 63 0930
-
f

un-
es

d-
a
-

-

ly

t

is

f

d

e-
s
y
rk

form factor drives the hadronic part of bothe1e2→p1p2

andt2→p2p0nt processes in the isospin limit.1 There is an
extensive bibliography on the study of this form factor th
we do not review in detail here.

At very low energies,FV(s) has been calculated inxPT
up to O(p6) @7,8#. A successful study at ther(770) energy
scale has been carried out in the framework of the resona
chiral theory~the effective action of QCD at the resonan
region! in Ref. @9#. In this last reference the unitarity an
analyticity properties of the vector pion form factor we
implemented in order to match the low-energy result
O(p4) in xPT with the correct behavior at ther(770) peak.
The result is in excellent agreement with the data com
from e1e2→p1p2 ande2p6→e2p6 processes. This so
lution, that includes ther(770) contribution only, leaves jus
one free parameter,M r , and provides a suitable descriptio
of FV(s) up toAs;1 GeV. If we want to be able to exten
its validity at higher energies we should take into acco
other contributions. To achieve this feature, the analytic
and unitarity properties ofFV(s), together with the reso-
nance chiral theory, continue to provide a mod
independent solution for the vector pion form factor that
analyze, in detail, in this article. The new solution includ
two, a priori, unknown parameters in addition toM r . These
parameters happen to be related to the chiral low-energy
servables in Refs.@7,8#, the squared charged pion radiu
^r 2&V

p , and theO(s2) term in the chiral expansioncV
p .

In the next section we construct the vector pion form fa
tor on the grounds of its analyticity and unitarity relations.
Sec. III we study the experimental data ont2→p2p0nt
with our solution for the pion form factor. By a fitting pro
cedure we determine the values ofM r and low-energy pa-
rameters that tau decay data demand. Section IV is dev
to analyzing the results we have gotten from the fitting p
cedure and the consequences on the chiral observable
xPT. A corresponding evaluation of the two-pion contrib

1If isospin symmetry is broken, there is a mixing between t
third and eighth components of the vector current. The spec
functions are then slightly different ine1e2 annihilation and tau
decays.
©2001 The American Physical Society05-1
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A. PICH AND J. PORTOLE´S PHYSICAL REVIEW D63 093005
tion to the hadronic part of the anomalous magnetic mom
of the muon and the fine-structure constant is collected
Sec. V. We present our conclusions in Sec. VI.

II. ANALYTICITY AND UNITARITY IN F V„s…

The vector pion form factorFV(s) is an analytic function
in the whole complexs plane, except for the cut along th
positive real axis, starting at the lowest thresholds54mp

2 ,
where its imaginary part develops a discontinuity. This
given by the unitarity condition

Im FV~s!5
1

2 (
n
E drn^p

1p2uT†un&^nuVm
3 u0&, ~2!

where un& represents on-shell intermediate states andT† is
the scattering operator connecting the intermediate stateun&
to the final two-pion state. The first allowed intermedia
states are 2p, 4p, and KK̄. To every intermediate stat
corresponds a branch point at the value ofs equal to the
squared sum of masses of the corresponding particles,
s5(2mp)2, s5(4mp)2, and so on. In the elastic region,s
,16mp

2 , the only intermediate state considered in Eq.~2! is
the one with 2p, and the Watson final-state theorem@10#
relates the imaginary part ofFV(s) to the partial wave am-
plitude t1

1(s) for pp elastic scattering with angular mome
tum and isospin equal to one. Thus, from Eq.~2!,

Im FV~s1 i«!5spt1
1~s!FV~s!* 5ei d1

1
sind1

1FV~s!* ,
~3!

wheresp5A124mp
2 /s. As ImFV(s1 i«) is a real quantity,

the phase ofFV(s) must bed1
1(s), that is, the phase-shift o

the t1
1(s) partial wave amplitude. Therefore,

Im FV~s1 i«!5tand1
1 ReFV~s!. ~4!

The analyticity and unitarity properties ofFV(s) are accom-
plished by demanding that the form factor should satisfy
n-subtracted dispersion relation in the form

FV~s!5 (
k50

n21
sk

k!

dk

dsk
FV~s!us50

1
sn

p E
4mp

2

` dz

zn

tand1
1~z!ReFV~z!

z2s2 i«
, ~5!

where we have used Eq.~4!. This integral equation has th
known Omne`s solution@9,11#

FV~s!5Qn~s!expH sn

p E
4mp

2

` dz

zn

d1
1~z!

z2s2 i«J , ~6!

with

Qn~s!5expH (
k50

n21
sk

k!

dk

dsk
ln FV~s!us50J . ~7!
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Strictly speaking the solution~6! for FV(s) is valid only
below the inelastic threshold (s,16mp

2 ). This is because we
have only included the two-pion threshold in the unitar
relation ~2!. However, the contributions from higher mult
plicity intermediate states are suppressed by phase spac
ordinary chiral counting.

As in any subtracted dispersion relation like the one giv
by Eq. ~5! there is an interplay between the subtraction co
stants~polynomial part! and the dispersive integral. By in
creasing the number of subtractions~correspondingly in-
creasing the power ofz in the denominator! we pull in the
low-energy part of ImFV(s) in the integrand. Then the val
ues of ImFV(s) in the upper part of the integration are le
important. At the same time the information of this hig
energy region shifts to the increasing number of subtrac
constants that are related with the low-energy expansion
the form factor. This situation is reflected in the solution
the integral equation~6!. If we know thed1

1(s) phase-shift
only at very low energies, an accurate evaluation of the
tegral in Eq.~6! would require a high number of subtrac
tions. This exchange of information between high and l
energies is, by no means, paradoxical. It is a strict con
quence of the fact that, being an analytic function in t
complexs plane, the behavior ofFV(s) at different energy
scales is related. Dispersion relations rigorously embody
property.

The d1
1(s) phase-shift is rather well known, experime

tally, up to E;2 GeV. Resonance chiral theory provides
model-independent analytic expression that describes p
erly ther(770) contribution@9# to it:

d1
1~s!5arctanH M rGr~s!

M r
22s

J , ~8!

with Gr(s) the hadronic off-shellr width @12# @see Eq.~A2!
in the Appendix#. This result, that provides our definition o
M r , follows from Eq.~4! and the expression forFV(s) ob-
tained in Ref.@9# that we collect in the Appendix. The de
scription of data given byd1

1(s) in Eq. ~8! is accurate enough
up to E;1 GeV for values ofM r in the ballpark of the
average value collected by the Particle Data Group~PDG!
@13#. At higher energies heavier resonances with the sa
quantum numbers pop up, and to get a correct description
should use the available experimental data from Ochs@14#.

We will take the result forFV(s) in Eq. ~6! with three
subtractions. There are several reasons to take this case
one side the number of subtractions is high enough to we
the low-energy behavior ofd1

1(s) that is more well known
than its high energy part. On the other side the numbe
subtraction constants, threea priori unknown parameters, is
low enough to allow a reasonable parametrization. In f
one of the subtraction constants is provided by the norm
ization condition on the form factor, i.e.,FV(0)51, and
there remains two parameters that can be related to the
energy expansion of the form factor,^r 2&V

p and cV
p , as we

will shortly see.
Therefore we take as the vector pion form factor provid

by analyticity and unitarity the expression
5-2



e

e-
w

eg

or

th
e
to
tio
ith
te

th
p

e
-
in

to

d
o

he

e
t
of
ary

in
ese

na-
the
h
ed

n-

ose
ch:
per

y
b-

.

ar-

re-

ll
od

d

VECTOR FORM FACTOR OF THE PION FROM . . . PHYSICAL REVIEW D63 093005
FV~s!5expH a1 s1
1

2
a2 s21

s3

p E
4mp

2

L2 dz

z3

d1
1~z!

z2s2 i«J .

~9!

Since Eq.~4! is only valid in the elastic region, we hav
introduced an upper cut in the integration,L. This cutoff has
to be taken high enough so as not to spoil the,a priori,
infinite interval of integration, but low enough that the int
grand is well known in the interval. As commented above
know best d1

1(s) up to E,2 GeV. We will take L
52.0 GeV, though, with three subtractions, there is a n
ligible difference~within the errors! betweenL51.5 GeV
and the previous value.

The two subtraction constantsa1 anda2 are related with
the squared charge radius of the pion^r 2&V

p and the quadratic
termcV

p in the low-energy expansion of the pion form fact

FV~s!511
1

6
^r 2&V

ps1cV
ps21O~s3!, ~10!

through the relations

^r 2&V
p56a1 ,

cV
p5

1

2
~a21a1

2! ~11!

that follow from the expansion of the form factor in Eq.~9!
and its comparison with Eq.~10!. We will use them to pre-
dict these observables.

III. THE MASS OF THE r„770… RESONANCE FROM A
FIT TO t DECAY DATA

The fact thatFV(s) is dominated by ther(770) vector
meson up toE;1 GeV has been extensively used to get
properties of this resonance. In order to proceed, a Br
Wigner–like form factor is usually introduced and fitted
the data. This procedure, however, relies on a modeliza
of the form factor that is not necessarily consistent w
QCD. Here we propose a thorough model-independent de
mination of the mass of ther(770) resonance,M r , defined
by Eq. ~8!.

FV(s) endows the hadronic dynamics in thet2

→p2p0nt decay and thee1e2→p1p2 process. The ex-
perimental data from this last source@15,16# has been avail-
able for a long time and deeply analyzed. The decayt2

→p2p0nt has recently been measured accurately, in
energy region of our interest, by three experimental grou
ALEPH @17#, CLEO-II @18#, and OPAL @19#. We take
FV(s), as given by Eq.~9!, to fit the ALEPH set of data.

An appropriate study of the form factor requires a prop
description of thed1

1(s) phase shift in the integration inter
val. As we are working with three subtractions the ma
contribution to the integration in Eq.~9! comes from the
low-energy region of the phase shift. However if we wish
considerFV(s) aroundAs;1 GeV the cutoffL should be
not lower than, let us say,As.1.5 GeV, as we commente
previously. Therefore we require a precise description
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1(s) in this energy region. We achieve this through t

following procedure:d1
1(s) given by Eq. ~8! provides an

implementation up toAsmatch5M r ; hence for M r<As
&1.5 GeV~higher values ofAs being unimportant becaus
of the three subtractions performed! we include the Ochs se
of data@14#. As a result we come out with a description
d1

1(s), in the region of interest, that contains all the necess
physics input.

However there are still contributions to the form factor
Eq. ~9! that are not taken into account with Ochs data. Th
are those of coupled channels that open at theKK̄ threshold
@20#. Therefore, in order to have a conservative determi
tion of the observables, we choose to fit ALEPH data in
range 0.32 GeV&As&1.1 GeV, where we have a thoroug
control of the contributions. The fitting procedure is carri
out with theMINUIT package@21#. We find

M r5~775.1360.02! MeV,

a15~1.8460.02! GeV22,
~12!

a25~4.1860.05! GeV24,

x2/DOF533.8/21.

Though thex2/DOF value found can be considered reaso
able it is necessary to notice that 80% ofx2 comes from just
three points.2 Errors in Eq.~12!, given by theMINUIT pro-
gram, are to be taken with care. They do not include th
that come from the choices we have made in our approa
the energy range to be fitted, number of subtractions, up
cut of integrationL, and the matching point,Asmatch, be-
tween Ochs data and Eq.~8!. We estimate the final errors b
exploring the stability of the results with two and four su
tractions, varying the cutoff fromL51.5 GeV to L
52.0 GeV, extending the fitted energy range up toAs
.1.6 GeV, and shiftingAsmatchwithin the Ochs data errors
Hence we conclude the figures

M r5~775.160.5! MeV,

a15~1.8460.05! GeV22, ~13!

a25~4.260.2! GeV24.

The parametersa1 and a2 turn out to be highly anticorre-
lated. This procedure provides a mass for ther(770) reso-
nance roughly five standard deviations higher than the P
ticle Data Group new average@13# that is M r5(769.3
60.8) MeV, but consistent with their average fromt de-
cays ande1e2 processes,M r5(776.060.9) MeV.

In Fig. 1 we compare the experimental data with our p
scription. We also include the parameter-free prediction~one
subtraction only! of Ref. @9# that, for completeness, we reca
in the Appendix. It can be seen that our fit gives a go

2One of them is atAs.0.70 GeV and the other two are aroun
As.0.85 GeV.
5-3
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description of the data up toE;1.3 GeV. Experimental data
~in spite of the big errors in the higher energy region! seem
to have a determinate structure~mild shoulder! around E
;1.3 GeV. This could be due to a heavierr-like resonance
as ther(1450). Our solution takes into account this possib
ity though, because Ochs data embody these resonanc
to E;1.5 GeV.

We can compare the results of our fit to tau decay d
with the experimental results coming frome1e2→p1p2

~time-like! @15# and e2p6→e2p6 ~space–like! @16# pro-
cesses. In Fig. 2 we show these sets of data together with
same curves of Fig. 1. We conclude that the agreemen
our fit with the data is good within the errors. Notice th
e1e2→p1p2 data has a contribution fromv(782) that
translates into a slight deformation on the right-hand side

FIG. 1. Comparison of the result of the fit to ALEPH data wi
the experimental ALEPH@17# and CLEO-II @18# data onFV(s)
from t2→p2p0nt in ther(770) energy region. The result of Re
@9# for M r5775 MeV is also shown. Up toAs;0.8 GeV both
curves are almost indistinguishable.

FIG. 2. Comparison of the result of our fit with the experimen
data onFV(s) from e1e2→p1p2 ~time-like! @15# and e2p6

→e2p6 ~space-like! @16#. The result of Ref. @9# (M r

5775 MeV) is also shown. In the region20.4 GeV&s/Ausu
&0.8 GeV both curves are almost indistinguishable.
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the r(770) peak. This is due to a smallI 50 component
contributing to the 2p spectral function ine1e2→p1p2.
This contribution does not appear in the isovector spec
function fromt2→p2p0nt which we are describing.

IV. THE LOW-ENERGY OBSERVABLES

At E,2mp the vector pion form factor satisfies a low
energy expansion given by Eq.~10!. Up to the quadratic term
in s we have, therefore, two low-energy observables,
squared charge radius of the pion,^r 2&V

p , and the quadratic
term cV

p , that are related with the parametersa1 and a2 of
the form factor~9! as given in Eq.~11!.

^r 2&V
p andcV

p have recently been determined atO(p6) in
xPT @8#. While chiral symmetry constraints successfully pr
vide the chiral logarithms, it remains an uncertainty in t
polynomial part that involves counterterms not predicted
the chiral framework. Therefore it is not possible to give
plain prediction for these observables. The authors of R
@8# performed, by properly including the chiral logarithms,
fit of the pion form factor, as given byO(p6) xPT, to the
data from t2→p2p0nt , e1e2→p1p2, and e2p6

→e2p6 in the low-energy region (E&0.5 GeV). Our pro-
cedure provides the low-energy observables from a fit t
larger energy interval in the time-like region. In Table I w
compare our figures with those of Ref.@8#. As can be seen
the results compare very well, but the errors to the obse
ables provided by our procedure are smaller~noticeably in
cV

p).
As commented above the predictability ofxPT atO(p6)

is spoiled because chiral symmetry does not provide in
mation on the finite part of the counterterms in the results
^r 2&V

p and cV
p . Two combinations ofO(p6) counterterms,

r V1

r (M r) and r V2

r (M r), one on each observable, have to

considered. In order to predict these terms one has to rel
modelizations or dynamical assumptions like vector me
dominance~VMD !. This last resource was employed in Re
@8# to evaluate the vector resonance contributio
r V1

V (M r), r V2

V (M r), that are the dominant piece by far.

Numerically the O(p6) xPT expressions relating th
low-energy observables with the polynomial terms are3

^r 2&V
p5@12.31211603.4r V1

V ~M r!# ~GeV22!, ~14!

3For a complete discussion see Ref.@8#. We take for^r 2&V
p their

Set I possibility. Our numbers differ slightly from the ones given
that reference because we use for the pion decay constanFp

592.4 MeV instead ofFp593.2 MeV. We neglect the small loca
contribution from pseudoscalars.

l

TABLE I. Low-energy observables of the vector pion form fa
tor up to the quadratic term. We give the results for our fit and
O(p6) xPT analysis of Ref.@8#.

^r 2&V
p (GeV22) cV

p(GeV24)

Our fit 11.0460.30 3.7960.04
O(p6) xPT 11.2260.41 3.8560.60
5-4
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cV
p5@1.787113718.7r V2

V ~M r!# ~GeV24!.

Within VMD these counterterms are obtained by integrat
out vector resonances using the resonance chiral th
framework@6#. They have been worked out, within the Pro
formalism, in Ref.@8# with the results

r V1

V 52A2
Fp

2

MV
2

f x f V ,

r V2

V 5
Fp

2

MV
2

gVf V , ~15!

obtained by integrating the lightest octet of vector re
nances of massMV . The couplingsf V , gV , and f x can be
phenomenologically obtained fromr→e1e2, r→p1p2,
andf→KK̄ with the resultsf V50.20, gV50.09, andf x5
20.03, and, therefore, giving values forr Vi

V that we collect in

Table II. We compare these VMD results with the ones o
tained from our fit and the ones provided by theO(p6) xPT
fit. We notice that the result of VMD seems to underval
ur V1

V (M r)u and overestimatesr V2

V (M r). As can be seen from

Eq. ~14! this difference would affect most the value ofcV
p . It

has to be observed though that, on one side, to ext
r V1

V (M r) from ^r 2&V
p in Eq. ~14! a strong cancellation driven

by the term (̂ r 2&V
p212.312) is involved, and therefore it i

very sensitive to the value of the squared charge radius o
pion @this problem does not arise in ther V2

V (M r) case#; on

the other side, VMD can only offer a rough estimate becau
at this order, heavier resonances could also give a notice
contribution while the VMD result only includes the lighte
octet of vector mesons. By neglecting these heavier state
could invert the procedure and use our fit to predict the pr
ucts of couplingsf x f V andgVf V from Eq. ~15!. We obtain,
for example,f x /gV5(21.960.6) far from the phenomeno
logical valuef x /gV.20.33. It looks as if the role of heavie
resonances is crucial in order to describeO(p6) vector
driven contributions inxPT.

V. TWO-PION CONTRIBUTION TO THE MUON „gÀ2…
AND TO a„M Z

2
…

The hadronic contribution to the anomalous magnetic m
mentam5(gm22)/2 of the muon is the main source of u
certainty in its theoretical prediction. Its leading part com

TABLE II. Combination of O(p6) counterterms appearing i
the xPT evaluation of̂ r 2&V

p andcV
p . We give the predictions from

our fit and the ones from the chiral fit and the VMD result of R
@8#.

r V1

V (M r)3103 r V2

V (M r)3104

Our fit 20.7960.19 1.4660.03
O(p6) xPT 20.6860.26 1.5060.44
VMD 20.25 2.6
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from the photon vacuum polarization insertion into the ele
tromagnetic vertex of the muon. It gives@22#

am
had~vac pol!5~692.466.2!310210. ~16!

This contribution can be evaluated in terms of the expe
mental hadronic total cross sections(e1e2→hadrons),
where e1e2→p1p2 is, by far, the dominant part at low
energies. The bulk, both of the central value (;75%) and
the error (;80%), of am

had in Eq. ~16! comes from thispp
intermediate state@23#.

The relevant dispersion integral to evaluate this contri
tion is ~up to two loops! @24#

am
pp5S a~0!mm

3p D 2E
4mp

2

` ds

s2
Rpp~s!K̂~s!,

Rpp~s!5
3s

4pa2~s!
s~e1e2→p1p2!, ~17!

where theK̂(s) function is given in Ref.@25#. In terms of
FV(s) we have

am
pp5S a~0!mm

6p D 2E
4mp

2

L2 ds

s2
sp

3 uFV~s!u2K̂~s!, ~18!

where we have introduced a cutoffL as the upper limit of
integration. AsK̂(s) grows mildly at high values ofs, the
integration inam

pp in Eq. ~18! is dominated by the very low-
energy region that gives the main contribution.

The hadronic contribution to the shift in the fine-structu
constantDa(s), defined througha(s)5a(0)/„12Da(s)…,
can be evaluated frome1e2→hadrons data by using a dis
persion relation together with the optical theorem@26#. The
last estimation has been worked out in Ref.@22# giving

Da (5)~MZ
2!uhad5~276.361.6!31024, ~19!

where the superscript indicates that only the five light
quark flavors have been considered.

The pp contribution can be accounted for by

Da~MZ
2!upp52

a~0!MZ
2

12p E
4mp

2

L2

ds
sp

3 uFV~s!u2

s~s2MZ
2!

, ~20!

where, once more, we have introduced a cutoffL as the
upper limit of integration in order to control the good d
scription of the integrand. Contrary to what happens in
am

pp case, from Eq.~20! we see that the integrand is not s
dominated by the low-energy region and, therefore, hig
energy contributions are relevant to evaluateDa(MZ

2)upp .
In addition, and as we will see, thepp contribution to
Da(MZ

2)uhad in this energy region is just a modest 10%
the full value~19!.

The study on the vector form factor of the pion that w
have carried out allows us to put forward a prediction
both am

pp andDa(MZ
2)upp that we work out as follows. The
5-5
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fit to ALEPH data that gave our results in Eq.~13! was
limited to As<1.1 GeV. As commented there we took th
region because we have a thorough control of the phy
involved within. At higher energies, new physics input, u
accounted for, appears. As a result, in Fig. 1 it can be s
that our fit misses barely the data aboveAs;1.2 GeV, well
outside the fitted region. The computation of the integrals
am

pp ~18! andDa(MZ
2)upp ~20! requires a good knowledge o

FV(s) up to s.L2, therefore, if we wish to reachL
.1.3 GeV we would need a better description of data th
the one given with the parameters in Eq.~13!. To achieve
this feature we fixM r5775.1 MeV, as concluded in Eq
~13!, and leavea1 , a2 as free parameters. Then we fit th
ALEPH data in the whole range 0.32 GeV<As<1.6 GeV.
By studying, as above, the stability of the fitted paramet
against variations in the number of subtraction
the upper limit L, and the matching pointAsmatch, we
conclude the valuesã15(1.8360.03) GeV22, ã25(4.28
60.08) GeV24, consistent with the solution of the restricte
fit ~13! but with smaller errors. The tildes ona1 anda2 are
meant to prevent their use in Eq.~11!. We emphasize thatã1

and ã2 are not proper physical values of thea1 , a2 param-
eters because we have fitted a region of experimental
that is not properly implemented theoretically. However t
above values ofã1 and ã2 describe well data up toAs
.1.3 GeV and, therefore, are useful to evaluate the in
grals inam

pp andDa(MZ
2)upp with smaller errors. The value

we get are collected in Table III.
It has to be noticed that our errors are similar to tho

obtained in recent estimations@23#, though the results in this
reference were obtained from a combination ofe1e2→pp
andt2→p2p0nt decay data while our results come from
fit to this last process up toAs.1.6 GeV. An improvement
on our errors would require an analysis of the pion vec
form factor with a more complete set of data, combini
e1e2→pp andt2→p2p0nt processes.

VI. CONCLUSIONS

To gain access to the resonance properties from exp
mental data, a correct definition of those properties has to
theoretically implemented. The use of modelizations, thou
sometimes unavoidable, can seriously spoil the conclus
obtained from data. In this article we have studied the vec
pion form factor FV(s) within a model-independent ap
proach. We have introduced a parametrization of the fo

TABLE III. Values of am
pp andDa(MZ

2)upp given by our fit to
ALEPH t decay data, in the whole energy range (0.32 GeV<As
<1.6 GeV), for different values of theL cutoff.

L (GeV) am
pp31010 Da(MZ

2)upp3104

1.0 50566 33.860.4
1.1 51166 34.760.5
1.2 51466 35.160.5
1.3 51666 35.460.5
09300
cs
-
en

n

n

s
,

ta
e

-

e

r

ri-
be
h
ns
r

factor provided by the all-important properties of its anal
icity and unitarity relations. This last construction relat
FV(s) to thed1

1(s) phase-shift of elasticpp scattering.
To proceed we have included thed1

1(s) phase-shift~up to
As.1.5 GeV) with a model-independent parametrizatio
provided by the resonance chiral theory and experime
data. Our form factor depends on two,a priori unknown,
subtraction constants and ther(770) mass. We have fitted
ALEPH data ont2→p2p0nt to the form factor forE
&1.1 GeV and we obtainM r5(775.160.5) MeV. Our re-
sult for M r is bigger than the new average of@13# but very
much consistent with that average fromt decays ande1e2

annihilation processes. The predictions given by our res
on the low-energy observables worked out inxPT, ^r 2&V

p ,
and cV

p have also been computed. We find good agreem
with the results from the fit inxPT though our errors are
smaller. It is necessary to notice, though, that when th
figures are worked on to determine local chiralO(p6) coun-
terterms, the values we get are not consistent with those
tained, through VMD, from resonance chiral theory by in
grating out the lightest octet of vector resonances. A
conclusion it seems that room is left for the contribution
heavier resonances.

Finally we have evaluated thepp contribution to the
anomalous magnetic moment of the muon,am

pp , and the shift
of the fine structure constantDa(MZ

2)upp . An improvement
in the theoretical errors of these quantities would be achie
with a more complete analysis of the available data.

We have shown how it is possible to extract mod
independent information of resonances from experime
data by exploiting general properties of form factors, such
unitarity and analyticity. When combined with the resonan
chiral theory, the effective action of QCD at the lightest res
nance region, these properties provide a compelling fra
work for the study of form factors.
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APPENDIX

A theoretical construction of the vector form factor of th
pion was performed in Ref.@9# by matching theO(p4) xPT
result~valid atE!M r) with the prescription provided by the
resonance chiral theory. The procedure also took into
count the analyticity and unitarity properties ofFV(s). The
result only includes the contribution of ther(770) resonance
and gives an excellent description of data up toE;1 GeV
with just one parameter,M r . We have compared this pre
scription with ours in Figs. 1 and 2.

For completeness we recall here the result of Ref.@9#:
5-6
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FV~s!5
M r

2

M r
22s2 iM rGr~s!

3expH 2s

96p2Fp
2 FReA~mp

2 /s,mp
2 /M r

2!

1
1

2
ReA~mK

2 /s,mK
2 /M r

2!G J , ~A1!

whereGr(s) is the hadronic off-shell width of ther(770)
resonance@12#,
op
9

.

y
h,

rg

09300
Gr~s!5
M rs

96pFp
2 Fsp

3 u~s24mp
2 !1

1

2
sK

3 u~s24mK
2 !G ,

~A2!

and

A~mP
2 /s,mP

2 /m2!5 lnS mP
2

m2 D 18
mP

2

s
2

5

3
1sP

3 lnS sP11

sP21D ,

~A3!

with sP5A124mP
2 /s.
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